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Abstract
Improving information flow in deep networks helps to

ease the training difficulties and utilize parameters more
efficiently. Here we propose a new convolutional neu-
ral network architecture with alternately updated clique
(CliqueNet). In contrast to prior networks, there are both
forward and backward connections between any two layers
in the same block. The layers are constructed as a loop and
are updated alternately. The CliqueNet has some unique
properties. For each layer, it is both the input and output of
any other layer in the same block, so that the information
flow among layers is maximized. During propagation, the
newly updated layers are concatenated to re-update previ-
ously updated layer, and parameters are reused for mul-
tiple times. This recurrent feedback structure is able to
bring higher level visual information back to refine low-
level filters and achieve spatial attention. We analyze the
features generated at different stages and observe that using
refined features leads to a better result. We adopt a multi-
scale feature strategy that effectively avoids the progressive
growth of parameters. Experiments on image recognition
datasets including CIFAR-10, CIFAR-100, SVHN and Ima-
geNet show that our proposed models achieve the state-of-
the-art performance with fewer parameters 1.

1. Introduction
In recent years, the structure and topology of deep neural

networks have attracted significant research interests, since

the convolutional neural network (CNN) based models have

achieved huge success in a wide range of tasks of computer

vision. A notable trend of those CNN architectures is that

the layers are going deeper, from AlexNet [23] with 5 con-

volutional layers, the VGG network and GoogleLeNet with

19 and 22 layers, respectively [32, 36], to recent ResNets

[13] whose deepest model has more than one thousand

layers. However, inappropriately designed deep networks

∗Corresponding author
1Code address: http://github.com/iboing/CliqueNet

0

1

2

3

4 1 2 3 4

Stage-I feature Stage-II feature

unfold 1 2

34

0Block

Figure 1. An illustration of a block with 4 layers. Any layer is

both the input and output of another one. Node 0 denotes the input

layer of this block.

would make it hard for latter layer to access the gradient in-

formation from previous layers, which may cause gradient

vanishing and parameter redundancy problems [17, 18].

Successfully adopted in ResNet [13] and Highway Net-

work [34], skip connection is an efficient way to make

top layers accessible to the information from bottom lay-

ers, and ease the network training at the same time, due

to its relief of the gradient vanishing problem. The resid-

ual block structure in ResNet [13] also inspires a series

of ResNet variations, including ResNext [40], WRN [41],

PolyNet [44], etc. To further activate the gradient and in-

formation flow in networks, DenseNet [17] is a newly pro-

posed structure, where any layer in a block is the output of

all preceding layers, and the input of all subsequent layers.

Recent studies show that the skip connection mechanism

can be extrapolated as a recurrent neural network (RNN)

or LSTM [14], when weights are shared among different

layers [27, 5, 21]. In this way, the deep residual network
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is treated as a long sequence and hidden units are linked

by skip connections. While this recurrent structure benefits

feature re-usage and iterative learning, the residual informa-

tion is restricted among neighboring layers and cannot be

considered across multiple layers, because the recurrence

only happens once at each single layer.

Attention mechanism is another focus of recent stud-

ies on network structure [39, 37, 1, 28] and applications

[3, 29, 24, 8]. When people watch a picture or a scene, the

information on our target is better captured if we re-look at

or re-think the target with additional attention. In cognition

theory, the activity of a neuron in visual cortex is influenced

by other cortical area’s responses transferred through feed-

back connections [19, 15]. This motivates the introduce of

feedback to deep networks [35, 42]. The feedback connec-

tions that bring back higher-level semantic information in a

top-down manner are able to re-weight the focus, and sup-

press the non-relevant neuron activations of background and

noises.

Inspired by the recurrent structure and attention mecha-

nism, in this study, we propose a new convolutional neu-

ral network architecture with alternately updated clique

(CliqueNet). In contrast to prior network structures, there

are both forward and feedback connections between any

two layers in the same block. As illustrated in Figure 1, the

layers in Clique Block are constructed as a clique and are

updated alternately. Concretely, the several previous layers

are concatenated to update the next layer, after which, the

newly updated layer is concatenated to re-update the pre-

vious layer, so that information flow and feedback mecha-

nism can be maximized. Each layer in a block is both the

input and output of another one, which means they are more

densely connected than DenseNets [17]. We adopt a multi-

scale feature strategy to compose the final representation

with the block features in different map sizes.

CliqueNet architecture has some unique properties.

An intuition would tell that our proposal is parameter-

demanding, because given a block with n layers, DenseNet

[17] needs C2
n groups of parameters, while ours needs A2

n

(C and A represents combination operator and permutation

operator, respectively). However, the filters in DenseNet

increase linearly as the depth rises [5], which may leads to

the rapid growth of parameters. In our architecture, only the

Stage-II feature in each block is fed into the next block. It

turns out that this is a more parameter-efficient way. In ad-

dition, traditional neural networks add a new layer with its

corresponding parameters. As for CliqueNet, the weights

among layers in a block keep recycling during propagation.

The layers can be updated alternately for multiple times so

that a deeper representation space is attained with the fixed

number of parameters.

CliqueNet also shows a strong ability for representation

learning due to the combination of recurrent structure and

feedback mechanism. In each Clique Block, both forward

and feedback are densely connected. The information flow

is maximized and feature maps are repeatedly refined by

attention. We show that our network architecture can sup-

press the activations of background and noises, and achieve

competitive results without resorting to data augmentation.

The contributions in this study are listed as follows:

• We propose a new convolutional neural network archi-

tecture called CliqueNet, which incorporates both for-

ward and backward connections between any two lay-

ers in the same block. The layers constructed as a loop

are updated alternately. The CliqueNet that combines

both recurrent structure and attention mechanism, is

able to maximize information flow and achieve feature

refinement. We show that the refined features are more

discriminative and lead to a better performance.

• We adopt a multi-scale feature strategy that effectively

circumvents the progressive increment of parameters,

despite the extra feedback connections.

• We conduct experiments on four benchmark datasets

including CIFAR-10, CIFAR-100, SVHN and Ima-

geNet to demonstrate the superiority of our models.

2. Related Work
A number of deep networks with large model capacity

have been proposed. For widening the network, the Incep-

tion modules in GoogLeNet [36] fuse the features in dif-

ferent map size to construct a multi-scale representation.

Multi-column [6] nets and Deeply-Fused Nets [38] also use

fusion strategy and have a wide network structure. Wide

residual networks [41] increase the width and decrease the

depth to improve the performance, while FractalNet [25]

deepen and widen at the same time. However, simply

widening the network is easy to consume more runtime and

memory [44]. For deepening the networks, skip connec-

tions or shortcut paths are widely adopted strategies to ease

the network training [13, 34]. In [18], it is shown that some

of the layers in ResNets are dispensable and cause parame-

ters redundancy. So they randomly drop a subset of layers to

ease the training and achieve a better performance. To fur-

ther increase information flow, DenseNets [17] replace the

identity mapping in residual block by concatenating oper-

ation, so that new feature learning can be reinforced while

keeping old feature re-usage. In line with this view, dual

path networks (DPN) [5] are proposed to combine both ad-

vantages of residual path and densely connected path.

Both residual path and densely connected path corre-

spond to a recurrent propagation, and their success has been

attributed to the recurrent structure and iterative refinement

[27, 11, 21]. Studies incorporating recurrent connections

into CNNs also show superiority in object recognition [26],

scene parsing [31] and some other tasks. CliqueNet dif-

fers from these structures in that the iterative mechanism
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Figure 2. A CliqueNet with three blocks. The input layer together with the Stage-II feature in each block are concatenated to be the block

feature, and form part of the final representation after global pooling. The Stage-II feature passes through transition layers, which include

a convolution and an average pooling to change map sizes, and then becomes the input of the next block.

exists in each step of the propagation, instead of just be-

tween neighboring layers or from the top layer to the bot-

tom layer; all layers in a block participate in the recurrent

loop so that the filters are communicated sufficiently and the

blocks play both roles of information carrier and refiner.

Recent studies have embraced the attention mechanism

as an effective technique to strengthen some neurons that

feature the target, and improve the performance as a re-

sult. It is proved fruitful in many applications, including

image recognition [37, 8], image captioning [3], image-

text matching [29], and saliency detection [24]. In gen-

eral, visual attention can be achieved by formulating an op-

timization problem [1], weighting the activations spatially

or channel-wisely [3, 16], and introducing feedback con-

nections [39, 35, 42]. In [42], the model makes consecu-

tive decisions for a more accurate prediction via feedback

connections. The input of the next decision is based on

the output of the last decision. Experiments show that the

top-down propagation is capable of refining lower-level fea-

tures, and improving classification performance [35], espe-

cially on datasets with noise and occlusion [39, 28]. But

how to make a proper attention mechanism and boost the

supervision between layers remains further exploration.

There are also some studies that design attention mecha-

nism tied with recurrent neural networks [28, 24, 8]. A re-

cent report [2] tries to propose a loopy net, but it just repeats

the skip connections and does not make layers communi-

cated. The loopy inference adopted in [4, 45] shares a sim-

ilar motivation with our work. However, they do not incor-

porate feedback connections, which are important for fea-

ture refinement. CliqueNet enables true cycling because of

the alternate propagation. Although alternate updating has

been an important method in the optimization theory [9],

it has not been introduced into deep learning areas. At the

best of out knowledge, we are the first to use updated lay-

ers to re-update previous layers alternately, and these layers

construct a loop to cycle for multiple times.

3. CliqueNet Architecture

The CliqueNet architecture has two main ingredients, the

block with alternately updated clique (Clique Block) to en-

able feature refinement, and the multi-scale feature strategy

that facilitates parameter efficiency.

3.1. Clique Block

In order to maximize the information flow among lay-

ers, we design the Clique Block. Any two layers in the

same block are connected bidirectionally except for the in-

put node. Compared with Dense Block [17] where each

layer is the output of all previous layers, and the input of

all subsequent layers, Clique Block makes each layer both

the input and output of any other layers. The propagation

of a Clique Block with 5 layers is illustrated in Table 1. At

the first stage, the input layer (X0) initializes all layers in

this block by single directional connections. Each updated

layer is concatenated to update the next layer. From the sec-

ond stage, the layers begin updating alternately. All layers

except the top layer to be updated are concatenated as the

bottom layer, and their corresponding parameters are also

concatenated. Accordingly, the ith (i ≥ 1) layer in the kth

(k ≥ 2) loop can be formulated as:

X
(k)
i = g

(∑
l<i

Wli ∗X(k)
l +

∑
m>i

Wmi ∗X(k−1)
m

)
(1)

where ∗ denotes the convolution operation with parameters

W , and g is the non-linear activation function. Wij keeps

re-used in different stages. Each layer will always receive

the feedback information from the layers that are updated

more lately. It achieves a spatial attention mechanism due

to the top-down refinement brought by each propagation.

This recurrent feedback structure ensures that the commu-

nication is maximized among all layers in the block.
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Table 1. A diagram of CliqueNet’s propagation in a block with 5 layers. Wij is the weights of parameter from Xi to Xj and keeps re-used.

“{}” denotes the concatenation operator. The Stage-II feature is to be transited as the input layer (X0) of the next block.

Figure 3. Training and testing curves of different versions of

CliqueNets. Learning rate is divided by 10 at epoch 150 and 225.

3.2. Feature at Different Stages

We analyze the features produced at different stages, and

adopt a multi-scale feature strategy to avoid the rapid incre-

ment of parameters.

The first stage is used to initialize all layers in the block,

and the layers are refined repeatedly since the second stage.

Given that the Stage-II feature is refined with attention and

assimilates more high level visual information, we make the

Stage-II feature together with the input layer in each block

concatenated as the block feature, and then accessed to the

loss function after global pooling. Only the Stage-II feature

is fed into the next block as their input layer X0; see Fig-

ure 2. In this way, the final representation is characterized

by multi-scale feature maps, and the dimensionality in each

block will not increase progressively. Because higher stage

propagation comes with more computational cost and am-

plifies the model complexity, we only consider the first two

stages.

name block feature transit error(%)

CliqueNet (I+I) X0, Stage-I Stage-I 6.64

CliqueNet (I+II) X0, Stage-I Stage-II 6.1

CliqueNet (II+II) X0, Stage-II Stage-II 5.76

Table 2. Results of different versions of CliqueNets on CIFAR-10.

For the purpose of analyzing the features generated in

different stages, we conduct experiments on CIFAR-10

dataset (with no data augmentation) using different versions

of CliqueNets. As Table 2 shows, the CliqueNet (I+I) only

considers the Stage-I feature. The CliqueNet (I+II) uses the

Stage-I feature and input layer as block feature to access

loss function, but transits the Stage-II feature into the next

block. The CliqueNet (II+II) adopts our aforementioned

strategy. They all have 3 blocks with 5 layers in each block.

Each layer contains 36 filters. The experimental settings are

following [17]. The main results are shown in Figure 3. It

is found that the introduce of Stage-II feature indeed leads

to a better result by a significant margin. We adopt the

CliqueNet (II+II) structure for the following experiments.

3.3. Extra Techniques

In addition to the structures mentioned above, we con-

sider some techniques to help strengthen the model and im-

prove the state of the art. In the experimental section, we

conduct experiments with and without these additional tech-

niques to show the effectiveness of our model.

Attentional transition. The CliqueNet includes feedback

connections to refine lower level activations using higher

level visual information. The attention mechanism weight

the feature maps spatially to weaken the noises and back-

ground. The channel-wise attention, adopted in [3, 37, 16],

also benefits recognition problem because it recalibrates
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different filters to prevent overfitting and inspire new fea-

tures learning. In CliqueNet, we incorporate channel-

wise attention mechanism in transition layers, following the

method proposed in [16]. As depicted in Figure 4, the fil-

ters are globally averaged after the convolution in transi-

tion. They are followed by two fully connected (FC) layers.

The first FC layer has half of the filters and is activated by

Relu function. The second FC layer has the same number

of filters and is activated by Sigmoid function, so that the

activation is scaled into [0, 1] and acts on the input layer by

filter-wise multiplication. Different from [16] which sets

this module at each residual layer, we only add it to transi-

tion layers in order to adjust the filters into the next block.

Bottleneck and compression. Bottleneck is an effective

way to decrease the number of parameters and provide fur-

ther potential to enlarge model capacity. It is conjectured

[41] that bottleneck architecture is suitable for deeper net-

works and large dataset like ImageNet, and recent stud-

ies have embraced bottleneck for a better performance

[13, 17, 37, 5]. So we introduce bottleneck to our large

models. The 3 × 3 convolution kernels in each block are

replaced by 1× 1, and produce a middle layer, after which,

a 3 × 3 convolution layer follows to produce the top layer.

The middle layer and top layer contain the same number of

feature maps. Compression is another tool adopted in [17]

to make the model more compact. Instead of compressing

the number of filters in transition layers as they do, we only

compress the features that are accessed to the loss function,

i.e. the Stage-II concatenated with its input layer. The mod-

els with compression have an extra convolutional layer with

1×1 kernel size before global pooling. It generates half the

number of filters to enhance model compactness and keep

the dimensionality of the final feature in a proper range.

3.4. Implementation

In our experiments, we test our models on benchmark

datasets without the aforementioned extra techniques to

show the effectiveness of CliqueNet, and further improve

the state-of-the-art performance with them. There are two

structure parameters, the sum of layers in all blocks, T, and

the number of filters per layer, k. For our models without

bottleneck, convolution layers in each block are with 3× 3
kernel size and padded by one pixel to keep the feature maps

in the same size. Blocks are linked by transition layers,

where a convolution layer with 1×1 kernel size is followed

by 2 × 2 average pooling. All convolutions are performed

in a unit composed of three consecutive operations: batch

normalization[20], Relu, and the convolution. Stage-II fea-

ture with its input layer from all blocks are concatenated

after global pooling, and end with a fully-connected layer

with softmax.

For experiments on CIFAR and SVHN, there are three

blocks in total, in which the feature map sizes are 32 × 32,

× × 1 × 1 ×
1 × 1 ×1 × 1 × /2

Global Pooling
FC, ReluFC, Sigmoid

× ×
Filter-wise multiplication

convolution(1 × 1)

pooling(2 × 2)
Figure 4. A schema for attentional transition. The transition layer

consists of convolution and pooling. The filter-wise multiplication

happens after convolution and before down pooling. W , H and C
are width, height and channels of feature maps.

Layer S0 S1 S2 S3

Convolution
conv (7× 7), 64, stride 2

(112× 112)

Pooling
max pool (3× 3), stride 2

(56× 56)

Block 1
36× 5 36× 5 36× 5 40× 6

(56× 56)

Transition: conv (1× 1), avg pool (2× 2)

Block 2
64× 6 80× 6 80× 5 80× 6

(28× 28)

Transition: conv (1× 1), avg pool (2× 2)

Block 3
100× 6 120× 6 150× 6 160× 6

(14× 14)

Transition: conv (1× 1), avg pool (2× 2)

Block 4
80× 6 100× 6 120× 6 160× 6

(7× 7)

Table 3. Structures on ImageNet. The first number in each block is

the number of filters per layer, and the second denotes the number

of layers in this block.

16 × 16, and 8 × 8, respectively. Before entering the first

block, the input images pass through a 3 × 3 convolution

with output channels set to be 64 as the input layer (X0) of

the first block. As for ImageNet, we use four blocks with

bottleneck and compression, and compare our results with

and without attentional transition. The initial transition has

7× 7 convolution with stride 2 and 3× 3 max pooling with

stride 2 on the 224 × 224 input images. Our four network

structures on ImageNet are shown in Table 3.
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Model A B C FLOPs Params CIFAR-10 CIFAR-100 SVHN

Recurrent CNN [26] - - - - 1.86M 8.69 31.75 1.80

Stochastic Depth ResNet [18] - - - - 1.7M 11.66 37.8 1.75

dasNet [35] - - - - - 9.22 33.78 -

FractalNet [25] - - - - 38.6M 7.33 28.2 1.87

DenseNet (k = 12, T = 36) [17] - - - 0.53G 1.0M 7.00 27.55 1.79

DenseNet (k = 12, T = 96) [17] - - - 3.54G 7.0M 5.77 23.79 1.67

DenseNet (k = 24, T = 96) [17] - - - 13.78G 27.2M 5.83 23.42 1.59

CliqueNet (k = 36, T = 12) - - - 0.91G 0.94M 5.93 27.32 1.77

CliqueNet (k = 64, T = 15) - - - 4.21G 4.49M 5.12 23.98 1.62

CliqueNet (k = 80, T = 15) - - - 6.45G 6.94M 5.10 23.32 1.56
CliqueNet (k = 80, T = 18) - - - 9.45G 10.14M 5.06 23.14 1.51
DenseNet (k = 12, T = 96) [17] - � � 0.58G 0.8M 5.92 24.15 1.76

DenseNet (k = 24, T = 246) [17] - � � 10.84G 15.3M 5.19 19.64 1.74

CliqueNet (k = 36, T = 12) � - - 0.91G 0.98M 5.8 26.41 -

CliqueNet (k = 36, T = 12) - - � 0.98G 1.04M 5.69 26.45 -

CliqueNet (k = 36, T = 12) � - � 0.98G 1.08M 5.61 25.55 1.69

CliqueNet (k = 80, T = 15) � - � 6.88G 8M 5.17 22.78 1.53
CliqueNet (k = 150, T = 30) � � � 8.49G 10.02M 5.06 21.83 1.64

Table 4. Error rates (%) on CIFAR-10, CIFAR-100, and SVHN without any data augmentation. In CliqueNets and DenseNets, k is the

number of filters per layer, and T is the total number of layers in three blocks. “A, B, C” represents attentional transition, bottleneck and

compression, respectively. The FLOPs of DenseNets are calculated by ourselves.

4. Experiments

We evaluate the CliqueNet on benchmark classification

datasets, including CIFAR-10, CIFAR-100, SVHN and Im-

ageNet, and compare our results with the state of the arts.

4.1. Datasets and Training Details

CIFAR. The CIFAR-10 and CIFAR-100 datasets [22] are

both 32 × 32 colored images. CIFAR-10 dataset consists

of 60,000 images in 10 classes, with 6,000 images in each

class. There are 50,000 images for training and 10,000 im-

ages for testing. CIFAR-100 dataset is similar to CIFAR-10

but has 100 classes, each of which contains 600 images. For

data normalization, we preprocess the dataset by subtracting

the mean and dividing by the standard deviation.

SVHN. The Street View House Number (SVHN) [30]

dataset contains 32 × 32 colored images of house numbers

cropped from Google Street View. There are 73,257 images

in the training set, 26,032 in the testing set and 531,131 dig-

its for additional training. Following the common practice

[41, 18, 25, 17], we use all training samples without aug-

mentation and divide images by 255 for normalization. We

report the lowest error rate on the testing set.

ImageNet. We also conduct experiments on ILSVRC

2012 dataset[7], which contains 1.2 million training im-

ages, 50,000 validation images, and 100,000 test images

with 1,000 classes. Following [13, 17], we adopt the stan-

dard data augmentation for the training sets. A 224 × 224
crop is randomly sampled from the images or its horizontal

flip. The images are normalized into [0, 1] using mean val-

ues and standard deviations. We report the single-crop error

rate on the validation set.

Training Details. For fair comparison, we do not take much

hyper-parameter tuning, and most of our training strategies

are following [13, 17]. We train our models using stochas-

tic gradient descent (SGD) with 0.9 Nesterov momentum

and 10−4 weight decay. The parameters are initialized ac-

cording to [12] and the weights of fully connected layer are

using Xavier initialization [10]. For CIFAR and SVHN,

we train for 300 epochs and 40 epochs, respectively, with

batchsize of 64. The learning rate is set to be 0.1 initially

and is divided by 10 at 50% and 75% of the training proce-

dure. Compared with ImageNet, the experiments on CIFAR

and SVHN are not resorting to any data augmentation, and

we add a dropout layer [33] with drop out rate 0.2 after each

convolution layer following[17]. For ImageNet, we train

our models for 100 epochs and drop the learning rate by 0.1

at epoch 30, 60, and 90. Because we have only server with

4 GPUs and are constrained by GPU memory, the batchsize

is 160 for our models on ImageNet, instead of 256 as most

studies did.

4.2. Results on CIFAR and SVHN

Our experimental results on CIFAR and SVHN are

shown in Table 4. The first part in the table includes some

methods before DenseNets and some other studies that also

incorporate feedback connections or attention mechanism.

The second and third parts compare the CliqueNets with
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Model Params top-1 top-5

ResNet-18 [13] 11.7M 30.43 10.76

CliqueNet-S0∗ 5.7M 27.52 8.98

ResNet-34 [13] 21.8M 26.73 8.74

CliqueNet-S1∗ 7.96M 26.21 8.3

CliqueNet-S2∗ 10M 25.85 8.02

DenseNet-121 [17] 7.98M 25.02 7.71

CliqueNet-S2 11M 24.82 7.51

CliqueNet-S3∗ 13.17M 24.98 7.48

ResNet-50 [13] 25.6M 24.01 7.02

CliqueNet-S3 14.38M 24.01 7.15

Table 5. Single crop error rates (%) on ImageNet. The ∗ indicates

the models without attentional transition.

DenseNets when they both have no extra technique. The

last two parts show the situation with extra techniques. The

best result and the second best result are marked by red bold

and bold, respectively.

Without extra techniques. The first three parts show

that, when extra techniques are not considered, CliqueNets

outperform most previous methods on CIFAR-10, CIFAR-

100, and SVHN with significantly fewer parameters. Be-

cause the layers in CliqueNet can be re-updated but con-

tribute features in each cycle, the depth of CliqueNet is

much shallower than other models. For our smallest model

CliqueNet (36-12), (representing k = 36, and T = 12),

each block contains 4 layers. It has the same number of

filters, 144, in each block as DenseNet (12-36), but re-

duce the error rate from 7% to 5.93% on CIFAR-10 with

slightly fewer parameters than its counterpart DenseNet

(12-36). Although the ResNet with stochastic depth [18]

achieved a slightly better performance with 1.7M parame-

ters on SVHN than CliqueNet (36-12), our model drops the

error rate on CIFAR-10 and CIFAR-100 by a large margin.

As the model capacity goes larger, we find that the perfor-

mance of CliqieNets is getting better without overfitting. As

for our model CliqueNet (80-15), it has already achieved

the state of the art on three datasets, and even outperforms

the DenseNets that use extra techniques on CIFAR-10 and

SVHN. It has only 6.94M parameters, which are a quarter

of DenseNet (24-96) with 27.2M parameters, and a half of

DenseNet (24-246) using bottleneck and compression with

15.3M parameters.

With extra techniques. The CliqueNets realize spatial at-

tention mechanism due to its recurrent feedback propaga-

tion. When armed with channel-wise attention, they achieve

an improved performance. This is demonstrated by the

CliqueNet (36-12) with attentional transition. It has a better

result on CIFAR-10 and CIFAR-100 with slightly more pa-

rameters. The compression has the same effect by making

the model more compact. It is shown that the attentional

transition is compatible with compression. The CliqueNet

Figure 5. Visualization of the weights in the first block in pre-

trained DenseNet (left) and CliqueNet (right) by calculating the

average absolute value of Wij . Node 0 denotes the input layer of

this block.

(36-12) with both attentional transition and compression

leads to a better result than its original version and its origi-

nal version with only attentional transition or compression.

Compared with its counterpart DenseNet (12-36), it drops

an error rate of 1.39% on CIFAR-10, 2% on CIFAR-100,

and 0.1% on SVHN, with just 0.08M more parameters. The

CliqueNet (80-15) with attentional transition and compres-

sion also has an improvement than its original version, and

increases the state of the art of SVHN to 1.53% with 8M pa-

rameters, while the previously best result 1.59% on SVHN

performed by DenseNet (24-96) has three times more pa-

rameters. The bottleneck architecture is effective to save

parameters, and our largest model CliqueNet (150-15) with

bottleneck further improves the performance on CIFAR-10

and CIFAR-100, but increases parameter and computation

cost moderately.

4.3. Results on ImageNet

Because we have limited computational resource and can

only spread a batch among 4 GPUs, we use a batchsize of

160 on ImageNet, instead of 256 in most studies. Although

a smaller batchsize would impair the performance training

for the same epochs, the CliqueNets achieve a comparable

result on ImageNet with ResNets or DenseNets; see Table 5.

This indicates that our proposed models can also be applied

on large datasets.

The CliqueNet-S0∗ and CliqueNet-S1∗ outperform the

ResNet-18 and ResNet-34 with only a half of their param-

eters. Larger models also achieve on par with the state

of the art performed by ResNets and DenseNets. When

the attentional transition is considered, the CliqueNet con-

tains both spatial attention and channel-wise attention, and

has a better performance accordingly. The CliqueNet-S2

and CliqueNet-S3 both reduce about 1% top-1 error rate

compared with their original versions, CliqueNet-S2∗ and

CliqueNet-S3∗ that do not have attentional transition.
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4.4. Further Discussion

In order to better analyze the recurrent feedback mecha-

nism and the multi-scale feature strategy in CliqueNet, we

visualize feature maps and parameters based on pre-trained

models and provide a further understanding.

Parameter efficiency. Despite the fact that CliqueNet has

bipartite connections between any two layers in the same

block, which would bring more parameters in the block,

we find that the CliqueNet achieves the state of the art on

CIFAR and SVHN dataset with considerably fewer param-

eters than DenseNets. On ImageNet, the CliqueNet us-

ing a smaller batchsize also has parameter efficiency com-

pared with ResNets. This is mainly due to the multi-scale

feature strategy that only transits the Stage-II feature into

the next block, instead of having feature maps stacked to-

wards deeper layers, which may cause progressive incre-

ment of parameters. In Figure 5, we visualize the weights

among layers within a block of pre-trained CliqueNet and

DenseNet. The color pixel of Clique Block covers the

whole heat map because of our feedback connections. It is

noted that the heat dots in a Dense Block are concentrated

along the diagonal. A similar result is also reported in [17].

The observation reveals that only neighboring layers have

strong dependency in DenseNet, while its forward stacking

pattern is actually parameter-demanding. This helps to ex-

plain the parameter and flop efficiency in CliqueNet where

information flow is distributed more evenly in each block.

Feature refinement. In CliqueNet, the layers are updated

alternately so that they are supervised by each other. More-

over, in the second stage, feature maps always receive a

higher-level information from the filters that are updated

more lately. This spatial attention mechanism makes lay-

ers refined repeatedly, and is able to repress the noises or

background of images and focus more activations on the re-

gion that characterize the target object. In order to test the

effects, we visualize the feature maps following the meth-

ods in [43]. As shown in Figure 6, we choose three input

images with complex background from ImageNet valida-

tion set, and visualize their feature maps with the highest

average activation magnitude in the Stage-I and Stage-II,

respectively. It is observed that, compared with the Stage-

I, the feature maps in Stage-II diminish the activations of

surrounding objects and focus more attention on the target

region. This is in line with the conclusion in Table 2 that the

Stage-II feature is more discriminative and leads to a better

performance.

5. Conclusion

In this study, we introduce a new convolutional neural

network architecture where the layers in a block are con-

structed as a clique and are updated alternately in a loop

manner. Any layer is both the input and output of another

Input Stage-I Stage-II

Figure 6. Feature maps of Stage-I and Stage-II with the highest

average activation in a pre-trained model. The activations of back-

ground or surrounding objects are repressed in Stage-II.

one in the same block so that the information flow is maxi-

mized. The parameters are circulated in the course of prop-

agation and are able to produce multiple stage features. We

analyze the feature in different stages and observe that the

introduce of the Stage-II feature helps to suppress noises

and leads to a better performance. The multi-scale feature

strategy effectively circumvents the progressive increment

of parameters. Experiments show that our proposed archi-

tectures are able to achieve the state of the arts with fewer

parameters, especially on CIFAR and SVHN without resort-

ing to data augmentation.

Different from prior networks, the CliqueNet utilizes a

fixed number of parameters to attain a deeper representation

space and incorporates the recurrent feedback to achieve at-

tention mechanism. This topology provides the potential of

developing models for other computer vision tasks in future

work, such as semantic segmentation, salient object detec-

tion, image captioning, etc.
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