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Abstract. Image demosaicking is the problem of reconstructing color images from raw images captured using
a digital camera with a color filter array. Sparse representation-based demosaicking method achieves superior
performance on the commonly used Kodak dataset; however, it performs inferior on the IMAX dataset.
We analyze that the factor of the sparse representation-based demosaicking methods that perform inconsis-
tently is channel-correlation, which we define as the mean value of correlation coefficients between the
RGB channels. Accordingly, we propose a channel-correlation adaptive dictionary learning-based demosaicking
method. Different from the sparse representation-based demosaicking methods that use a fixed dictionary, our
method trains a general dictionary on training image patches with various channel-correlations. Then, we learn
a function matrix between the general dictionary and channel-correlations. For a raw image patch with an
estimated channel-correlation, we compute a dictionary corresponding to its channel-correlation through the
function matrix. Finally, we demosaick it with the corresponding dictionary using the sparse representation
model. Experiments confirm that the proposed method performs adaptively well on raw images with various
channel-correlations. © 2018 SPIE and IS&T [DOI: 10.1117/1.JEI.27.4.043047]
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1 Introduction
In color digital imaging, a color image is reconstructed from a
raw image captured by a digital camera that has a color filter
array (CFA)1,2 (Fig. 1). The reconstruction process is called
demosaicking. Many demosaicking methods have been devel-
oped to improve the quality of the demosaicked images,3–7

such as the interpolation-based methods,5,8–13 the frequency
domain methods,14,15 the sparse representation-based meth-
ods,4,16,17 and the deep learning-based methods.18,19

Among these methods, sparse representation-based
demosaicking methods16,17 achieve excellent performance.
They also can be easily adapted to handle non-Bayer
CFAs, e.g., those CFAs with panchromatic pixels or pixels
with optimized colors.4 However, most of the existing meth-
ods use only a fixed dictionary, making the demosaicked
results not always satisfactory, especially when the training
and test datasets are in different domains. For example,
the learned simultaneous sparse coding (LSSC) method17

obtains high CPSNR on the commonly used Kodak
dataset.20 However, it performs inferior on the IMAX data-
set,21 which is another popular dataset for demosaicking.
Therefore, developing demosaicking algorithms that work
consistently on raw images with different characteristics is
an important issue.

To solve the above problem, adaptive dictionary learning-
based demosaicking methods have been proposed. For
example, Zhang and Tao22 trained dictionaries on different
patch classes determined by energy exclusiveness feature
and adaptively selected the most suitable dictionary for
a raw image patch. Wu et al.23 first trained a regressor on

directional difference, then they demosaicked raw images
by properly integrating the interpolation algorithm MLRI12

and the trained regressor.
In this paper, we propose an adaptive dictionary learning-

based demosaicking method that can demosaick adaptively
to channel-correlation. The exploit of the spatial–spectral
correlations among the RGB channels has been well
studied.5,8–13,23,24 In particular, Duran and Buades24 proposed
an algorithm that introduced a clear manner of balancing
how much spatial–spectral correlations must be taken advan-
tage of. We also explicitly explore the correlations among the
RGB channels. We first define a measure of the correlation,
which is called channel-correlation. Then, we analyze how
the channel-correlation affects the performance of sparse
representation-based demodaicking16,17 (see the analysis in
Sec. 2). Finally, we propose a channel-correlation adaptive
dictionary learning-based demosaicking method (CADLD)
that can demosaick adaptively to the channel correlation.

The CADLD performs superiorly on raw images with
various channel-correlations (see the flowchart in Fig. 4).
We use training image patches with various channel-corre-
lations to train a general dictionary. Then, we learn a function
matrix between the general dictionary and channel-correla-
tions. For a raw image patch, we estimate its channel corre-
lation and compute a specific dictionary through the function
matrix. Finally, we demosaick it with the specific dictionary.

The contributions of this paper are as follows:

• We define the channel correlation as a measure of the
correlations among the RGB channels and show that
it is an important factor to affect the performance of
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the existing sparse representation-based demosaicking
methods using fixed dictionaries.

• We propose the CADLD method that can demosaick
adaptively to raw images with various channel corre-
lations, which reduces the impact of channel correla-
tion on the sparse representation-based demosaicking.

The rest of the paper is organized as follows: in Sec. 2, we
define the channel correlation and analyze its effect on the
sparse representation-based demosaicking. Then, we intro-
duce our CADLD method in Sec. 3. In Sec. 4, we conduct
experiments to verify our method. Finally, we conclude the
paper in Sec. 5.

2 Analysis of Channel-Correlation Effect on Sparse
Representation-Based Demosaicking

To study how the correlations among the RGB channels
affect the sparse representation-based demosaicking,4,16,17

we first define the channel-correlation as a measure of
the correlations. Then, we analyze its effect on the sparse
representation-based demosaicking.4,16,17 In this paper, we
use upper- and lower-case bold letters to denote matrices
and vectors, respectively. Both images and patches are
represented in a column vector in the order of R, G, and B.
The main notations used in the paper are shown.

2.1 Channel-Correlation
We define the channel-correlation as the usual correlation
coefficient between the RGB channels. Let x ∈ R3m×1

be a color image patch, with xR ∈ Rm×1, xG ∈ Rm×1,
and xB ∈ Rm×1 being its red, green, and blue channels,

respectively, where m is the pixel number in each channel
of x. The channel correlation between xR and xG is defined as

EQ-TARGET;temp:intralink-;e001;326;730cRG ¼ CovðxR; xGÞ
σxRσxG

; (1)

where CovðxR; xGÞ is the covariance between xR and xG, and
σxR and σxG are the standard deviations of xR and xG, respec-
tively. Similarly, we can get the channel-correlation cRB and
cGB. Finally, we define the channel-correlation of patch x as

EQ-TARGET;temp:intralink-;e002;326;641c ¼ cRG þ cRB þ cGB
3

: (2)

With the definition of patch channel-correlation, we can
statistic the channel-correlation distribution of a dataset.
For example, we compute the channel-correlations of the
Kodak20 and IMAX21 datasets using Eq. (2). We use the slid-
ing window approach to sample patches. The patch size is
8 × 8 × 3, and the step size is 4 × 4 × 1, i.e., the patches
are sampled in every four pixels for both vertical and hori-
zontal directions. We compute the patches’ channel-correla-
tions and get their statistics histograms, which are shown in
Figs. 2(a) and 2(b). In the same way, we can get that of the
PASCAL VOC’0725 dataset, which is shown in Fig. 2(c).

2.2 Channel-Correlation Effect on Sparse
Representation-Based Demosaicking

We analyze the channel-correlation effect on the sparse rep-
resentation-based demosaicking methods.17 We randomly
sample patches from the PASCALVOC’0725 and DDR train-
ing datasets.23 We test on three patch groups with channel-
correlations in 0.25� 0.05, 0.5� 0.05, and 0.75� 0.05,
respectively. For each patch group, we obtain 2 × 106

patches with a size of 8 × 8 × 3. Then, we randomly split
them into 1.5 × 106 training and 0.5 × 106 test patches.
Some training patches of the three groups are shown in
the first row of Fig. 3.

We use the SPAMS toolbox17,26 to learn three dictionaries
on the three different channel-correlation training datasets.
All the dictionaries are of the same size 192 × 256, which
are denoted as D0.25, D0.5, and D0.75. The dictionaries are
shown in the second row of Fig. 3. We choose PSRD,4

which is a sparse representation-based demosaicking method,

Fig. 1 The process of image demosaicking. (a) A full color image to
simulate a real scene, (b) Bayer CFA, (c) Bayer raw image, and
(d) Bayer demosaicked image. Images in this paper are best viewed
on screen.

Fig. 2 The patch channel-correlation distributions of the (a) Kodak,20 (b) IMAX,21 and (c) PASCAL
VOC’0725 datasets.
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to demosaick the three test patch groups with dictionaries
D0.25, D0.5, and D0.75, respectively.

For each test patch group, we record which dictionary
achieves the highest CPSNR. Then, we count the number
of the highest CPSNR for each dictionary, which is denoted
by NhðDjÞ, j ∈ f0.25; 0.5; 0.75g. For a test patch group
with channel-correlation c, we compute the following ratio
matrix R

EQ-TARGET;temp:intralink-;e003;63;373Rðc; jÞ ¼ NhðDjÞ
N

; (3)

where NhðDjÞ means the number of the highest CPSNR for
dictionary Dj, and N is the total number of the test patches.

The ratio matrix R is shown in Table 1. We can see that
the test patches achieve the most highest CPSNR (numbers
in bold) when demosaicked by the dictionaries learned
on training patches with an identical channel-correlation.
For example, the test patch group with channel-correlation

0.25 has 65.50% patches that get the highest CPSNR with
the dictionary learned on the patches with channel-correla-
tion 0.25. In addition, we can find that the larger the differ-
ence in channel-correlation between the training and test
patches, the less percentage that get the highest CPSNR.
This motivates us to develop a channel-correlation adaptive
demosaicking method.

2.3 Analysis and Discussions
Specifically, we analyze the channel-correlation effect on
LSSC,17 which achieves good performance among the
sparse representation-based demosaicking methods. The
histograms of the Kodak20 and IMAX datasets21 are shown
in Figs. 2(a) and 2(b), respectively. We can see that the
channel-correlations of the Kodak dataset20 are mainly in
the range (0 and 0.4), which is more similar with that of the
PASCAL VOC’07 dataset [Fig. 2(c)], whereas that of the
IMAX dataset21 is far from it. So, we can get an intuitive
explanation of why LSSC17 with dictionary learned on the
PASCAL VOC’07 dataset achieves excellent performance
on the Kodak dataset, but it performs not so satisfactory on
the IMAX dataset. This inspires us to propose the CADLD,
which is described in the following section.

3 Channel-Correlation Adaptive Dictionary
Learning-Based Demosaicking

Our CADLD is based on the sparse representation-based
demosaicking16,17 and domain adaptive dictionary learning.27

It can demosaick adaptively to the channel-correlations. The
flowchart is shown in Fig. 4. The CADLD has a training
phase and a demosaicking phase. In the training phase,
we first learn a general dictionary on the training dataset,
which includes image patches with various channel-correla-
tions. Then, we reconstruct a mapping function between
the channel-correlations and the general dictionary. In the
demosaicking phase, for a raw patch, we first estimate its

Fig. 3 Illustration of the training image patches and the corresponding dictionaries with different channel-
correlations. (a)–(c) Training patches with channel-correlations 0.25, 0.5, and 0.75, respectively.
(d)–(f) Dictionaries learned on the corresponding training patches.

Table 1 Channel-correlation effect on the sparse representation
based demosaicking. We choose test patches with three channel-
correlations 0.25, 0.5, and 0.75. Then we demosaick them by three
dictionaries D0.25, D0.5, and D0.75 learned on three training patches
with channel-correlations 0.25, 0.5, and 0.75, respectively. The table
shows the ratio matrix R computed by Eq. (3). It gets the most highest
CPSNR (numbers in bold) when the test and the training patches are
within the same channel-correlation.

Channel-correlation D0.25 (%) D0.5 (%) D0.75 (%)

Test0.25 65.50 28.36 6.14

Test0.5 21.87 55.66 22.46

Test0.75 2.42 37.24 60.34
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channel-correlation. Then, we compute a specific dictionary
through the channel-correlation and the mapping function.
The dictionary is corresponding to the raw patch’s channel-
correlation. Finally, we demosaick the raw patch with the
specific dictionary using sparse representation-based model.
We give the details below.

3.1 Training Phase
As the sparse representation-based demosaicking16,17 cannot
work well when the training and test datasets are with differ-
ent channel-correlations, we develop a channel-correlation
adaptive demosaicking method based on dictionary learning.

3.1.1 Learning a general dictionary

To deal with the situation when the training and test data are
in different domains, Qiu et al.27 proposed a domain adaptive
dictionary learning method for the face recognition problem.
It first learns a general dictionary on training face data with
different viewpoints. Then for each to be recognized test face
data, it estimates the viewpoint of the test data and computes
a specific dictionary for it. Finally, the test face data are
processed with the specific dictionary.

Inspired by Qiu et al.,27 we propose the CADLD method.
We denote x ¼ ðxTR; xTG; xTBÞT ∈ R3m×1 as a color image
patch, Xi ¼ ðxi1; xi2; : : : ; xinÞ ∈ R3m×n is a training dataset,
which consists of n patches with a specific channel-correla-
tion. Let fXigsi¼1 be the training datasets with s different
channel-correlations, we aim to learn dictionaries on these
training datasets, which are with the same sparse coefficient
matrix A ∈ Rk×n. The model is as follows:
EQ-TARGET;temp:intralink-;e004;63;159

arg min
Di;A

Xs

i¼1

kXi − DiAk2F þ λ
Xn

j¼1

kAð∶; jÞk1

s:t: ∀ ikDið∶; lÞk1 ¼ 1; l ¼ 1;2; : : : ; k; (4)

where Di ∈ R3m×k (k > 3m) is the dictionary learned on the
training dataset Xi, λ is a parameter that balances the sparsity
of Að∶; jÞ and fidelity of the approximation to Xi.

Let X ¼ ðXT
1 ;X

T
2 ; : : : ;X

T
s ÞT ∈ R3ms×n be the whole train-

ing dataset with s different channel-correlations, through
mathematic deduction and omit the constraints, Eq. (4) can
be formulated as

EQ-TARGET;temp:intralink-;e005;326;708arg min
Dg;A

kX − DgAk2F þ λ
Xn

j¼1

kAð∶; jÞk1; (5)

where Dg ¼ ðDT
1 ;D

T
2 ; · · · ;D

T
s ÞT is the general dictionary.

We use SPAMS toolbox17,26 to learn the general dictionary.
We project Di to satisfy the constraints in Eq. (4) for each
iteration when updating the dictionary.

3.1.2 Learning a function between dictionary and
channel-correlation

Following Ref. 27, we model the dictionary as a p
degree polynomial function of the channel-correlation. Let
di ¼ vecðDiÞ ∈ R3mk×1, we have

EQ-TARGET;temp:intralink-;e006;326;547di ¼ Wci; (6)

where W ∈ R3mk×ðpþ1Þ is the coefficient matrix of the poly-
nomial function, and ci ¼ ð1; ci; c2i ; : : : ; cpi ÞT . The param-
eter p is empirically set as 2 in all experiments.

We define DVT
g as

EQ-TARGET;temp:intralink-;e007;326;470

DVT
g ¼ ½vecðD1Þ; vecðD2Þ; : : : ; vecðDsÞ�

¼ ðd1; d2; : : : ; dsÞ
¼ ðWc1;Wc2; : : : ;WcsÞ
¼ WC; (7)

where C ¼ ðc1; c2; : : : ; csÞ.
We can compute the function parameter matrix W

between the dictionary and channel-correlation by Eq. (7),
that is

EQ-TARGET;temp:intralink-;e008;326;342W ¼ DVT
g C†: (8)

where C† is the Pseudo-inverse of matrix C.

3.2 Channel-Correlation Adaptive Demosaicking
In the noiseless case, the model of color imaging with a CFA
is as follows:

EQ-TARGET;temp:intralink-;e009;326;252y ¼ Mx ¼ ðMR;MG;MBÞðxTR; xTG; xTBÞT; (9)

where y ∈ Rm×1 is a raw image patch, x ∈ R3m×1 is a color
image patch, with xR, xG, and xB being its red, green, and
blue channels, respectively, M ∈ Rm×3m is the mosaicking
matrix, and MR, MG, and MB are the diagonal matrices
whose diagonal elements are specified by the R, G, and B
channels of the CFA, respectively. Formally, let the CFA be
F ∈ R

ffiffiffi
m

p
×

ffiffiffi
m

p
×3, then MR ¼ Diagfvec½Fð∶; ∶; 1Þ�g, MG ¼

Diagfvec½Fð∶; ∶; 2Þ�g, and MB ¼ Diagfvec½Fð∶; ∶; 3Þ�g.
For a raw image patch y, we use the bilinear interpolation

to demosaick y. Then, we estimate its channel-correlation ĉ
by the demosaicked color patch. We next compute a specific
dictionary corresponding to y

EQ-TARGET;temp:intralink-;e010;326;85D̂ ¼ matðWĉÞ; (10)

Demosaicking
       phase

Training phase

Input training data  
with channel-

correlation matrix C

Compute function matrix W 
between Dg and C by (8)

For raw patch y with 
channel correlation  

Demosaick
y by (11)

Learn general 
dictionary Dg by (5)

Input traini
with cha

correlation m

c

Fig. 4 The flowchart of the proposed CADLD. In the training phase,
we learn a general dictionary Dg on training data with different chan-
nel-correlations C by Eq. (5). Then, we compute the function matrixW
between Dg and C by Eq. (8). In the demosaicking phase, we demo-
saick the raw patch y according to its channel-correlation by Eq. (11).
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where W is the function parameter matrix between the
dictionary and channel-correlation, which is computed by
Eq. (8), ĉ ¼ ð1; ĉ; ĉ2; : : : ; ĉpÞT is the channel-correlation
vector, and matðWĉÞ is a matrix formed by vector Wĉ,
whose size is 3m × k.

We use the following sparse representation-based demo-
saicking model to demosaick y

EQ-TARGET;temp:intralink-;e011;63;251min
α

1

2
ky −MD̂αk22 þ γkαk1; (11)

whereM is the mosaicking matrix, D̂ is the adaptive diction-
ary, α is the sparse coefficient, and γ is a parameter that
balances the sparsity of α and the fidelity of the approxima-
tion to y.

The optimization Eq. (11) is solved by the alternating
direction method,28 which has been widely used in image
processing.

4 Experiments
In this section, we verify our CADLD on the commonly used
IMAX21 and Kodak20 datasets. We first detail the experimen-
tal settings. Then, we choose the latest sparse representation-
based demosaicking methods and compare the proposed
method with them.

4.1 Experimental Settings
In the experiments, we sample training patches and learn
a function parameter between the dictionary and channel-
correlation. Then for an arbitrary test patch, we estimate
its channel-correlation and demosaick it adaptively using
CADLD.

We randomly extract patches from two datasets: the
PASCALVOC’07 dataset25 and the DDR training dataset.23

We sample patches whose channel-correlations are in
0.2� 0.05, 0.4� 0.05, 0.6� 0.05, and 0.8� 0.05, respec-
tively, where four channel-correlation clusters (i.e., 0.2, 0.4,
0.6, and 0.8) are used. Our empirical results show that the
demosaicking performance gets slightly better with an
increase in the cluster number. However, more clusters
need more training images and computation. For each chan-
nel-correlation cluster, we sample 2 × 106 patches with a size
of 8 × 8 × 3. In all experiments, we set parameters λ ¼ 0.15
in Eq. (5) and γ ¼ 0.01 in Eq. (11).

4.2 Compared Methods
We compare our CADLD with the representative sparse
representation-based demosaicking methods. They are the
SC,16 SSC,17 LSC,17 LSSC,17 and PSRD.4 We also compare

Table 2 Evaluation of the proposed method on the IMAX dataset.21 The individual and average CPSNR values are reported. “Avg.” stands for
“average.”

Image ID SC16 SSC17 LSC17 LSSC17 PSRD4 PAMD22 DDR23 CADLD

01 26.32 26.47 27.58 27.77 26.38 26.31 29.50 29.21

02 33.25 33.51 33.68 34.09 33.22 33.07 35.33 34.87

03 32.43 32.53 32.79 32.89 32.47 32.42 34.41 33.39

04 34.51 34.64 36.18 36.62 34.61 35.25 38.84 37.76

05 30.68 30.97 31.47 31.98 30.76 30.54 34.73 34.04

06 33.10 34.17 35.13 37.47 33.22 33.91 38.94 39.48

07 39.30 39.83 39.04 39.61 39.09 40.16 37.28 39.68

08 37.80 38.28 38.09 38.79 37.80 37.31 39.26 38.51

09 34.97 35.42 35.81 36.46 34.97 34.36 37.54 37.53

10 36.42 36.96 36.98 37.92 36.33 36.24 39.27 38.79

11 37.20 38.01 37.93 39.21 37.07 37.24 40.14 39.87

12 36.58 36.83 37.13 37.68 36.49 36.08 39.62 39.30

13 38.60 39.03 38.99 39.72 38.41 38.38 41.02 40.99

14 36.74 37.28 37.29 38.00 36.67 36.60 39.06 39.10

15 37.23 37.74 37.59 38.43 37.13 36.94 39.31 39.42

16 29.48 29.69 31.12 31.63 29.60 29.53 34.55 34.88

17 29.46 29.83 31.04 31.84 29.53 29.61 33.70 34.32

18 33.56 33.65 34.02 34.60 33.56 33.46 35.87 35.82

Avg. 34.31 34.71 35.10 35.82 34.29 34.30 37.13 37.05

Note: The highest CPSNR of each row is shown in bold.
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Table 3 Evaluation of the proposed method on the Kodak dataset.20 The individual and average CPSNR values are reported. “Avg.” stands for
“Average.”

Image ID SC16 SSC17 LSC17 LSSC17 PSRD4 PAMD22 DDR23 CADLD

01 40.85 41.33 40.93 41.38 40.51 41.74 40.05 41.43

02 41.75 41.95 42.01 42.19 41.90 41.58 41.48 42.16

03 43.20 43.40 43.94 44.21 43.20 43.10 43.94 44.05

04 42.24 42.47 42.45 42.81 42.20 41.09 41.62 42.56

05 38.79 38.96 39.22 39.46 38.88 38.20 39.26 39.39

06 41.34 41.69 41.41 41.74 41.20 41.57 41.38 41.61

07 43.26 43.56 43.55 43.96 43.30 42.68 43.60 43.78

08 37.47 37.60 37.43 37.58 37.44 37.64 37.47 37.34

09 43.21 43.42 43.73 43.91 43.13 43.16 43.70 43.67

10 42.89 42.99 43.07 43.24 42.82 42.65 43.35 43.19

11 41.25 41.40 41.34 41.55 41.22 40.85 41.28 41.28

12 44.28 44.62 44.47 44.88 44.26 44.44 44.54 44.62

13 36.21 36.36 36.34 36.47 36.00 37.13 36.15 36.83

14 37.78 37.95 38.61 38.83 37.93 36.87 38.16 38.32

15 41.03 41.45 41.23 41.76 41.00 40.38 40.25 41.43

16 44.36 44.84 44.42 44.90 44.35 44.72 44.64 44.89

17 41.81 41.94 41.86 42.02 41.80 41.94 42.28 42.08

18 38.13 38.23 38.30 38.46 38.07 37.90 38.32 38.47

19 41.86 42.10 42.02 42.34 41.65 41.49 41.96 42.08

20 41.92 41.96 42.21 42.19 41.75 41.72 42.32 42.15

21 40.60 40.68 40.64 40.70 40.47 40.94 40.53 40.42

22 38.81 39.03 39.04 39.33 38.83 38.64 39.39 39.16

23 43.47 43.79 43.93 44.27 43.48 43.10 43.96 44.24

24 35.53 35.53 35.77 35.81 35.50 35.58 35.76 36.22

Avg. 40.92 41.14 41.16 41.42 40.87 40.80 41.06 41.31

Note: The highest CPSNR of each row is shown in bold.

Table 4 Total average of CPSNR over the IMAX21 and Kodak20 datasets. “Avg.” stands for “Average.”

Dataset SC16 SSC17 LSC17 LSSC17 PSRD4 PAMD22 DDR23 CADLD

IMAX 34.31 34.71 35.10 35.82 34.29 34.30 37.13 37.05

Kodak 40.92 41.14 41.16 41.42 40.87 40.80 41.06 41.31

Avg. 37.62 37.93 38.13 38.62 37.58 37.55 39.10 39.18

Note: The highest CPSNR of each row is shown in bold.
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with the adaptive dictionary learning methods: PAMD22 and
DDR.23 When comparing different methods, we use their
associated dictionaries, with default parameters set by their
respective authors.

4.3 Results
We evaluate demosaicking performance on the IMAX21 and
Kodak datasets.20 We compare the experimental results by
CPSNR and visual quality. To eliminate boundary effects,

(1a) Scaled original image (1b) Ground truth (1c) SC16 (1d) SSC17 (1e) LSC17

(1f) LSSC17 (1g) PSRD4 (1h) PAMD22 (1i) DDR23 (1j) CADLD

(2a) Scaled original image (2b) Ground truth (2c) SC16 (2d) SSC17 (2e) LSC17

(2f) LSSC17 (2g) PSRD4 (2h) PAMD22 (2i) DDR23 (2j) CADLD

(3a) Scaled original image (3b) Ground truth (3c) SC16 (3d) SSC17 (3e) LSC17

(3f) LSSC17 (3g) PSRD4 (3h) PAMD22 (3i) DDR23 (3j) CADLD

(4a) Scaled original image (4b) Ground truth (4c) SC16 (4d) SSC17 (4e) LSC17

(4f) LSSC17 (4g) PSRD4 (4h) PAMD22 (4i) DDR23 (4j) CADLD

Fig. 5 Blowups of some demosaicked images in the IMAX dataset. From top to bottom, the images are
from #2, #9, #16, and #17 images of the IMAX dataset, respectively. In each group, (a) is the scaled
original image, in which the red rectangle indicates the selected patch to blow up, (b) is the ground truth,
(c)–(i) are the images demosaicked by other dictionary learning methods, and (j) are the images demo-
saicked by our CADLD. From all the four groups of images, we can clearly see that the images demo-
saicked by others have severe zipper effect, while those by DDR and our CADLD have better visual quality.
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we exclude an eight-pixel border. The CPSNR values on the
IMAX dataset are shown in Table 2. We can see that our
CADLD is the second only to DDR23 on individual image
and the whole dataset. The results on the Kodak dataset
are shown in Table 3. We can see that our CADLD is the
second only to LSSC.17 This is because that LSSC17 uses
the online dictionary learning method to every image.
Overall, our method is superior on both the two datasets,
which are significantly different in terms of channel-correc-
tion [see Figs. 2(a) and 2(b)]. We also give the total average
of CPSNR over the two datasets, which is shown in Table 4.
We can see that our CADLD gets the highest average
CPSNR value on the two datasets. In addition, our CADLD
performs better than PAMD22 on both the two datasets,
which also verifies the effectiveness of our channel-correla-
tion defined in Eq. (2).

As the visual quality is typically an important evaluation
for demosaicking, we present part of the visual comparison
in Figs. 5 and 6. We can see that the visual quality of the
CADLD is superior to that of other demosaicking methods,
especially in reconstructing along the edges (see Fig. 5) and
removing false color at the highly textured regions (see
Fig. 6). (Please read detail descriptions on visual difference
in the captions.)

We also evaluate the running time of all the compared
methods. These methods share the same environment-
Intel(R) Core(TM)i7-3632QM CPU @ 2.20 GHz with
16.0 GB RAM. We report the average running time to

demosaick one image from the IMAX dataset,21 which is
shown in Table 5.

5 Conclusions
In this paper, we propose a channel-correlation adaptive
demosaicking method based on dictionary learning. We
first define the channel-correlation to measure the correla-
tions among the RGB channels. Then, we analyze the
channel-correlation effect on the sparse representation-
based demosaicking. We next detail the proposed CADLD
method. Experimental results show that our CADLD method
works well on raw images with various channel-correlations.
Future work will include adapting our method to various
CFAs.
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