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Abstract
The recent proposed Tensor Nuclear Norm (TNN)
[Lu et al., 2016; 2018a] is an interesting convex
penalty induced by the tensor SVD [Kilmer and
Martin, 2011]. It plays a similar role as the matrix
nuclear norm which is the convex surrogate of the
matrix rank. Considering that the TNN based Tensor
Robust PCA [Lu et al., 2018a] is an elegant exten-
sion of Robust PCA with a similar tight recovery
bound, it is natural to solve other low rank tensor
recovery problems extended from the matrix cases.
However, the extensions and proofs are generally
tedious. The general atomic norm provides a unified
view of low-complexity structures induced norm-
s, e.g., the `1-norm and nuclear norm. The sharp
estimates of the required number of generic mea-
surements for exact recovery based on the atomic
norm are known in the literature. In this work, with a
careful choice of the atomic set, we prove that TNN
is a special atomic norm. Then by computing the
Gaussian width of certain cone which is necessary
for the sharp estimate, we achieve a simple bound
for guaranteed low tubal rank tensor recovery from
Gaussian measurements. Specifically, we show that
by solving a TNN minimization problem, the under-
lying tensor of size n1 × n2 × n3 with tubal rank r
can be exactly recovered when the given number of
Gaussian measurements is O(r(n1 +n2− r)n3). It
is order optimal when comparing with the degrees
of freedom r(n1 + n2 − r)n3. Beyond the Gauss-
ian mapping, we also give the recovery guarantee
of tensor completion based on the uniform random
mapping by TNN minimization. Numerical experi-
ments verify our theoretical results.

1 Introduction
Many engineering problems look for solutions to underdeter-
mined systems of linear equations: a system is considered
underdetermined if there are fewer equations than unknowns.

∗Corresponding author.

Suppose we are given information about an object x0 ∈ Rd of
the form Φx0 ∈ Rm where Φ is an m × d matrix. We want
the bound on the number of rows m to ensure that x0 is the
unique minimizer to the problem

min
x
‖x‖A, s.t. Φx0 = Φx. (1)

Here ‖·‖A is a norm with some suitable properties which
encourage solutions to conform to some notion of simplic-
ity. For example, the compressed sensing problem aims to
recover a sparse vector x0 from (1) by taking ‖·‖A as the
`1-norm ‖x‖1. We would like to know that how many mea-
surements are required to recover an s-sparse x0. This of
course depends on the kind of measurements. For instance, it
is shown in [Candès et al., 2006] that 20s log d randomly se-
lected Fourier coefficients are sufficient. If the Gaussian mea-
surement map (Φ has entries i.i.d. sampled from a Gaussian
distribution with mean 0 and variance 1

m ) is used, 2s log d
s +

5
4s measurements are needed [Donoho and Tanner, 2009;
Chandrasekaran et al., 2012]. Another interesting struc-
tured object is the low-rank matrix X0 ∈ Rn1×n2 . In this
case, the ith component of a linear operator is given by
[Φ(X0)]i = 〈Φi,X0〉, where Φi ∈ Rn1×n2 . This includes
the matrix completion problem [Candès and Recht, 2009] as a
special case based on a proper choice of Φi. By taking ‖·‖A
as the matrix nuclear norm ‖X‖∗, the convex program (1)
recovers X0 provided that the number of measurements is
of the order µ(X0)r(n1 + n2 − r) log2(n1 + n2), where r
is the rank of X0 and µ(X0) is the incoherence parameter
[Candès and Recht, 2009; Chen, 2015]. Compared with the
degrees of freedom r(n1 + n2 − r) of the rank-r matrix, such
a rate is optimal (up to a logarithmic factor). If the Gaussian
measurement map is used, about 3r(n1 +n2− r) samples are
sufficient for exact recovery [Recht et al., 2010].

Beyond the sparse vector and low-rank matrix, there have
some other structured signals which can be recovered by (1).
The work [Chandrasekaran et al., 2012] gives some more
examples, presents a unified view of the convex programming
to inverse problems and provides a simple framework to derive
exact recovery bounds for a variety of simple models. Their
considered models are formed as the sum of a few atoms
from some elementary atomic sets. The convex programming
formulation is based on minimizing the norm induced by the
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convex hull of the atomic set; this norm is referred to as the
atomic norm (the `1-norm and nuclear norm are special cases).
By using the properties of the atomic norm, an analysis of the
underlying convex geometry provides sharp estimates of the
number of generic measurements required for exact recovery
of models from partial information. A key step to estimate the
required number of measurements is to compute the Gaussian
width of the tangent cone associated with the atomic norm
ball.

This work focuses the study on the low-rank tensor which
is an interesting object structured that has many applications
in signal processing. Recovering low-rank tensor is not easy
since the tensor rank is not well defined. There have several
tensor rank definitions, but each has its limitation. For exam-
ple, the CP rank, defined as the smallest number of rank one
tensor decomposition, is generally NP hard to compute. Also,
its convex envelope is in general intractable. The tractable
Tucker rank is more widely used. However, considering the
low Tucker rank tensor recovery problem, the required num-
ber of measurements of existing convex model is much higher
than the degrees of freedom [Mu et al., 2014]. This is differ-
ent from the nuclear norm minimization for low-rank matrix
recovery which has order optimal rate [Chen, 2015].

In this work, we first study the low tubal rank tensor re-
covery from Gaussian measurements. Tensor RPCA [Lu et
al., 2016; 2018a] studies the low tubal rank tensor recovery
from sparse corruptions by Tensor Nuclear Norm (TNN) mini-
mization. We show that TNN is a new instance of the atomic
norm based on a proper choice of the atomic set. From the
perspective of atomic norm minimization, we give the low
tubal rank recovery guarantee from Gaussian measurements.
Specifically, to recover a tensor of size n1×n2×n3 with tubal
rank r from Gaussian measurement by TNN minimization, the
required number of measurements is O(r(n1 +n2− r)n3). It
is order optimal when comparing with the degrees of freedom
r(n1 + n2 − r)n3. Second, we study the tensor completion
problem from uniform random sampling. We show that, to
recover a tensor of tubal rank r, the sampling complexity is
O(rmin(n1, n2)n3 log2(min(n1, n2)n3)), which is order op-
timal (up to a log factor). The same problem has been studied
in [Zhang and Aeron, 2017] but its proofs have several errors.

2 Notations and Preliminaries
We introduce some notations used in this paper. We denote
tensors by boldface Euler script letters, e.g., A, matrices by
boldface capital letters, e.g., A, vectors by boldface lower-
case letters, e.g., a, and scalars by lowercase letters, e.g.,
a. We denote In as the n × n sized identity matrix. The
field of real number and complex number are denoted as R
and C, respectively. For a 3-way tensor A ∈ Cn1×n2×n3 ,
we denote its (i, j, k)-th entry as Aijk or aijk and use the
Matlab notation A(i, :, :), A(:, i, :) and A(:, :, i) to respec-
tively denote the i-th horizontal, lateral and frontal slice.
More often, the frontal slice A(:, :, i) is denoted compactly
as A(i). The tube is denoted as A(i, j, :). The inner product
of A and B in Cn1×n2 is defined as 〈A,B〉 = Tr(A∗B),
where A∗ denotes the conjugate transpose of A and Tr(·)
denotes the matrix trace. The inner product of A and B in

Cn1×n2×n3 is defined as 〈A,B〉 =
∑n3

i=1

〈
A(i),B(i)

〉
. For

any A ∈ Cn1×n2×n3 , the complex conjugate of A is denot-
ed as conj(A), which takes the complex conjugate of all
entries of A. We denote btc as the nearest integer less than
or equal to t and dte as the one greater than or equal to t.
We denote the `1-norm as ‖A‖1 =

∑
ijk |aijk|, the infinity

norm as ‖A‖∞ = maxijk |aijk| and the Frobenius norm as

‖A‖F =
√∑

ijk |aijk|2. The same norms are used for matri-
ces and vectors. The spectral norm of a matrix A is denoted
as ‖A‖ = maxi σi(A), where σi(A)’s are the singular values
of A. The matrix nuclear norm is ‖A‖∗ =

∑
i σi(A).

For A ∈ Rn1×n2×n3 , by using the Matlab command fft,
we denote Ā ∈ Cn1×n2×n3 as the result of Fast Fourier
Transformation (FFT) of A along the 3-rd dimension, i.e.,
Ā = fft(A, [ ], 3). In the same fashion, we can compute A
from Ā using the inverse FFT, i.e., A = ifft(Ā, [ ], 3) . In
particular, we denote Ā as a block diagonal matrix with i-th
block on the diagonal as the frontal slice Ā(i) of Ā, i.e.,

Ā = bdiag(Ā) =


Ā(1)

Ā(2)

. . .
Ā(n3)

 .
The block circulant matrix of A is defined as

bcirc(A) =


A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
...

. . .
...

A(n3) A(n3−1) · · · A(1)

 .
The block circulant matrix can be block diagonalized, i.e.,

(F n3
⊗ In1

) · bcirc(A) · (F−1n3
⊗ In2

) = Ā,

where F n3
∈ Cn3×n3 is the discrete Fourier transformation

matrix, ⊗ denotes the Kronecker product. Note that (F n3
⊗

In1
)/
√
n3 is orthogonal. We define the following operators

unfold(A) =


A(1)

A(2)

...
A(n3)

 , fold(unfold(A)) = A.

Definition 1. (t-product) [Kilmer and Martin, 2011] Let A ∈
Rn1×n2×n3 and B ∈ Rn2×l×n3 . Then the t-product A ∗B is
defined to be a tensor C ∈ Rn1×l×n3 ,

C = A ∗B = fold(bcirc(A) · unfold(B)).

The frontal slices of Ā has the following property{
Ā(1) ∈ Rn1×n2 ,

conj(Ā(i)) = Ā(n3−i+2), i = 2, · · · ,
⌊
n3+1

2

⌋
.

(2)

Using the above property, the work [Lu et al., 2018a] proposes
a more efficient way for computing t-product than the method
in [Kilmer and Martin, 2011].
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Figure 1: Illustration of the t-SVD of an n1 × n2 × n3 tensor.

Definition 2. (Conjugate transpose) [Lu et al., 2016; 2018a]
The conjugate transpose of a tensor A of size n1 × n2 ×
n3 is the n2 × n1 × n3 tensor A∗ obtained by conjugate
transposing each of the frontal slice and then reversing the
order of transposed frontal slices 2 through n3.

Definition 3. (Identity tensor) [Kilmer and Martin, 2011]
The identity tensor I ∈ Rn×n×n3 is the tensor whose first
frontal slice is the n × n identity matrix, and other frontal
slices are all zeros.

Definition 4. (Orthogonal tensor) [Kilmer and Martin,
2011] A tensor Q ∈ Rn×n×n3 is orthogonal if it satisfies

Q∗ ∗Q = Q ∗Q∗ = I.

Definition 5. (F-diagonal Tensor) [Kilmer and Martin,
2011] A tensor is called f-diagonal if each of its frontal s-
lices is a diagonal matrix.

Theorem 1. (T-SVD) [Lu et al., 2018a; Kilmer and Martin,
2011] Let A ∈ Rn1×n2×n3 . Then it can be factored as

A = U ∗ S ∗ V∗,

where U ∈ Rn1×n1×n3 , V ∈ Rn2×n2×n3 are orthogonal,
and S ∈ Rn1×n2×n3 is a f-diagonal tensor.

Theorem 1 gives the t-SVD based on t-product. See Figure
1 for an illustration. Theorem 1 appears first in [Kilmer and
Martin, 2011] but their proof is not rigorous since it cannot
guarantee that U and V are real tensors. The work [Lu et al.,
2018a] fixes this issue by using property (2), and further gives
a more efficient way for computing t-SVD (see Algorithm
1). Algorithm 1 only needs to compute dn3+1

2 e matrix SVDs,
while this number is n3 by the method in [Kilmer and Martin,
2011]. The entries of the first frontal slice S(:, :, 1) are called
as the singular values of the tensor A. The number of nonzero
singular values is equivalent to the tensor tubal rank.

Definition 6. (Tensor tubal rank) [Lu et al., 2018a] For A ∈
Rn1×n2×n3 , the tensor tubal rank, denoted as rankt(A), is
defined as the number of nonzero singular values of cS, where
S is from the t-SVD of A = U ∗ S ∗ V∗. We can write

rankt(A) = #{i,S(i, i, 1) 6= 0} = #{i,S(i, i, :) 6= 0}.

For A ∈ Rn1×n2×n3 with tubal rank r, it has the skinny
t-SVD, i.e., A = U ∗ S ∗ V∗, where U ∈ Rn1×r×n3 , S ∈
Rr×r×n3 , and V ∈ Rn2×r×n3 , in which U∗ ∗ U = I and
V∗ ∗ V = I . We use the skinny t-SVD throughout this paper.

Definition 7. (Tensor nuclear norm) [Lu et al., 2018a] Let
A = U ∗S ∗V∗ be the t-SVD of A ∈ Rn1×n2×n3 . The tensor
nuclear norm of A is defined as the sum of the tensor singular
values, i.e., ‖A‖∗ =

∑r
i=1 S(i, i, 1), where r = rankt(A).

Algorithm 1 T-SVD
Input: A ∈ Rn1×n2×n3 .
Output: T-SVD components U , S and V of A.
1. Compute Ā = fft(A, [ ], 3).
2. Compute each frontal slice of Ū , S̄ and V̄ from Ā by

for i = 1, · · · , dn3+1
2 e do

[Ū (i), S̄(i), V̄ (i)] = SVD(Ā(i));
end for
for i = dn3+1

2 e+ 1, · · · , n3 do
Ū (i) = conj(Ū (n3−i+2));
S̄(i) = S̄(n3−i+2);
V̄ (i) = conj(V̄ (n3−i+2));

end for
3. Compute U = ifft(Ū , [ ], 3), S = ifft(S̄, [ ], 3), and

V = ifft(V̄ , [ ], 3).

The above definition of TNN is defined based on t-SVD. It
is equivalent to 1

n3
‖Ā‖∗ as given in [Lu et al., 2016]. Indeed,

‖A‖∗ =
r∑
i=1

S(i, i, 1) = 〈S,I〉 =
1

n3

〈
S̄, Ī

〉
=

1

n3

〈
S̄, Ī

〉
=

1

n3

n3∑
i=1

‖Ā(i)‖∗ =
1

n3
‖Ā‖∗.

Above the factor 1
n3

is from the property ‖F n3‖2F = n3,
where F n3

is the discrete Fourier transformation matrix.
Definition 8. (Tensor spectral norm) [Lu et al., 2016] The
tensor spectral norm of A ∈ Rn1×n2×n3 , denoted as ‖A‖, is
defined as ‖A‖ = ‖bcirc(A)‖.

TNN is the dual norm of the tensor spectral norm, and
vice versa. Definite the tensor average rank as ranka(A) =
1
n3
bcirc(A). Then the convex envelope of the tensor average

rank is the tensor nuclear within the set {A|‖A‖ ≤ 1}. It is
worth mentioning that the above definition of tensor nuclear
norm is different from the one in [Zhang and Aeron, 2017] due
to the factor 1

n3
. This factor is crucial in theoretical analysis.

Intuitively, it makes the model, theoretical proof and the way
for optimization consistent with the matrix cases.

3 Tensor Nuclear Norm Is an Atomic Norm
Based on the above tensor tubal rank, this work considers
the following problem. Suppose that we have a linear map
Φ : Rn1×n2×n3 → Rm and the observations y = Φ(M)
for M ∈ Rn1×n2×n3 which has tubal rank r. Our goal is to
recover the underlying M from the observations y. This can
be achieved by solving the following convex program

X̂ = arg min
X
‖X‖∗, s.t. y = Φ(X ). (3)

Now, how many measurements are required to guarantee the
exact recovery (i.e., X̂ = M)? This problem is an extension
of the low-rank matrix recovery problem [Recht et al., 2010].
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To answer the above question, we will use the unified theory in
[Chandrasekaran et al., 2012] which provides sharp estimates
of the number of measurements required for exact and robust
recovery of models from Gaussian measurements. The key
challenge is to reformulate TNN as a special case of the atomic
norm and compute the Gaussian width. In this section, we will
show that TNN is a special case of the atomic norm.

Let A be a collection of atoms that is a compact subset of
Rp and conv(A) be its convex hull. The atomic norm induced
by A is defined as [Chandrasekaran et al., 2012]

‖x‖A = inf

{∑
a∈A

ca : x =
∑
a∈A

caa, ca ≥ 0, ∀a ∈ A

}
.

We also need some other notations which will be used in the
analysis. The support function of A is given as

‖x‖∗A = sup{〈x,a〉 : a ∈ A}.

If ‖·‖A is a norm, the support function ‖·‖∗A is the dual norm
of this atomic norm.

A convex set C is a cone if it is closed under positive linear
combinations. The polar C∗ of a cone C is the cone

C∗ = {x ∈ Rp : 〈x, z〉 ≤ 0, ∀z ∈ C}.

The tangent cone at nonzero x is defined as

TA(x) = cone{z− x : ‖z‖A ≤ ‖x‖A}.

The normal cone NA(x) at x is defined as

NA(x) = {s : 〈s, z− s〉 ≤ 0, ∀z s.t. ‖z‖A ≤ ‖x‖A}.

Note that the normal cone NA(x) is the conic hull of the
subdifferential of the atomic norm at x.

By a proper choice of the set A, the atomic norm reduces to
several well-known norms. For example, let A ⊂ Rp be the
set of unit-norm one-sparse vectors {±ei}pi=1. Then k-sparse
vectors in Rp can be constructed using a linear combination
of k elements of the atomic set and the atomic norm ‖x‖A
reduces to the `1-norm. Let A be the set of rank-one matrices
of unit-Euclidean-norm. Then the rank-k matrices can be
constructed using a linear combination of k elements of the
atomic set and the atomic norm reduces to the matrix nuclear
norm. Some other examples of atomic norms can be found in
[Chandrasekaran et al., 2012]. At the following, we define a
new atomic set A, and show that TNN is also an atomic norm
induced by such an atomic set.

Let D be a set of the following matrices, i.e., D ∈ D where

D =


D1

D2

. . .
Dn3

 ∈ Cn1n3×n2n3 ,

where Di ∈ Cn1×n2 and there exists k such that Dk 6= 0,
rank(Dk) = 1, ‖Dk‖F = 1, and Dj = 0, for all j 6= k.
Then, for any A ∈ Rn1×n2×n3 , we have

‖Ā‖∗ = inf

∑
D̄∈D

cD̄ : Ā =
∑
D̄∈D

cD̄D̄, cD̄ ≥ 0, ∀D̄ ∈ D

 .

Above we use the property of the rank one matrix decomposi-
tion of a matrix. This is equivalent to

‖Ā‖∗ = inf

∑
D̄∈D

cD̄ : Ā =
∑
D̄∈D

cD̄D̄, cD̄ ≥ 0, ∀D̄ ∈ D


= inf

∑
D̄∈D

cD : A =
∑
D̄∈D

cDD, cD ≥ 0, ∀D̄ ∈ D

 ,

(4)

where (4) uses the linear property of the inverse discrete Fouri-
er transformation along the third dimension of a three way
tensor. Motivated by (4), we define the atomic set A as

A = {W ∈ Cn1×n2×n3 : W = n3D, D̄ ∈ D}. (5)

By ‖A‖∗ = 1
n3
‖Ā‖∗, we have the following result.

Theorem 2. Let A be the set defined as in (5). The atomic
norm ‖A‖A is TNN, i.e.,

‖A‖∗ = ‖A‖A

= inf

{ ∑
W∈A

cW : A =
∑
W∈A

cWW , cW ≥ 0, ∀W ∈ A

}
.

For any W ∈ A, we have ‖W‖∗ = n3‖D‖∗ = ‖D̄‖∗ = 1.
So the convex hull conv(A) is the TNN ball in which TNN
is less than or equal to one. Interpreting TNN as a special
atomic norm by choosing a proper atomic set is crucial for the
low-rank tensor recovery guarantee.

4 Low-rank Tensor Recovery from Gaussian
Measurements

The Corollary 3.3 in [Chandrasekaran et al., 2012] shows that
x0 is the unique solution to problem (1) with high probability
provided m ≥ ω2(TA(x0) ∩ Sp−1) + 1. Here, TA(x0) is the
tangent cone at x0 ∈ Rp, Sp−1 is the unit sphere, and ω(S) is
the Gaussian width of a set S, defined as

ω(S) = Eg

[
sup
z∈S

g>z

]
,

where g is a vector of independent zero-mean unit-variance
Gaussians. To apply such a result for our low tubal rank
recovery, we need to estimate the Gaussian width of our atomic
set A defined in (5).
Theorem 3. Let M ∈ Rn1×n2×n3 be a tubal rank r tensor
and A in (5). We have that

ω(TA(M) ∩ Sn1n2n3−1) ≤
√

3r(n1 + n2 − r)n3. (6)

Now, by using (6) and the Corollary 3.3 in [Chandrasekaran
et al., 2012], we have the following main result.
Theorem 4. Let Φ : Rn1×n2×n3 → Rn be a random map
with i.i.d. zero-mean Gaussian entries having variance 1

m and
M ∈ Rn1×n2×n3 be a tensor of tubal rank r. Then, with high
probability, we have:

(1) exact recovery: X̂ = M, where X̂ is the unique opti-
mum of (3), provided that m ≥ 3r(n1 + n2 − r)n3 + 1;
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(2) robust recovery: ‖X̂ −M‖F ≤ 2δ
ε , where X̂ is optimal

to

X̂ = arg min
X
‖X‖∗, s.t. ‖y − Φ(X )‖2 ≤ δ, (7)

provided that m ≥ 3r(n1+n2−r)n3+3/2
(1−ε)2 .

The above theorem shows that the tensor with tubal rank
r can be recovered exactly by solving the convex program
(3) or approximately by (7) when the required number of
measurements is of the order O(r(n1 +n2− r)n3). Note that
such a rate is optimal compared with the degrees of freedom
of a tensor with tubal rank r.
Theorem 5. A n1 × n2 × n3 sized tensor with tubal rank r
has at most r(n1 + n2 − r)n3 degrees of freedom.

It is worth mentioning that the guarantee for low tubal rank
tehsor recovery in Theorem 4 is an extension of the low matrix
guarantee in [Recht et al., 2010; Chandrasekaran et al., 2012].
If n3 = 1, the tensor X reduces to a matrix, the tensor tubal
rank reduces to the matrix rank, and TNN reduces to the matrix
nuclear norm. Thus the convex program (3) and the theoretical
guarantee in Theorem 4 include the low rank matrix recovery
model and guarantee as special cases, respectively. Compared
with the existing low rank tensor recovery guarantees (based
on different tensor ranks, e.g., [Mu et al., 2014]) which are
not order optimal, our guarantee enjoys the same optimal rate
as the matrix case and our model (3) is computable.

5 Exact Tensor Completion Guarantee
Theorem 4 gives the recovery guarantee of program (3) based
on the Gaussian measurements. In this section, we consid-
er the tensor completion problem which is a special case of
(3) but based on the uniform random mapping. Suppose that
M ∈ Rn1×n2×n3 and rankt(M) = r. We consider the
Bernoulli model in this work: the entries of M are inde-
pendently observed with probability p. We denote the set of
the indices of the observed entries as Ω. We simply denote
Ω ∼ Ber(p). Then, the tensor completion problem asks for
recovering M from the observations {Mij , (i, j, k) ∈ Ω}.
We can solve this problem by solving the following program

min
X
‖X‖∗, s.t. PΩ(X ) = PΩ(M), (8)

where PΩ(X ) denotes the projection of X on the observed
set Ω. The above model extends the matrix completion task by
convex nuclear norm minimization [Candès and Recht, 2009].
To guarantee the exact recovery, we need the following tensor
incoherence conditions [Lu et al., 2018a]

max
i=1,··· ,n1

‖U∗ ∗ e̊i‖F ≤
√

µr

n1n3
, (9)

max
j=1,··· ,n2

‖V∗ ∗ e̊j‖F ≤
√

µr

n2n3
, (10)

where e̊i denotes the tensor column basis, which is a tensor of
size n × 1 × n3 with its (i, 1, 1)-th entry equaling 1 and the
rest equaling 0. We also define the tensor tube basis ėk, which
is a tensor of size 1×1×n3 with its (1, 1, k)-th entry equaling
1 and the rest equaling 0. Denote n(1) = max(n1, n2) and
n(2) = min(n1, n2).

r = rankt(X 0) = 0.2n

n rankt(X 0) m rankt(X̂ )
‖X̂−X0‖F
‖X0‖F

10 2 541 2 1.2e−9
20 4 2161 4 1.6e−9
30 6 4861 6 1.5e−9

r = rankt(X 0) = 0.3n

n rankt(X 0) m rankt(X̂ )
‖X̂−X0‖F
‖X0‖F

10 3 766 3 1.6e−9
20 6 3061 6 1.2e−9
30 9 6886 9 1.2e−9

Table 1: Exact low tubal rank tensor recovery from Gaussian mea-
surements with sufficient number of measurements.
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Figure 2: Phase transitions for low tubal rank tensor recovery from
Gaussian measurements. Fraction of correct recoveries is across
10 trials, as a function of r(n1+n2−r)n3

m
(y-axis) and sampling rate

m
n1n2n3

. In this test, n1 = n2 = 30, n3 = 5.

Theorem 6. Let M ∈ Rn1×n2×n3 with rankt(M) = r and
the skinny t-SVD be M = U ∗ S ∗ V∗. Suppose that the
indices Ω ∼ Ber(p) and the tensor incoherence conditions
(9)-(10) hold. There exist universal constants c0, c1, c2 > 0
such that if

p ≥
c0µr log2(n(1)n3)

n(2)n3
,

then M is the unique solution to (8) with probability at least
1− c1(n1 + n2)−c2 .

Theorem 6 shows that, to recover a n1 × n2 × n3
sized tensor with tubal rank r, the sampling complexity is
O(rn(1)n3 log2(n(1)n3)). Such a bound is tight compared
with the degrees of freedom1.

6 Experiments
In this section, we conducts experiments to first verify the
exact recovery guarantee in Theorem 4 for (3) from Gaussian
measurements, then to verify the exact recovery guarantee in
Theorem 6 for tensor completion (8). Both (3) and (8) can be
solved by the standard ADMM [Lu et al., 2018b]2.

6.1 Exact Recovery from Gaussian Measurements
To verify Theorem 4, we can reformulate (3) as

X̂ = arg min
X
‖X‖∗, s.t. y = Avec(X ), (11)

1The proofs in [Zhang and Aeron, 2017] for tensor completion
have several errors. Their used TNN definition is different from ours.

2The codes of our methods can be found at http-
s://sites.google.com/site/canyilu/
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where X ∈ Rn1×n2×n3 , A ∈ Rm×(n1n2n3), y ∈ Rm and
vec(X ) denotes the vectorization of X . The elements of A
are with i.i.d. zero-mean Gaussian entries having variance
1/m. Thus, Avec(X ) gives the linear map Φ(X ).

First, we test on random tensors, provided sufficient number
of measurements as suggested in Theorem 4. We generate
X 0 ∈ Rn×n×n3 of tubal rank r by X 0 = P ∗Q, where P ∈
Rn×r×n3 and Q ∈ Rr×n×n3 are with i.i.d. standard Gaussian
random variables. We generate A ∈ Rm×(n2n3) with its
entries being i.i.d., zero-mean, 1

m -variance Gaussian variables.
Then, let y = Avec(X 0). We choose n = 10, 20, 30, n3 = 5,
r = 0.2n and r = 0.3n. We set the number of measurements
m = 3r(2n− r)n3 + 1 as in Theorem 4. The results are given
in Table 1, in which X̂ is the solution to (11). It can be seen
that the relative errors ‖X̂ −X 0‖F /‖X 0‖F are very small
and the tubal ranks of X̂ are correct. Thus, this experiment
verifies Theorem 4 for low tubal rank tensor recovery from
Gaussian measurements.

Second, we exam the phase transition phenomenon in tubal
rank r and the number of measurements m. We set n1 =
n2 = 30 and n3 = 5. We vary m between 1 and n1n2n3
where the tensor is completely discovered. For a fixed m, we
generate all possible tubal ranks such that r(n1 +n2−r)n3 ≤
m. For each (m, r) pair, we repeat the following procedure
10 times. We generate X 0, A, y in the same way as the
first experiment above. We declare X 0 to be recovered if
‖X̂ − X 0‖F /‖X 0‖F ≤ 10−3. Figure 2 plots the fraction
of correct recovery for each pair. The color of the cell in
the figure reflects the empirical recovery rate of the 10 runs
(scaled between 0 and 1). In all experiments, white denotes
perfect recovery, while black denotes failure. It can be seen
that there is a large region in which the recovery is correct.
When the underlying tubal rank r of X 0 is relatively larger,
the required number of measurements for correct recovery is
also larger. Such a result is consistent with our theoretical
result. Similar phenomenon can be found in low-rank matrix
recovery [Chandrasekaran et al., 2012].

6.2 Exact Tensor Completion
First, we verify the exact tensor completion guarantee in Theo-
rem 6 on random data. We generate M ∈ Rn×n×n with tubal
rank r by M = P∗Q, where the entries of P ∈ Rn×r×n and
Q ∈ Rr×n×n are independently sampled from an N (0, 1/n)
distribution. Then we sample m = pn3 elements uniformly
from M to form the known samples. A useful quantity for ref-
erence is the number of degrees of freedom dr = r(2n− r)n.
The results in Table 1 shows that program (8) gives the correct
recovery in the sense that the relative errors are small, less than
10−5 and the tubal ranks of the obtained solution are correct.
These results well verify the recovery guarantee in Theorem 6.

Second, we examine the recovery phenomenon with vary-
ing tubal rank of M and varying sampling rate p. We
consider two sizes of M ∈ Rn×n×n: (1) n = 40; (2)
n = 50. We generate M = P ∗ Q, where the entries of
P ∈ Rn×r×n and Q ∈ Rr×n×n are independently sam-
pled from an N (0, 1/n) distribution. We set m = pn3. We
choose p in [0.01 : 0.01 : 0.99] and r = 1, 2, . . . , 30 in
the case n = 40, and r = 1, 2, . . . , 35 in the case n = 50.

X 0 ∈ Rn×n×n, r = rankt(X 0),m = pn3, dr = r(2n− r)n
n r m

dr
p rankt(X̂ )

‖X̂−X‖F
‖X‖F

50 3 4 0.47 3 3.9e−7
50 5 3 0.57 5 3.5e−7
50 10 2 0.72 10 4.1e−7

100 5 4 0.39 5 1.4e−6
100 10 3 0.57 10 9.2e−7
100 15 2 0.56 15 8.4e−7
200 5 4 0.20 5 4.2e−6
200 10 3 0.29 10 3.2e−6
200 20 2 0.38 20 3.1e−6
300 10 4 0.26 10 5.1e−6
300 20 3 0.39 20 4.2e−6
300 30 3 0.57 30 2.9e−6

Table 2: Exact tensor completion on random data.
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Figure 3: Phase transitions for tensor completion. Fraction of correct
recoveries is across 10 trials, as a function of tubal rank r (y-axis)
and sampling rate p (x-axis). The results are shown for different sizes
of M ∈ Rn×n×n: (a) n = 40; (b) n = 50.

For each (r, p) triple, we simulate 10 test instances and de-
clare a trial to be successful if the recovered X̂ satisfies
‖X̂ −M‖F /‖M‖F ≤ 10−3. Figure 3 plots the fraction
of correct recovery for each triple (black = 0% and white =
100%). It can be seen that there is a large region in which the
recovery is correct. Interestingly, the experiments reveal very
similar plots for different n, suggesting that our asymptotic
conditions for recovery may be conservative. Such a phenom-
enon is also consistent with the result in Theorem 6 which
shows that the recovery is correct when the sampling rate p is
not small and the tubal rank r is relatively low.

7 Conclusion
This paper first considers the exact guarantee of TNN mini-
mization for low tubal rank tensor recovery from Gaussian
measurements. We prove that TNN is a new instance of the
atomic norm associated with certain atomic set. From the
perspective of atomic norm minimization, we give the optimal
estimation of the required measurements for the exact low
tubal rank tensor recovery. Second, we give the exact recovery
guarantee of TNN minimization for tensor completion. This
result fixes the errors in the proofs of [Zhang and Aeron, 2017].
Numerical experiments verify our theoretical results.

By treating TNN as an instance of the atomic norm, we
can get more results of low tubal rank recovery by using
existing results, e.g., [Foygel and Mackey, 2014; Amelunxen
et al., 2014]. Beyond the study on the convex TNN, it is also
interesting to study the noncnovex models [Lu et al., 2015].
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