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ABSTRACT
With the increasing of multi-modal data on the internet, cross-
modal retrieval has received a lot of attention in recent years. It
aims to use one type of data as query and retrieve results of another
type. For different modality data, how to reduce their heteroge-
neous property and preserve their local relationship are two main
challenges. In this paper, we present a novel joint dictionary learn-
ing and semantic constrained latent subspace learning method for
cross-modal retrieval (JDSLC) to deal with above two issues. In
this unified framework, samples from different modalities are en-
coded by their corresponding dictionaries to reduce the semantic
gap. In the meantime, we learn modality-specific projection matri-
ces to map the sparse coefficients into the shared latent subspace.
Meanwhile, we impose a novel cross-modal similarity constraint
to make the representations of samples that belong to same class
but from different modalities as close as possible in the latent sub-
space. An efficient algorithm is proposed to jointly optimize the
proposed model and learn the optimal dictionary, coefficients and
projection matrix for each modality. Extensive experimental results
on multiple benchmark datasets show that our proposed method
outperforms the state-of-the-art approaches.
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• Information systems → Multimedia and multimodal re-
trieval; Structure and multilingual text search;
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1 INTRODUCTION
Information retrieval is an important task in computer science.
Single modality retrieval has been well studied, such as image
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retrieval, text retrieval and etc. Recently, with the rapid increase
of multimedia data which consists of multi-modality information,
people pay much attention to cross-modal retrieval, which enables
us to use one type data as query and retrieve relevant samples from
the database formed by data of other modalities. Towards this task,
many works have been proposed recently. For a comprehensive
review, please refer to [13]. For data from different modalities, they
share the same underlying content, but there are also semantic gaps
and heterogeneous properties. It is very challenging to measure
their cross-modal similarity directly.

For cross-modal retrieval, there aremainly three issues we should
take into consideration. First of all, we need to reduce the semantic
gap between different type data. To tackle this issue, dictionary
learning methods achieved very good performance. Secondly, it is
crucial to measure their similarity and distance in a common space.
Latent subspace learning methods are the most popular approaches
towards this issue. It can efficiently compute their similarity by
mapping various modality data into one shared latent subspace.
Thirdly, in the shared space, distance between samples of same
category should be as close as possible. However, according to [3],
common space projection cannot promise this. It is necessary to
add a similarity constraint to preserve the local relationship after
projecting into the latent subspace.

All these properties are very necessary and important for cross-
modal retrieval. However, existing cross-modal retrieval methods
mainly focus on the second part of the above issues and adopt
different constraints to achieve the desired properties. In this paper,
we propose a novel unified framework to simultaneously learn the
dictionary for coding and matrices for projecting to the shared
space with a novel semantic cross-modal similarity constraint. On
the one hand, ℓ1-norm regularized dictionary learning (also known
as LASSO) is adopted to learn sparse codes for each type data and re-
duce the heterogeneous property at the primary stage. On the other
hand, we map different modality data into a shared latent space,
which is learnt by graph embedding instead of using the simple
label space. So that we can conveniently measure their similarity
in this common space. Please remind that we hope the distance
between samples of same category should be as close as possible,
but the common space projection cannot promise this according
to [3]. So we exert a novel cross-modal similarity constraint on
the representations of cross-modal data in the shared latent space.
Finally, we combine the above terms together to learn the optimal
dictionary and the projection matrix.

The proposed JDSLC has three main contributions. Firstly, we
propose a novel unified framework to simultaneously learn related
variables. Secondly, a novel cross-modal constraint is proposed
to well preserve the relationship among samples of same class.
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Finally, we propose an iterative algorithm to efficiently solve the
proposed problem. Experimental results on related datasets show
the superiority of our proposed method.

2 RELATEDWORK
For cross-modal retrieval, extensive research has been proposed
and many methods achieve the state-of-the-art performance. We
briefly review some relevant methods, including latent subspace
learning [11] and dictionary learning [4, 15].

Latent subspace learning is the most popular method for cross-
modal retrieval. By projecting multi-modal data into one common
subspace, we can measure their similarity efficiently. Canonical
Correlation Analysis (CCA) [2], Partial Least Squares (PLS) and
Bilinear Model (BLM) are three main classic unsupervised meth-
ods. Despite the above unsupervised classic methods, there are also
many approaches that incorporate label information to facilitate the
retrieval, where the latent subspace is often defined by their seman-
tic label. Sharma et al. [10] presented a general multi-view feature
extraction approach called generalized multiview analysis (GMA)
which extended linear discriminant analysis and marginal Fisher
analysis (MFA) to their multiview cases. Wang et al. [12] proposed
a method to learn coupled feature space with ℓ21-norm projection
matrix penalty and low-rank constraint on the projected data. Then
they employed a multi-modal graph regularization term to preserve
the local relationship [11]. In [3, 16], a joint representation learning
method was presented to explore the influence of pairwise con-
straint during latent space regression. Kang et al. [6] added a local
group-based priori and a ϵ−dragging term for robust representa-
tion. Instead of using the simple label information as the latent
subspace, Wu et al. [14] came up with a joint latent subspace learn-
ing and regression method to learn the optimal common subspace
for projection.

Dictionary learning is often adopted for this task. Huang et al. [4]
proposed a coupled dictionary and feature space learning method,
which learned a pair of dictionaries for describing cross-domain
image data and explored the correlation between sparse codes of
different modality. Inspired by [5] and based on the discriminative
dictionary learning method, Deng et al. [1] came up with an ap-
proach that adopted a common label alignment within the class
label space to augment the correlations among all the modalities.

Besides these two kinds of methods, there are some other meth-
ods, such as deep learning methods, rank based methods, and etc.

However, most existing methods only focus on part of the neces-
sary issues for cross-modal retrieval. It is very necessary to come up
with a unified framework that takes all these important factors into
consideration. So we propose a joint dictionary learning and latent
subspace learning framework with a novel cross-modal similarity
constraint to reduce the semantic gap, measure their similarity
efficiently, and preserve the local relationship.

3 PROPOSED APPROACH
3.1 Problem Formulation
For the task of cross-modal retrieval, we mainly consider the situa-
tion with two different modalities, such as the most popular image
versus text retrieval. Denote Xa = [xa1 , · · · ,x

a
N ] ∈ Rda×N and

Xb = [xb1 , · · · ,x
b
N ] ∈ Rdb×N as the N feature pairs extracted from

two different domains. On the one hand, we hope to adopt sparse
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Figure 1: Framework of the proposed JDSLC method.

representation method to learn the dictionary DI ∈ RdI×K (I ∈
{a,b}) with K atoms and sparse coefficientAI ∈ RK×N for features
of each domain. On the other hand, we expect to learn projection
matricesW I ∈ RK×C to map the sparse representations of different
modality into one common latent space Y to better measure their
cross-modal similarity. Instead of directly using label matrix to de-
fine Y , we learn the orthogonal space Y by spectral regression [14]:

min
Y

1
2

∑
i, j
∥yi − yj ∥

2
2Si j = tr

(
YT (H − S )Y

)
s .t . YTY = I. (1)

Here, weight Si j is equal to 1 only when the i-th sample has the
same class information with the j-th sample, and otherwise Si j = 0.
H is a diagonal matrix with the i-th diagonal element as Hii =∑N
j=1 Si j . The above problem can be simply solved by eigenvalue

decomposition. However, separating the dictionary learning from
the common space projection might make both the dictionary D
and the projection direction W suboptimal. In this case, in our
proposed model, we jointly learn the discriminative dictionary and
projection direction. According to [3], common subspace mapping
cannot guarantee the distances among samples of same class are
small. So it is necessary to incorporate a cross-modal similarity
term to constrain the representation of different modality data in
the latent subspace. Then the objective function for our proposed
method can be formulated as follows:

min
D,A,W

∑
I ∈{a,b }

(������X I − DIAI ���
���
2
F
+ α ���

���A
I ���
���1 + β

���
���Y − (W I )TAI ���

���
2
F

+γ ���
���W

I ���
���2,1
)
+ λΩ

(
(W a )TAa , (W b )TAb

)
, (2)

where α , β , γ , and λ are balance parameters to control the relative
contribution of each item. To enforce sparsity, ℓ1 norm is used to
constrain the sparse codeA. For a matrixU , the ℓ2,1-norm is defined
as the sum of the ℓ2-norm of the rows ofU : ∥U ∥2,1 =

∑m
i=1 ∥U

(i ) ∥2.
We apply ℓ2,1 norm to the projection matrixW for feature selection.
We present the pipeline of our framework in Figure 1.

In the objective function of Eq. (2), the first term minimizes
reconstruction error of dictionary learning, and the third term
minimizes projection error, while the final term minimizes the
distance between representations of different domains in shared
latent space.

For the cross-modal similarity constraint Ω, the commonly used
form is the pairwise constraint [3]:

Ω
(
(W a )TAa , (W b )TAb

)
=
���
���(W

a )TAa − (W b )TAb ���
���
2
F
. (3)

However, this kind of constraint can only promise representations
of pairwise samples in the latent space could be close. Please remind
that for cross-modal retrieval, we hope representations of not only



pairwise samples, but also samples belong to the same class should
be as close as possible in the common subspace. So we further
propose a novel cross-modal similarity constraint as follows:

Ω
(
(W a )TAa,(W b )TAb

)
=

N∑
i=1

N∑
j=1

Si j
���
���(W

a)TAai − (W
b)TAbj

���
���
2
2 . (4)

Here, S is same to that in Eq. (1).
Then the final objective function for our JDSLC model is:

min
D,A,W

∑
I ∈{a,b }

(������X I − DIAI ���
���
2
F
+ α ���

���A
I ���
��� 1 + β

���
���Y − (W I )TAI ���

���
2
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+γ ���
���W

I ���
���2,1
)
+ λ

N∑
i=1

N∑
j=1

Si j
���
���(W

a )TAai − (W b )TAbj
���
���
2
2 . (5)

3.2 Optimization
It’s obvious that the optimization problem in Eq. (5) is not jointly
convex to D, A, andW . So it is difficult to optimize jointly. How-
ever, it is convex to each variable while other variables are fixed.
In the following, we present an iterative algorithm to optimize
the dictionaries D, sparse codes A, and projection directionsW ,
respectively.

We first update D by fixing A andW as constants. The problem
of optimizing D can be formulated as

min
D I

���
���X

I − DIAI ���
���
2
F
, I ∈ {a,b}. s .t . ���

���d
I
i
���
���2 ≤ 1,∀i, (6)

which is a quadratically constrained quadratic program (QCQP)
problem with respect to DI . It can be solved by the Lagrange dual
techniques [7].

Then, with the dictionaries D and projection matricesW fixed,
we calculate the sparse codes A. The problem in Eq. (5) is trans-
formed into the following problem:

min
AI

���
���X

I − DIAI ���
���
2
F
+ α ���

���A
I ���
���1 + β

���
���Y − (W I )TAI ���

���
2
F

+λ
N∑
i=1

N∑
j=1

Si j
���
���(W

a )TAai − (W b )TAbj
���
���
2
2 . (7)

For the last term in Eq. (7), we can expand and simplify it as:

argmin
Aa

λ
N∑
i=1

N∑
j=1

Si j
���
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���
���
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2
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(8)

whereZbi =
∑N
j=1

(
Si j (W b )TAbj

)√∑N
j=1 Si j

. Similarly, withZa
i =

∑N
j=1

(
Si j (W a )TAaj

)√∑N
j=1 Si j

,

the last term in Eq. (7) during optimizing Ab is equal to:

min
Ab
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(9)

To compute Aa and Ab , by combining the first, third, and fourth
terms in Eq. (7) into one term, the problem can be simplified into:

min
Aai

���������
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*..
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(10)

where i ∈ {1, 2, · · · ,N }. It is a standard ℓ1 norm regularized sparse
coding problem. For sparse coefficients AIi of each sample, we can
use the SPAMS toolbox [8] to derive solutions.

Finally, we need to update the projection directionsW by fixing
D and A. TakeW a for example, we have:

min
W a

J (W a ) = β ���
���Y
T − (Aa )TW a ���

���
2
F
+ γ ����W a ����2,1

+λ
(
tr
(
(W a )TAaH (Aa )TW a

)
−tr
(
(W a )TAaS (Ab )TW b

)
(11)

−tr
(
(W b )TAbS (Aa )TW a

))
.

H is also same to that in Eq. (1). Then the derivative of J (W a ) with
respect toW a is:

∂J (W a )

∂W a = −2βAa
(
YT − (Aa )TW a

)
+ 2γQaW a

+2λAa
(
H (Aa )TW a−S (Ab )TW b

)
,

(12)

where Qa is a diagonal matrix with the i-th diagonal element as
Qa
ii =

1√
∥wa

i ∥
2
2+ϵ

. Here, ϵ is a very small constant to avoid the

denominator being 0. By setting the above derivative in Eq. (12) to
zero, we can get:

W a =
(
βAa (Aa )T +λAaH (Aa )T +γQa

)−1 (
βAaYT +λAaS (Ab )TW b

)
.

Similarly, we can computeW b by:

W b =
(
βAb (Ab )T +λAbH (Ab )T +γQb

)−1 (
βAbYT +λAbS (Aa )TW a

)
.

We repeat the above three steps to alternatively optimize D, A,
andW until the objective value of Eq. (5) converges, when the rate
of change between two iterations is less than a small threshold.

After learning the optimal variables based on the training sam-
ples, we map the testing samples of different modalities into the
common subspace with the modality-specific projection matrices.
So that we can measure their similarity and retrieve the related
cross-modal samples.



Table 1: MAP Comparison on the Wikipedia dataset.

Methods Image query Text query Average
CCA [2] 0.2549 0.1846 0.2198
GMMFA [10] 0.2750 0.2139 0.2445
GMLDA [10] 0.2751 0.2098 0.2425
PL-Ranking [17] 0.2625 0.2221 0.2423
LCFS [12] 0.2798 0.2141 0.2470
DDLCC [1] 0.2909 0.2261 0.2585
JFSSL [11] 0.3063 0.2275 0.2669
LGCFL [6] 0.3009 0.2377 0.2693
JLSLR [14] 0.3168 0.2346 0.2757
JDSLC 0.3177 0.2531 0.2854

4 EXPERIMENTS AND RESULTS
We test the performance of our JDSLC method on two datasets,
including the Wikipedia dataset and the MIR-Flickr dataset.

The Wikipedia dataset contains 2, 866 image-text pairs, which
are generated from the featured article of Wikipedia. There are
10 semantic categories in total. For each pair, the text is a long
article describing the label related information, and the image is
high correlated to the content of the article. We adopt the same
setting as that in [11, 12], which splits 2, 866 pairs into a training
set of 1, 300 pairs (130 pairs per class) and a testing set of 1, 566
pairs. For text features, latent Dirichlet allocation (LDA) is used to
extract 10 dimensions representation. For image representation, we
extract the 128 dimensional SIFT descriptor histograms.

The MIR-Flickr dataset contains 25, 000 image-tag pairs. We se-
lect image-tags pairs that exclusively belong to only one of the 10
largest concepts, which results in 5, 730 pairs in total for our exper-
iments [17]. We directly adopt the 500-dimensional bag of words
feature vectors based on SIFT descriptions and 1000-dimensional
word frequency feature vectors to represent images and textual
tags, respectively. We adopt same setting as that in [17]. 75% of the
data are selected as training samples, and the remaining for testing.

We adopt the commonly used mean average precision (MAP)
to evaluate the performance. For details of the MAP computation,
please refer to [9]. Higher MAP scores show better result.

For parameters α , β , γ , and λ of our proposed JDSLC method in
Eq. (5), we fine tune them by searching the gird of {10−2, 10−1, · · · , 103}
based on cross validation.

In Tables 1 and 2, we show the results of these start-of-the-art
methods on these two datasets. We can see that our JDSLC method
achieves the best performance on both two datasets. On Wikipedia
dataset, the average MAP of our method is 0.2854, while the second
best result is 0.2757. There is 3.5% improvement relatively on this
dataset. On MIR-Flickr dataset, we achieve 0.3541, which is 1.7%
higher than the second best result achieved by the JLSLR [14].
We also test the significance between the proposed JDSLC and
JLSLR [14], which achieves the second best results. The p-value
on these two datasets between these two methods are 0.03 and
5.1∗10−4, respectively. Both of them are less than 0.05, which shows
our result has significant difference with that of JLSLR. We can also
observe the similar results when compared with other methods.
Based on the results, we can see that the dictionary learning and
local semantic constraint work very well for this task. With joint
heterogeneous property reducing and local relationship preserving,
our method achieves the best performance.

Table 2: MAP Comparison on the MIR-Flickr dataset.

Methods Image query Text query Average
CCA [2] 0.1455 0.1438 0.1447
GMMFA [10] 0.2657 0.1884 0.2271
GMLDA [10] 0.2662 0.1893 0.2278
PL-Ranking [17] 0.2851 0.2323 0.2587
LCFS [12] 0.3860 0.2658 0.3259
DDLCC [1] 0.3925 0.2861 0.3393
JFSSL [11] 0.4122 0.2802 0.3462
LGCFL [6] 0.4060 0.2816 0.3438
JLSLR [14] 0.4131 0.2831 0.3481
JDSLC 0.4179 0.2904 0.3541

5 CONCLUSION
For cross-modal retrieval, we propose a novel joint dictionary learn-
ing and latent subspace projection method with local semantic con-
straint. Experimental results show the superiority of our method.
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