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Abstract—In this paper, we propose a new definition of tensor
Schatten-p norm (t-Schatten-p norm) based on t-SVD, and prove
that this norm has similar properties to matrix Schatten-p norm.
More importantly, the t-Schatten-p norm can better approximate
the �1 norm of the tensor multi-rank with 0 < p < 1. Therefore,
it can be used for the Low-Rank Tensor Recovery problems as a
tighter regularizer. We further prove the tensor multi-Schatten-p
norm surrogate theorem and give an efficient algorithm accord-
ingly. By decomposing the target tensor into many small-scale ten-
sors, the non-convex optimization problem (0 < p < 1) is trans-
formed into many convex sub-problems equivalently, which can
greatly improve the computational efficiency when dealing with
large-scale tensors. Finally, we provide the theories on the con-
ditions for exact recovery in the noiseless case and give the cor-
responding error bounds for the noise case. Experimental results
on both synthetic and real-world datasets demonstrate the supe-
riority of our t-Schattern-p norm in the Tensor Robust Principle
Component Analysisand the Tensor Completion problems.

Index Terms—Tensor Schatten-p norm, low-rank, tensor decom-
position, convex optimization.

I. INTRODUCTION

IN COMPUTER vision and pattern recognition, data struc-
tures are becoming more and more complex. Thus multi-

dimensional arrays (also called as tensors) attract more and
more attention recently. Many problems can be converted to the
Low-Rank Tensor Recovery (LRTR) problems, such as video
denoising [3], video inpainting [4], subspace clustering [5], rec-
ommendation systems [6], multitask learning [7], etc. The LRTR
problem aims to recover the original low-rank tensor based on
the observed corrupted/disturbed tensor. It can be formulated as
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the following problem:

min
X

rank(X ),

s.t. Ψ(X ) = T , (1)

where T is the observed measurement by a linear operator Ψ(·)
and X is the clean data. Similar to the matrix case, the opera-
tion rank(·) works as a sparsity regularization of tensor singular
values. Unfortunately, none of the existing definitions of tensor
rank work well in practice. They are all related to particular ten-
sor decompositions [8]. For example, CP-rank [9] is based on
the CANDECOMP/PARAFAC decomposition [10]; Tucker-n-
rank [11] is based on the Tucker Decomposition [12]; and tensor
multi-rank and tubal-rank [2] are based on t-SVD [1]. Minimiz-
ing the rank function directly is usually NP-hard and is difficult
to be solved within polynomial time, hence we often replace the
function rank(X ) by its convex/non-convex surrogate function
f(X ):

min
X

f(X ),

s.t. Ψ(X ) = T . (2)

The main difference among the present LRTR models is the
choice of surrogate function f(·). Based on different definitions
of tensor singular values, various tensor nuclear norms or tensor
Schatten-p norms1 are proposed as the rank surrogates [1], [13],
[14]. But they all have some limitations when applied to real
problems.

Based on CP-decomposition [10], Friedland et al. [14] intro-
duce cTNN (Tensor Nuclear Norm based on CP) as the convex
relaxation of the tensor CP-rank:

‖T ‖cT N N = inf

{
r∑

i=1

|λi | : T =
r∑

i=1

λiui ◦ vi ◦wi

}
, (3)

where ‖ui‖ = ‖vi‖ = ‖wi‖ = 1 and ◦ represents the vec-
tor outer product. Yuan et al. [15] give the sub-gradient of
cTNN by leveraging its dual property, therefore we can solve
the cTNN minimization problem by using some traditional
gradient-based methods. It is worth mentioning that, for a given
tensor T ∈ Rn1×n2×n3 , calculating its CP-rank [9] is usually
NP-complete [16], [17], which means that we cannot verify
the consistency of cTNN’s implicit decomposition with the
ground-truth CP-decomposition. Moreover, it is hard to mea-
sure the cTNN’s tightness relative to the CP-rank since whether
cTNN satisfies the continuous analogue of Comon’s conjec-
ture [14] remains unknown. What’s more, inconsistent with the

1Schattern-p norm is only a pseudo-norm when 0 < p < 1.
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Fig. 1. Illustrations of the low tubal-rank properties of some datasets. (a) and (c) are from the Berkeley Segmentation dataset. (b) is from the UMist Faces dataset.
(d) is from the YUV Video Sequences dataset.

two-dimensional case, one cannot extent cTNN to the tensor
Schatten-p norm because the infimum will be identically 0 when
the �1 norm of the coefficients is replaced by an �p norm for any
p > 1 [14]. All the above reasons limit the application of cTNN
to the LRTR problem.

To avoid the NP-complete CP decomposition, Liu et al. [13]
define a kind of tensor nuclear norm named SNN (Sum of Nu-
clear Norm) based on the Tucker decomposition [12]:

‖T ‖SN N =
dim∑
i=1

∥∥T(i)
∥∥
∗ , (4)

where T(i) denotes unfolding the tensor along the i-th dimen-
sion and ‖ · ‖∗ is the nuclear norm of a matrix, i.e., sum of
singular values. Because SNN is easy to compute, it has been
widely used, e.g., [13], [18], [19]. By considering the subspace
structure in each mode, Kasai et al. [18] propose a Riemannian
manifold based tensor completion method (RMTC). However,
Paredes et al. [20] point out that SNN is not the tightest convex
relaxation of the Tucker-n-rank [11], and is actually an overlap
regularization of it. They further propose an alternative convex
relaxation of Tucker-n-rank [11] which is tighter than SNN.
Tomioka et al. [21] introduce a tensor Schatten-p norm based
on SNN, and Li et al. [19] achieve a better experimental results
on the tensor completion (TC) problem than the original SNN.
Nonetheless, they still simply unfold the high-order tensor into
matrices, which will unavoidably destroy the intrinsic structure
of tensor data.

In order to maintain the internal structure of high-dimensional
arrays, Kilmer et al. [1] propose a new tensor decomposi-
tion named t-SVD. Zhang et al. [4] give a definition of the
nuclear norm corresponding to t-SVD, i.e., Tensor Nuclear
Norm (TNN). Further more, they point out that TNN is the

tightest convex relaxation to �1 norm of the tensor multi-rank2

within the unit ball of the tensor spectral norm.3

When arranging image or video data into matrices [13], they
often lie on a union of low-rank subspaces. Fortunately, the
original tensor data also have a low multi-rank (or tubal-rank)
structures. Fig. 1 shows the singular values of all frontal slices
of several commonly used datasets. It is easy to see that most
singular values are very close to 0 and much smaller than the
largest ones. So the related problems can be solved effectively
by t-SVD based low-rank methods. By adopting TNN, [3] and
[22] propose the exact recovery conditions of TRPCA and TC
problems, respectively.

Due to consdering the internal structure of data, TNN has
been widely used in recent years. Nevertheless, when dealing
with large-scale tensor data, the computational complexity of
TNN grows dramatically. For instance, when solving TC prob-
lems by TNN, the computational complexity at each iteration
isO(n1n2n3(log n3 + min{n1 , n2})), which consumes several
hours to complete a tensor with size 500× 500× 500. To avoid
this high complexity, Zhou et al. [23] and Liu et al. [24] uti-
lize the tensor factorization method to preserve the low-rank
structure, and they only maintain two smaller tensors during
each optimization iteration. By decomposing a large-scale ten-
sor into two skinny ones, the computational cost at each iteration
drops to O(r(n1 + n2)n3 log n3 + rn1n2n3)) [23]. Although
the complexity is reduced, their methods do not consider the bal-
ance between factors, hence they cannot prevent the extremely
imbalanced tensor decompositions, which will make their ob-
tained tensors violate the incoherence conditions. Note that in-
coherence is the essential condition for successful completion.

2The tensor multi-rank is a vector with each entry representing the rank of a
frontal slice after Fourier transform along the third dimension.

3The related definition of the tensor spectral norm can be found in [4].
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To break the limits of existing methods, in this paper we pro-
pose a new tensor Schatten-p norm (t-Schatten-p norm) which
is defined in Eq. (11) based on t-product [1]. The proposed
norm is of similar properties to matrix Schatten-p norm. Ad-
ditionally, when 0 < p < 1 this Schatten-p norm is a tighter
regularizer than TNN to approximate the �1 norm of tensor
multi-rank [2]. Furthermore, inspired by [23] and [25], we ex-
tend the matrix norm surrogate theorem to the tensor case. By
using the new theorem and t-product, when 0 < p < 1 we de-
compose the target tensor T into many small-scale tensors {Ti}
with T = T1 ∗ · · · ∗ TI , and then we minimize the weighted sum
of convex Schatten-p norms

∑
i

1
pi
‖Ti‖pi

Sp i
, where pi ≥ 1,∀i.

In this way, the original non-convex non-smooth optimization
problem is divided into many convex sub-problems. Hence we
not only reduce the computational complexity of each iteration,
but also give a better approximation to the �1 norm of tensor
multi-rank, which can lead to a better performance. We also pro-
vide an efficient algorithm for solving the resulting optimization
problem. Finally, we apply the proposed method to the TC and
the TRPCA problems, and provide some theoretical analysis on
the performance guarantees.

In summary, our main contributions include:
� We propose a new definition of tensor Schatten-p norm

with some desirable properties, e.g., unitary invariance,
convexity and differentiability. When 0 < p < 1, it is
tighter than TNN to approximate the �1 norm of tensor
multi-rank, which is beneficial to LRTR problems.

� We prove the tensor Schatten-p norm surrogate theorem,
which helps us to transform a non-convex problem into
many convex sub-problems4, and we give an efficient
algorithm to solve the transformed model. We also give
a proof of the convergence of our algorithm. Our method
can not only reduce the computational complexity of each
iteration significantly when dealing with large-scale ten-
sors, but also maintain the balance among factor tensors.

� We provide the sufficient conditions for exact recovery
using a general linear operator and the error bounds based
on some assumptions when there exists noise. For ensuring
the performance of the TC problem, we give a theoretical
analysis of exact completion.

We apply our proposed t-Schatten-p norm to the TRPCA and
the TC problems. Experimental results on synthetic and real-
world datasets verify the advantages of our method.

II. NOTATIONS AND PRELIMINARIES

In this section, we introduce some notations and necessary
definitions which will be used later.

Tensors are represented by uppercase curlycue letters, e.g.,
T . Matrices are represented by boldface uppercase letters,
e.g., M. Vectors are represented by boldface lowercase letters,
e.g., v. Scalars are represented by lowercase letters, e.g., c.

For a given 3-order tensor T ∈ Rn1×n2×n3 , we use T(k) to
represent its k-th frontal slice T (:, :, k). Its (i, j, k)-th entry is

4But the whole optimization problem is still nonconvex due to the multilinear
constraint.

represented as Tijk . We use T to represent the result of dis-
crete Fourier transformation of T along the 3-rd dimension,
corresponding to Matlab operator T = fft(T , [ ], 3). This also

implies T = ifft(T , [ ], 3). T
(i)

denotes the i-th frontal slice of
T . And the block circulant matrix associated to a 3-order tensor
T is represented by bcirc(T ) ∈ Rn1 n3×n2 n3 :

bcirc(T ) =

⎡
⎢⎢⎢⎣

T(1) T(n3 ) . . . T(2)

T(2) T(1) . . . T(3)

...
...

. . .
...

T(n3 ) T(n3−1) . . . T(1)

⎤
⎥⎥⎥⎦.

As for block unfolding T and its inverse operation, we use the
following operators:

unfold(T ) =

⎡
⎢⎢⎢⎣

T(1)

T(2)

...
T(n3 )

⎤
⎥⎥⎥⎦, fold(unfold(T )) = T .

Then we define the t-product between two 3-order tensors as:
Definition 1: (t-product) [1] Let A ∈ Rn1×s×n3 , B ∈

Rs×n2×n3 . Then the t-product is defined as:

C = A ∗ B = fold(bcirc(A) · unfold(B)). (5)

Here C ∈ Rn1×n2×n3 . Note that if n3 = 1, the operator ∗ re-
duces to matrix multiplication.

For tensor T ∈ Rn1×n2×n3 , Kilmer et al. [1] point out that
the block circulant matrix bcirc(T ) can be diagonalized by a
specific matrix. We denote Fn3 as theRn3×n3 DFT matrix, and
FH

n3
denotes the conjugate transpose of Fn3 . In1 and In2 are n1-

order and n2-order identity matrices, respectively. Then using
Kronecker product we have [1]:

(Fn3 ⊗ In1) · bcirc(T ) · (FH
n3
⊗ In2) =

⎡
⎢⎢⎢⎢⎣
T

(1)

T
(2)

. . .

T
(n3)

⎤
⎥⎥⎥⎥⎦.

Then the t-product can be calculated as follows:
Property 1: [1] Let A ∈ Rn1×s×n3 , B ∈ Rs×n2×n3 . Then

the t-product is equivalent to matrix product of A and B:

T = A ∗ B ⇐⇒ T
(k)

= A
(k)

B
(k)

, k = 1, . . . , n3 . (6)

Remark 1: In this paper, we use � to represent frontal-slice-
wise matrix multiplication between tensors A and B. Then

T = A ∗ B ⇐⇒ T
(k)

= A
(k)

B
(k) ⇐⇒ T = A� B. (7)

The relations of inner products (and Frobebius norm) in the
time and the frequency domains are as follows.

Property 2: [3] Let A,B ∈ Rn1×n2×n3 , then:

(1) 〈A,B〉 =
1
n3

〈
A,B

〉
,

(2) ‖A‖F =
√
〈A,A〉 =

1√
n3

∥∥A∥∥
F

. (8)
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For the definitions of tensor transpose T ∗ in Definition 8,
Identity tensor I in Definition 9, and Orthogonal tensor in Defi-
nition 10, please refer to the Appendix. By using these notations,
tensor Singular Value Decomposition (t-SVD) and Tensor Nu-
clear Norm (TNN) are defined as follows.

Definition 2: (t-SVD) [1] Let T ∈ Rn1×n2×n3 . Then there
exist U ∈ Rn1×n1×n3 , S ∈ Rn1×n2×n3 and V ∈ Rn2×n2×n3

such that:

T = U ∗ S ∗ V∗, (9)

where U ∗ U∗ = I, V ∗ V∗ = I, and S is a frontal-slice-
diagonal tensor.

Definition 3: (TNN) [3] The tensor nuclear norm of a tensor
T ∈ Rn1×n2×n3 , denoted as ‖T ‖∗, is defined as the average of
the nuclear norm of all the frontal slices of T as follow:

‖T ‖∗ :=
1
n3

n3∑
i=1

‖T(i)‖∗. (10)

Furthermore, the tensor spectral norm, tensor multi-rank and
tubal-rank are defined by using t-SVD as follows:

Definition 4: (Tensor spectral norm) [3] LetT ∈Rn1×n2×n3 .
The tensor spectral norm of T is defined as ‖T ‖ := maxi

{‖T(i)‖}.
By using the Von Neumann’s inequality, it is easy to prove

that the dual norm of tensor spectral norm is the tensor nuclear
norm and vice versa.

Definition 5: (Tensor multi-rank and tubal-rank) [4] LetT ∈
Rn1×n2×n3 , then the tensor multi-rank of T is a vector r ∈ Rn3

with its i-th entry as the rank of the i-th frontal slice of T ,

i.e., ri = rank(T
(i)

). The tensor tubal-rank of T , denoted as
rankt(T ), is defined as the number of nonzero singular tubes of
S, where S is from the t-SVD of T = U ∗ S ∗ V∗.

III. MAIN RESULT

Comparing with the relations between matrix nuclear norm
and matrix schatten-p norm, we propose a new definition of
tensor Schatten-p norm (t-Schatten-p norm) based on TNN and
t-SVD as:

Definition 6: (Tensor Schatten-p Norm) Let T ∈ Rn1×n2×n3

and its tensor singular value decomposition be T = U ∗ S ∗ V∗.
Then the tensor schatten-p norm is defined as:

‖T ‖Sp
:=

(
1
n3

n3∑
i=1

‖T(i)‖pSp

) 1
p

,

i.e., ‖T ‖Sp
:=

⎛
⎝ 1

n3

n3∑
k=1

min{n1 ,n2 }∑
i=1

∣∣S iik

∣∣p
⎞
⎠

1
p

. (11)

When p = 1 it becomes the tensor nuclear norm, which is similar
to the matrix case.

Obviously, t-Schatten-p norm satisfies: (1) ‖T ‖Sp
≥ 0 with

equality holding if and only if T is zero; (2) ‖αT ‖Sp
=

α‖T ‖Sp
.

A. Algebraic Properties

Our proposed t-Schatten-p norm has some properties similar
to the matrix Schatten-p norm. The followings are some of the
properties of ‖T ‖Sp

and ‖T ‖pSp
that we use in this paper. For

the proofs, please refer to the Supplementary Materials.
Proposition 1: (Unitary Invariance) Let T ∈ Rn1×n2×n3 ,

and U ∈ Rn1×n1×n3 and V ∈ Rn2×n2×n3 be orthogonal ten-
sors. The tensor Schatten-p norm defined in Eq. (11) is unitary
invariant, i.e.,

‖T ‖Sp
= ‖U ∗ T ‖Sp

= ‖T ∗ V∗‖Sp
= ‖U ∗ T ∗ V∗‖Sp

.
(12)

Proposition 2: Given a 3-order tensor T ∈ Rn1×n2×n3 ,
when p ≥ 1, ‖T ‖pSp

is convex w.r.t. T . In other words, it satisfies
the inequality for any λ ∈ (0, 1):

‖λA+ (1− λ)B‖pSp
≤ λ ‖A‖pSp

+ (1− λ) ‖B‖pSp
, p ≥ 1.

(13)
And when 0 < p < 1, ‖T ‖pSp

is non-convex w.r.t. T .
With this proposition, when p ≥ 1, ‖T ‖pSp

can be applied
to many convex optimization problems. For a certain convex
function, whether it is differentiable or not is very important.
The next proposition gives the answer when p ≥ 1.

Proposition 3: Given a 3-order tensor T0 ∈ Rn1×n2×n3 and
that the skinny t-SVD of T0 is U ∗ S ∗ V∗. When p > 1, the
gradient of ‖T ‖pSp

at T0 has the following form:

∇T0 ‖T ‖
p
Sp

= p U ∗ D ∗ V∗, with D = Sp−1
, p > 1. (14)

Moreover, when p = 1, the subdifferential of ‖T ‖pSp
at T0 is:

∂T0 ‖T ‖
p
Sp

= {U ∗ V∗ +W|U∗ ∗ W = O,W ∗ V = O}.
(15)

For models which need to minimze ‖T ‖pSp
, Proposition 3

indicates that when p ≥ 1 we can use gradient-based methods
to solve them.

B. Unified Surrogate Theorem

For the matrix case, there exist many surrogates for a specific
matrix Schatten-p norm, such as p = 1, 2/3, 1/2 [26]–[28]. Xu
et al. [25] give a general result of unified surrogates for the
matrix Schatten-p norm.

Lemma 1: (Multi-Schatten-p Norm Surrogate) [25] Given I
(I ≥ 2) matrices Xi (i = 1, . . . , I), where X1 ∈ Rm×d1 , Xi

∈ Rdi−1×di (i = 2, . . . , I − 1), XI ∈ RdI −1×n , and X ∈ Rm×n

with rank(X) = r ≤ min{di, i = 1, . . . , I − 1}, for any p, p1 ,

. . . , pI > 0 satisfying 1/p =
∑I

i=1 1/pi , we have

1
p
‖X‖pSp

= min
X i :X=

∏ I
i = 1 X i

I∑
i=1

1
pi
‖Xi‖pi

Sp i
. (16)

This lemma indicates that for any given Schatten-p norm,
we can get the same value by solving a minimization problem.
The following Theorem 1 points out that for our proposed t-
Schatten-p norm, this rule holds too.

Theorem 1: (Multi-Tensor-Schatten-p Norm Surrogate)
Given I(I≥2) tensors Ti (i = 1, . . . , I), where T1 ∈ Rm×d1×k ,
Ti ∈ Rdi−1×di×k (i = 2, . . . , I − 1), TI ∈ RdI −1×n×k , and T ∈

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:37:22 UTC from IEEE Xplore.  Restrictions apply. 



KONG et al.: T-SCHATTEN-p NORM FOR LOW-RANK TENSOR RECOVERY 1409

Rm×n×k with rankt(T ) = r ≤ min{di, i = 1, . . . , I − 1}, for
any p, p1 , . . . , pI > 0 satisfying 1/p =

∑I
i=1 1/pi , we have

1
p
‖T ‖pSp

= min
Ti :T =T1 ∗···∗TI

I∑
i=1

1
pi
‖Ti‖pi

Sp i
. (17)

In the previous section, we mention that when p ≥ 1 the t-
Schatten-p norm ‖T ‖pSp

is convex. When p < 1, we can use
Theorem 1 to convert the non-convex function ‖T ‖pSp

into
weighted sum of convex functions ‖Ti‖pi

Sp i
with pi ≥ 1 and

T = T1 ∗ · · · ∗ TI . Note that pi can also be less than 1, i.e.,
0 < pi < 1.

C. Tightness

Lu et al. [3] point out that if the tensor average rank is defined

as ranka(T ) = 1
n3

∑n3
i=1 rank(T

(i)
), then TNN is the convex

envelope of the tensor average rank within the unit ball of the
tensor spectral norm. Here we claim that when 0 < p < 1, our
‖T ‖pSp

is a tighter non-convex envelope of the tensor average
rank within the same unit ball.

Proposition 4: For a given 3-order tensor T and 0 < p ≤ 1,
‖T ‖pSp

is an envelope of the tensor average rank within the unit
ball of the tensor spectral norm. If we set p = 1, it becomes
TNN, which is the tightest convex envelope. Otherwise, it is a
non-convex envelope of the tensor multi-rank, which is tighter
than TNN in the sense of ‖T ‖∗ ≤ ‖T ‖

p
Sp
≤ 1

n3
‖rankm (T )‖1 .

Zhang et al. [4] give another definition of TNN and prove
that it is the tightest convex envelope to �1 norm of the tensor
multi-rank within a unit ball. It is easy to find that these two
conclusions are equivalent.

Considering the LRTR problem in Eq. (1), we usually need to
use a relaxed function to replace the non-smooth rank function.
By using Proposition 4, we transform the recovery problem into
the following:

min
X
‖X‖pSp

,

s.t. Ψ(X ) = T , (18)

where T is the observed measurement through a linear operator
Ψ(·). We aim to recover the clean tensorX based on the observed
corrupted/missing tensor T .

D. Advantages and Disadvantages

The main advantage is that our ‖T ‖pSp
is a tighter non-convex

envelope of the tensor average rank within the unit ball of the
tensor spectral norm, as shown in Proposition 4. Liu et al. [29]
point out that, in matrix case, when using the matrix factor-
ization or Schatten-p norm (p = 2/3) the recovery condition is
weaker than the convex optimization based on nuclear norm.
That is to say, when using a better approximation, we may get
a better solution. Our experiments in Section VI also verify this
statement.

However, the disadvantage is also obvious. Compared with
TNN in [4], ‖T ‖pSp

is non-convex and non-smooth when
0 < p < 1. It would be hard to obtain a strong performance
guarantee as done in the convex programs, e.g., [22]. Even in

the matrix case, it is still unknown under what conditions a spe-
cific optimization procedure for Schatten-p norm can produce
an optimal solution that exactly recovers the target matrix. The
same is true for the tensor case.

IV. APPLICATION AND OPTIMIZATION

In this section, we propose a general LRTR model based on
the t-Schatten-p norm and give a feasible algorithm to solve it.

A. Model

In practical applications, the observed tensor T is inevitably
contaminated by noise. Therefore we add a noise tensor and a
noise regularization to the model in Eq. (18):

min
X ,E
‖X‖pSp

+ λg (E) ,

s.t. Ψ(X ) + E = T , (19)

where T is the observed tensor, E is a noise tensor and g (·)
denotes the noise regularization. In specific problems, if we
assume that the noise follows the Gaussian distribution or the
Laplacian distribution, g (E) can be chosen as ‖E‖2F or ‖E‖1 ,
respectively.

When p ≥ 1, the problem in Eq. (19) can be solved by
many convex optimization methods directly. If 0 < p < 1, the
t-Schatten-p norm becomes non-convex. Then we can use The-
orem 1 to convert the non-convex function into sum of several
convex functions. The following proposition provides the guar-
antee of this idea.

Proposition 5: [25] For any 0 < p < 1, there always exist
I ∈ N and pi such that 1/p =

∑I
i=1 1/pi , where all pi satisfy

one of the cases: (a) pi ≥ 1 or (b) pi > 1.
Given I (I ≥ 2) and i = 1, . . . , I , for any p, pi > 0 satisfy-

ing 1/p =
∑I

i=1 1/pi , we assume thatX = X1 ∗ X2 ∗ · · · ∗ XI ,
then (19) can be converted to:

min
{Xi },E

I∑
i=1

1
pi
‖Xi‖pi

Sp i
+ λg (E) ,

s.t. Ψ(X1 ∗ X2 ∗ · · · ∗ XI ) + E = T . (20)

If pi ≥ 1 holds for all i, the optimization of problem in
Eq. (20) becomes multi-convex. Thus if we apply the block
coordinate descent method to solve Eq. (20), each Xi can be
efficiently updated by convex optimization.

B. Optimization

Different from the matrix case in [26], we need to introduce
an intermediate tensor G to separate {Xi} from Ψ(·). If not, cal-
culating the sub-gradient of ‖Ψ(X1 ∗ X2)‖F may be a difficult
problem for certain Ψ, such as PΩ in the TC problem. Then by
adding an equality constraint, Eq. (20) can be rewritten as:

min
{Xi },E

I∑
i=1

1
pi
‖Xi‖pi

Sp i
+ λg (E) ,

s.t. Ψ(G) + E = T ,

X1 ∗ X2 ∗ · · · ∗ XI = G. (21)
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Here we solve Eq. (21) by a new method based on LADMP-
SAP [30] and BCD [31]. By introducing Lagrange multipliers
Y and Z , the augmented Lagrangian function of (21) is given
as follows:

L(Xi ,G, E ,Y,Z) =
I∑

i=1

1
pi
‖Xi‖pi

Sp i
+ λg (E)

+ 〈Y,Ψ(G) + E − T 〉+ ρ1

2
‖Ψ(G) + E − T ‖2F

+ 〈Z,X1 ∗ X2 ∗ · · · ∗ XI − G〉

+
ρ2

2
‖X1 ∗ X2 ∗ · · · ∗ XI − G‖2F . (22)

All {Xi} in (22) need to be updated sequentially. Note that
different order of updatingXi may lead to different convergence
rates. We updateX1 andXI first, and then update others in proper
order.

1) Update Xi: Assume that we have already updated X k
1 ,

X k
2 , . . . ,X k

i−1 . Let Q1:(i−1) = X k
1 ∗ · · · ∗ X k

i−1 and Q(i+1):I

= X k−1
i+1 ∗ · · · ∗ X k−1

I . Then the sub-problem for updating X k
i

can be written as:

X k
i = arg min

Xi

1
pi
‖Xi‖pi

Sp i

+
ρ2

2
‖Q1:(i−1) ∗ Xi ∗ Q(i+1):I − Gk−1 + Zk−1/ρ2‖2F .

(23)
Calculating (23) directly is difficult. Letting fk

i (Xi) = 1
2

‖Q1:(i−1) ∗ Xi ∗ Q(i+1):I − Gk−1 + Zk−1/ρ2‖2F and further
linearizing fk

i (Xi) at point X k−1
i , the sub-problem becomes:

X k
i = arg min

Xi

1
pi
‖Xi‖pi

Sp i
+ ρ2

(〈
∇fk

i (X k−1
i ),Xi −X k−1

i

〉

+
Lk−1

i

2
‖Xi −X k−1

i ‖2F
)

= arg min
Xi

1
pi
‖Xi‖pi

Sp i

+
ρ2L

k−1
i

2

∥∥∥∥Xi −X k−1
i +

∇k
i f(X k−1

i )
Lk−1

i

∥∥∥∥
2

F

, (24)

where ∇fk
i (X k−1

i ) is the gradient of fk
i (Xi) at X k−1

i :

∇fk
i (X k−1

i ) = Q∗1:(i−1)

∗
(
Q1:(i−1) ∗ X k−1

i ∗ Q(i+1):I − Gk−1 + Zk−1/ρ2
)
∗ Q∗(i+1):I .

(25)

Lk−1
i is the Lipschitz constant of ∇fk

i (X k−1
i ), and it can be

chosen as the tensor spectral norm of ∇fk
i (X k−1

i ). The right
hand side of Eq. (24) is the proximal mapping of Xi and can be
solved by off-the-shelf algorithms:

X k
i = Proxpi ρ2 Lk −1

i ,‖·‖p i
S p i

(
X k−1

i − ∇
k
i f(X k−1

i )
Lk−1

i

)
, (26)

where Proxλ,f (z) := arg minx f(x) + λ
2 ‖x− z‖2F .

There are some special cases of pi that have closed-form so-
lutions. When pi = 1, the problem in Eq. (26) can be solved

by the tensor Singular Value Thresholding (tSVT) operator [4].
When pi = 2, the problem in Eq. (26) can be solved by calcu-
lating the unique critical point of quadratic function, or using
Theorem 3.1 in [13] by setting γ = 0. When pi < 1, the prob-
lem in Eq. (26) becomes non-smooth and non-convex. We can
use the generalized iterated shrinkage algorithm (GISA) [32] to
obtain a high-precision solution.

2) Update G: By fixing other variables, we have the follow-
ing sub-problem to update G:

Gk = arg min
G

ρ1

2

∥∥Ψ(G) + Ek−1 − T + Yk−1/ρ1
∥∥2

F

+
ρ2

2

∥∥X k
1 ∗ X k

2 ∗ · · · ∗ X k
I − G + Zk−1/ρ2

∥∥2
F

. (27)

Different linear operators Ψ result in different solutions of
Eq. (27). For example, in TRPCA problems Ψ is an identity
operator and Gk is given by:

Gk =
ρ1
(
T − Ek−1 − Yk−1/ρ1

)
+ ρ2

(
Qk

1:I + Zk−1/ρ2
)

ρ1 + ρ2
,

(28)
whereQk

1:I = X k
1 ∗ X k

2 ∗ · · · ∗ X k
I . In TC problems Ψ is a pro-

jection operator PΩ . If we devide the identity operator into PΩ
and PΩ̄ , then Gk is given by:

Gk = PΩ̄
(
Qk

1:I + Zk−1/ρ2
)

+ PΩ

(
ρ1
(
T − Ek−1 − Yk−1/ρ1

)
+ ρ2

(
Qk

1:I + Zk−1/ρ2
)

ρ1 + ρ2

)
.

(29)

3) Update E: By fixing other variables, we have the follow-
ing sub-problem to update E :

Ek = arg min
E

λg (E) +
ρ1

2
‖Ψ(Gk ) + E − T + Yk−1/ρ1‖2F ,

i.e., Ek = Proxρ1 /λ,g(·)
(
T −Ψ

(
Gk
)
− Yk−1/ρ1

)
.

(30)
The problem in Eq. (30) usually has a closed-form solution

for a specific g (·). If g (·) is chosen as ‖E‖2F , Ek is given by:

Ek =
T −Ψ

(
Gk
)
− Yk−1/ρ1

1 + ρ1/λ
. (31)

If g (·) is chosen as ‖E‖1 , and letR = T −Ψ
(
Gk
)
− Yk−1/ρ1 ,

then Ek is given by:

Ek = sign(R)max
{
|R| − λ

ρ1
, 0
}

. (32)

4) Update Y and Z: After updating {X k
i },Gk and Ek , the

Lagrange multipliers Y and Z are updated by:{
Yk := Yk−1 + ρ1

(
Ψ(Gk ) + Ek − T

)
,

Zk := Zk−1 + ρ2
(
X k

1 ∗ X k
2 ∗ · · · ∗ X k

I − Gk
)
.

(33)

For the penalty parameters ρ1 and ρ2 , Lin et al. [30] further
suggest increasing them gradually. We summarize the algorithm
for solving the problem in Eq. (21) in Algorithm 1.
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Algorithm 1: Solving Problem (21).
Input: The observed tensor data T and parameters
λ, ρ0

1 , ρ
0
2 , ρ1,max , ρ2,max . η, ε.

Initialize:
{
X 0

i

}
,G0 , E0 ,Y0 ,Z0 .

While not converge do
1) Update X k

i by solving (26) for i = 1, . . . , I .
2) Update Gk by solving (27).
3) Update Ek by solving (30).
4) Update Yk and Zk by (33).

5) Update ρk
1 and ρk

2 by

⎧⎨
⎩

ρk
1 = min{ηρk−1

1 , ρ1,max}

ρk
2 = min{ηρk−1

2 , ρ2,max}
6) Check the convergence condition: ‖X k

i −X k−1
i ‖

≤ ε2 , ‖Gk − Gk−1‖ ≤ ε2 , and ‖Ek − Ek−1‖ ≤ ε2 .
7) k ← k + 1.

end While
Output: The factor tensors {Xi}, the noise tensor E and
the intermediate tensor G.

C. Convergence Analysis

In general, it is hard to provide the convergence for the
ADMM based method with a Burer-Monteiro factorization con-
straint. Fortunately, due to the separability of the proposed ob-
jective, we can still prove the convergence of our algorithm by
assuming the smoothness of the noise regularization g (·) in
Eq. (21) and all pi ≥ 1. Note that in the following Theorem 2, p
can be chosen in the range (0,+∞) as long as 1/p =

∑I
i=1 1/pi

holds.
Theorem 2: If the optimization problem in Eq. (21) satis-

fies the following conditions: (a) the function g (·) in Eq. (21)
is smooth, convex, and coercive; (b) pi ≥ 1 for i = 1, . . . , I;
(c) ρ1 and ρ2 in Eq. (22) are sufficiently large, then the se-
quence {X k

i ,Gk , Ek ,Yk ,Zk} generated in Algorithm 1 satisfies
the following properties:

(1) The augmented Lagrangian function (22) is monotonically
decreasing, i.e. for some c > 0,

L(Xi ,G, E ,Y,Z)− L(X+
i ,G+ , E+ ,Y+ ,Z+)

≥ c(‖(Xi −X+
i )‖2F + ‖G − G+‖2F + ‖E − E+‖2F );

(2) ‖X+
i −Xi‖ → 0, ‖G+ − G‖ → 0, ‖E+ − E‖ → 0;

(3) The sequence {X k
i ,Gk , Ek ,Yk ,Zk} are bounded;

(4) Any accumulation point of the sequence {X k
i ,Gk , Ek ,

Yk ,Zk} is a constrained stationary point.

D. Complexity Analysis

For Algorithm 1, different pi’s result in different complex-
ities. Here we choose the widely used case p1 = p2 = 1 to
analyze. If X1 ∈ Rn1×d×n3 , X2 ∈ Rd×n2×n3 and rankt(X ) =
r (r ≤ d), then the per-iteration complexity in Algorithm 1 is
O
(
(n1 + n2)n3d log n3 + (n1 + n2)n3d

2 + n1n2n3d
)
. One

iteration means updating all variables once in order. As for
TNN in [3], the computational complexity at each iteration
is O(n1n2n3(log n3 + min{n1 , n2})). Obviously, when d�
min{n1 , n2}, our method is much more efficient than TNN

based methods in each iteration. Due to the convexity of TNN,
the related problem usually needs fewer iterations to converge.
But when the tensor rank is large or the noise is great, it may
perform worse than our proposed methods. Our experiments in
Section VI.B also verify this conclusion.

V. RECOVERY GUARANTEES

In this section, we provide theoretical guarantees for LRTR
problems based on our proposed t-Schatten-p norm, which
aim to recover low-rank tensors from linear observations. For
the proofs of our theorems, please refer to the Supplementary
Materials.

A. Null Space Property (NSP)

NSP is widely used in the theoretical analysis of recovering
sparse vectors and low-rank matrices [33], [34]. Here we give a
sufficient condition for exactly recovering the low-rank tensor
X̂ in Eq. (18) by the following model:

min
{Xi }

I∑
i=1

1
pi
‖Xi‖pi

Sp i
,

s.t. Ψ(X1 ∗ X2 ∗ · · · ∗ XI ) = T . (34)

Assume X̂ = Û ∗ Ŝ ∗ V̂∗ to be the true tensor in Eq. (18) with
rankt(X̂ ) = r, and X̂ = X̂1 ∗ · · · ∗ X̂I with X̂1 = Û ∗ Ŝp/p1 ,
X̂2 = Ŝp/p2 , ..., and X̂I = Ŝp/pI ∗ V̂∗. N (Ψ) := {X : Ψ(X )
= 0} denotes the null space of the linear operator Ψ. Then we
have the following theorem:

Theorem 3: Assume X̂ ∈ Rn1×n2×n3 to be the true ten-
sor for Eq. (18) with tubal-rank rankt(X̂ ) = r, and p ∈ (0, 1]
with 1

p =
∑I

i=1
1
pi

. In addition, for any X ∈ {Xi}Ii=1 with

X ∈ Rk1×k2×k3 , min{k1 , k2} ≥ r holds. Then X̂ is the unique
optimal solution of Eq. (18) and can be uniquely recovered
by Eq. (34), if for any Z = (X̂1 +W1) ∗ · · · ∗ (X̂I +WI )−
(X̂1 ∗ · · · ∗ X̂I ) ∈ N (Ψ) \ O, where {Wi} have compatible di-
mensions andN (Ψ) denotes the null space of the linear operator
Ψ, we have

r∑
i=1

n3∑
j=1

σp
i

(
Z

(j )
)

<

min{n1 ,n2 }∑
i=r+1

n3∑
j=1

σp
i

(
Z

(j )
)

. (35)

Note that this condition is usually hard to be satisfied. There-
fore, for specific problems we need to give some error bounds
between the true tensors and the solutions by our algorithm.

B. Error Bound Analysis for Robust Tensor Recovery

In this section, we first introduce the following assumption
of the general linear operator A. Based on this assumption, we
then give a theoretical analysis of the error bound for robust
tensor recovery.

Assumption 1: [35] Suppose that there is a positive con-
stant κ(A) such that for Δ ∈ Rn1×n2×n3 and Δ ∈ C, the gen-
eral linear operatorA : Rn1×n2×n3 → Rl satisfies the following

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:37:22 UTC from IEEE Xplore.  Restrictions apply. 



1412 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 6, DECEMBER 2018

inequality:

‖A(Δ)‖2 ≥ κ(A)‖Δ‖F , Δ ∈ C. (36)

When C denotes the whole space Rn1×n2×n3 , κ(A) actually can
be chosen as the smallest singular value of operator A.

Based on Assumption 1, we provide the error bound for ro-
bust tensor recovery via Eqs. (19) and (20), which have noisy
measurements.

Theorem 4: Assume that X̂ ∈ Rn1×n2×n3 is a true tensor
which satisfies the corrupted measurements Ψ(X̂ ) + E = T ,
where E is the noise with ‖E‖F ≤ ε. Let (X̂1 , . . . , X̂I ) be a
critical point of Eq. (34) with the squared loss λ

2 ‖ · ‖2F and all

pi ≥ 1. Here rankt(X̂ ) = r (r ≤ d) and d = min{min{p, q} :
X̂i ∈ Rp×q×l , i = 1, . . . , I}. If the linear operator Ψ satisfies
the condition of Assumption 1 with a positive constant κ(Ψ) on
Rn1×n2×n3 , then∥∥∥X̂ − X̂1 ∗ · · · ∗ X̂I

∥∥∥
F√

n1n2n3
≤ ε

κ(Ψ)
√

n1n2n3

+
√

t

λC1κ(Ψ)
√

n1n2n3
, (37)

where t ≥ d and C1 is a constant related to {X̂i}. We give a
lower bound for C1 in the Supplementary Materials.

Theorem 4 claims that if Ψ satisfies the condition in
Assumption 1, then there is an upper bound of the error between
any critical point of Eq. (34) with the squared loss λ

2 ‖ · ‖2F and
the true tensor in Eq. (19). The right hand side gives a rough
guarantee for our proposed model. When the noise is small, the
exact solution is close to the critical point.

C. Guarantee for Tensor Completion

The TC problem plays an important role in practical applica-
tions. However, the projection operator PΩ in Eq. (38) usually
does not satisfy the RIP condition or Assumption 1 [13], so the
TC problem should be treated as a special case. By setting Ψ
as the projection operator PΩ in Eq. (34), we get the following
formulation:

min
{Xi }

I∑
i=1

1
pi
‖Xi‖pi

Sp i
,

s.t. PΩ(X1 ∗ X2 ∗ · · · ∗ XI ) = PΩ(T ). (38)

Note that the error bound introduced in Theorem 4 usually
does not hold. By using Theorem 8 in [35] we can deduce that
the error bounds for the TC problem are related to |Ω| and rank of
each frontal slice, but low tubal-rank cannot guarantee the low
slice ranks. What’s more, our proposed model is non-convex
when 0 < p < 1, which makes it difficult to give a reliable per-
formance guarantee as done in the convex programs, e.g., [22].
Therefore, we give the following Theorem to show that, under
a very mild condition, the exact solutions of Eq. (38) are its
critical points.

Definition 7: (Tensor Incoherent Condition) [22] Let the
skinny t-SVD of a tensor Z be U ∗ S ∗ V∗. Z is said to

satisfy the standard tensor incoherent condition, if there exists
μ such that

max
i=1,...,n1

‖U∗ ∗ ei‖F ≤
√

μr

n1n3
,

max
j=1,...,n2

‖V∗ ∗ ej‖F ≤
√

μr

n2n3
, (39)

where ei is the n1 × 1× n3 column basis with ei11 = 1 and ej is
the n2 × 1× n3 column basis with ej11 = 1. r is the tubal-rank
of Z , i.e., rankt(Z) = r.

Theorem 5: Consider the problem in Eq. (38) with pi ≥
1 (i = 1, . . . , I) and 1/p =

∑I
i=1 1/pi . Let T ∈ Rn1×n2×n3

with n1 ≥ n2 , Ω ∼ Ber(ρ) and the skinny t-SVD of T be
U ∗ S ∗ V∗, and rankt(T ) = r.

If T satisfies the Tensor Incoherent Condition with param-
eter μ, and ρ ≥ O (μr log(n1n3)/(n1n3)), then with a high
possibility, the exact solution of Eq. (38), denoted by (X̂1 ,

. . . , X̂I ):

X̂ ∗1 = U ∗ Sp/p1 ∗ Q∗1 ,

X̂ ∗i = Qi−1 ∗ Sp/pi ∗ Q∗i , i = 2, . . . , I − 1,

X̂I = QI−1 ∗ Sp/pI ∗ V∗, (40)

where Qi ∈ Rqi×r×n3 , Q∗i ∗ Qi = I for all i and qi ≥ r, is a
critical point of the problem in Eq. (38).

Theorem 5 gives a new perspective on our non-convex tensor
completion problem (38). When a certain optimization proce-
dure converges to a stationary point, it may be close to the exact
solutions.

VI. EXPERIMENTS

In this section, we conduct numerical experiments to evaluate
our proposed model. We apply the t-Schatten-p norm (tSp) to
solve the TRPCA and the TC problems. The results on both
synthetic and real-world datasets demonstrate the superiority of
our method. The numbers reported in all the experiments are
averaged from 20 random trials.

In [4], Zhang et al. set λ = n3√
max{n1 ,n2 }

. In [3], Lu et al. set

λ = 1√
max{n1 ,n2 }×n3

and give some good properties. Because

TNN is the main method we need to compare with, we extend
its choice of λ to our multi-factors so that it can be regarded
as a special case of our method. In the following experiments,

we usually set the parameter λ =
√

I
max{n1 ,n2 }×n3

in Eq. (41)

and Eq. (42), where I denotes the number of factors and data
X ∈ Rn1×n2×n3 . But sometimes we need to readjust λ around
the default value for a better experimental result.

A. Tensor Robust Principal Component Analysis

1) Model and Experimental Settings: For the TRPCA prob-
lem, Ψ in Eqs. (19) or (20) is an indentity operator. Then the
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TRPCA model based on our t-Schatten-p norm is as follows:

min
{Xi },E

I∑
i=1

1
pi
‖Xi‖pi

Sp i
+ λ‖E‖1 ,

s.t. X1 ∗ X2 ∗ · · · ∗ XI + E = T . (41)

Data: To show the advantages of the proposed method,
we experiment with both synthetic and real data. The real
datasets cover one computer vision task: sequential face im-
ages denoising.5

Baseline: In this part, we compare our method with TNN
based [3] and SNN based [36] methods. These two methods are
widely used in various applications.

Evaluation metrics: Assume that the clean tensor is X0 ∈
Rn1×n2×n3 , we represent the recovered tensor (the output of the
algorithms) as X .

– Relative Square Error (RSE): The reconstruction error is
computed as:

RSE =
‖X0 −X‖F
‖X0‖F

.

– Peak Signal-to-Noise Ratio (PSNR):

PSNR = 10 log10

(
n1n2n3‖X0‖2∞
‖X − X0‖2F

)
.

2) Synthetic Experiments: We only compare our methods
with the TNN based method [3] on the synthetic dataset, be-
cause both of our methods are used to solve the low tubal-rank
minimization problems, yet the SNN method unfolds the tensor
into matrices along each dimension and minimizes the Tucker-
n-rank [13].

Here we firstly generate a tensor X ∈ Rn1×n2×n3 (n1 =
n2 = n3 = 50) with each entry coming from the normal dis-
tribution N (0, 1), then we obtain a low tubal-rank tensor by
truncating the singular values vectors in the frequency domain.
The tubal-rank is set to 20. For generating the noise/outliers
tensor E , we create an index set Ω by using a Bernoulli model to
randomly sample a subset from {1, . . . , n1} × {1, . . . , n2} ×
{1, . . . , n3}. The noise/outliers fraction is 0.1 here with each
entry of the tensor obeying the distribution N (0, 3) if its index
is contained in the index set Ω.

Fig. 2 shows the RSEs of the competing methods with respect
to the iteration steps. We compare our methods with different
selections of p with TNN, where p denotes the vector con-
sisting of all pi’s. Since the optimization problem of TNN is
convex and easy to solve, TNN converges faster than our meth-
ods. However, our methods can exactly recover the underlying
low tubal-rank tensor. This is because we utilize a tighter rank
approximation of each front slice of the Fourier transformed
tensor. Although p < 1 makes the optimization non-smooth and
non-convex, with the help of Theorem 1, we can still solve the
optimization problem efficiently and exactly. For triple-fraction
p = [2, 2, 2], we found that it has a slower convergence rate
than the double-fraction case (p = [1, 1], [1, 2]). Although its

5Obtained from http://www.cs.nyu.edu/∼roweis/data.html

Fig. 2. The convergence of the competing methods on the TRPCA problem.

Fig. 3. RSEs of the competing methods vs. CPU time.

subproblem is smooth and convex, the triple-factor reformula-
tion makes the objective surface more complex, which brings
more difficulties to optimization.

Fig. 3 shows the RSEs of the competing methods with respect
to CPU times. We generate a tensor X ∈ Rn1×n2×n3 (n1 =
n2 = 800, n3 = 10) with rankt(X ) = 20 and noise fraction set-
ting to 10%. The results show that when the tubal-rank is much
lower than min{n1 , n2}, due to the smaller computational com-
plexities, our methods are more efficient than TNN.

Combining the results of Fig. 2 and Fig. 3, in order to obtain a
faster convergence rate, we choose p = [1, 2] for the following
experiments.

For further comparison, we firstly generate a tensor X ∈
Rn1×n2×n3 (n1 = n2 = n3 = 100) and then change the tubal-
rank from 5 to 43 and vary the noise/outliers fraction
|Ω|/(n1n2n3) from 0.05 to 0.45 with a step size equaling 0.02.
Fig. 4 compares the proposed method with the convex TNN
method. Not surprisingly, in terms of the number of success-
fully restored matrices, our methods outperforms TNN by 40%
around. And from the results in Fig. 4, our method is much
more robust to the noise/outliers in the relatively high rank case
and also performs well when the noise rate is also high, which
coincides with the similar phenomenon in the matrix case [25].
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Fig. 4. Comparing our method with convex optimization with TNN. The
numbers plotted on the above figures are the success rates within 30 random
trials. The white and black areas mean succeed and fail, respectively. Here, the
success is in a sense that PSNR ≥ 40 dB.

Fig. 5. Examples of face image denoising. (a) the original image. (b) the
observed image. (c)–(f) the denoising results of SNN, TNN, Ours1 (p = [1, 2]),
and Ours2 (p = [2, 2, 2]), respectively.

Actually, the conditions of the performance guarantee for the
non-convex model are weaker than the convex one, which bring
the benefits to the t-Schatten-p norm for the TRPCA problem.

3) Image Denoising: We compare the methods on the face
image denoising problem. This face dataset consist of 575
grayscale face images with a size of 112× 92. All the entries
of the tensor are scaled to [0, 1] and the noise tensor is gener-
ated the same as that in the synthetic case with entry from the
distribution N (0, 3). Since the images for one individual are
cropped from different views, it is actually a high rank matrix
if we vectorize the images and concatenate them as a matrix.
Fortunately, as shown in [23], the frontal slice of the Fourier
transformed face tensor is low-rank, namely, we can denoise the
face images by pursing the low tubal-rank structure.

Fig. 5 gives some denoising results of the competing methods
with the noise rate equaling 0.1. Our methods can deal with the
details (areas near the nose and hair) better than TNN and SNN.
For our models and TNN, we all set one penalty coefficient for

TABLE I
COMPARISON OF PSNR RESULTS ON FACE IMAGES WITH DIFFERENT

NOISE RATES

Fig. 6. The RSEs of the competing methods with different noise ratios.

the whole multi-rank vectors. Our t-Schatten-p norm is much
tighter than the tensor nuclear norm, therefore our proposed
models have lower probability of over penalizing the tensor rank,
which can preserve the details of the images. Some numerical
results are reported in Table I and Fig. 6.

Table I is the collection of the competing methods’ PSNRs.
The noise scale is set to 3, i.e., the non-zero entry of the noise
tensor is generated from the distribution N (0, 3). The results
show that with the increase of noise rate, the advantages of our
methods are more and more obvious. Fig. 6 shows the RSE
between the original images and the recovered images, some of
which corresponding to the various cases in Table I. Comparing
with TNN and SNN, the recovered tensors obtained by our
methods are closer to the original data. These results show that
our method has a stronger ability to identify the outliers than
other two methods, which is very important for some scenarios,
such as medical image processing and outlier detection.

B. Tensor Completion

1) Model and Experimental Settings: For the TC problem,
Ψ in Eqs. (19) or (20) is an orthogonal projection operator PΩ .
Then the TC model based on our tSp is given by:

min
{Xi },E

I∑
i=1

1
pi
‖Xi‖pi

Sp i
+ λ‖E‖2F ,

s.t. PΩ(X1 ∗ X2 ∗ · · · ∗ XI + E) = PΩ(T ). (42)

Data: We evaluate our method and other state-of-the-art
methods on two inpainting tasks: 1) color image inpainting [37]
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Fig. 7. The convergence of the competing methods on the TC problem.

(Berkeley Segmentation database); 2) grayscale video inpaint-
ing (YUV Video Sequences).

Baseline: In this part we compare our proposed method with
other state-of-the-arts, including TMac-inc [38], SiLRTC [13],
TCTF [23], and TNN [4] on inpainting applications. The codes
are provided by their corresponding authors. Note that our pro-
posed tSp together with TNN and TCTF are all based on t-
product, while TMac-inc and SiLRTC are based on Tucker
product. They all have their own theoretical guarantees, thus
we compare these methods together, but the first three are com-
pared emphatically.

Evaluation metrics: We use the same metrics as the TRPCA
case, i.e., PSNR and RSE.

2) Synthetic Experiments: We generate a low-rank tensor
X ∈ Rn1×n2×n3 (n1 = n2 = n3 = 100) and an index set Ω
by the following steps. First, we produce two tensors A ∈
Rn1×r×n3 and B ∈ Rr×n2×n3 . Then let X = A ∗ B to get a
tensor with rankt(X ) = r. After that, we create the index set Ω
by using a Bernoulli model to randomly sample a subset from
{1, . . . , n1} × {1, . . . , n2} × {1, . . . , n3}. The sampling rate is
|Ω|/(n1n2n3).

Fig. 7 presents the RSE of TNN and the proposed methods
with respect to the iteration steps. Here rankt(X ) equals to 40
and the sampling rate equals to 0.4. TNN converges much faster
than our methods due to its convexity. Another reason is that
we adopt the proximal gradient to update the variables while
TNN can achieve closed-form solutions for its subproblems.
Nevertheless, all our methods with various selections of p can
exactly recover the ground-truth low tubal-rank tensor. Same as
TRPCA, this is because the condition of the sampling rate for
exact recovery is weaker than that of the convex nuclear norm,
namely, the proposed t-Schatten-p norm still works well when
the sample size is low.

The exhaustive comparison between TNN and our methods
is shown in the Fig. 8. Our method outperforms TNN by 20%
around when p = [2, 2, 2]. These results verify the effectiveness
of our t-Schatten-p norm. We can see that the performance
for p = [1, 2] and p = [2, 2, 2] are similar. This is not strange
because they both correspond to the t-Schatten-2/3 norm.

Fig. 8. Comparing our method with convex optimization TNN. The numbers
plotted on the above figures are the success rates within 30 random trials. The
white and black areas mean succeed and fail, respectively. Here, the success is
in a sense that PSNR ≥ 40 dB.

3) Image Inpainting: We use the Berkeley Segmentation
dataset6 [37] to evaluate our method for the image inpaint-
ing task. This dataset has totally 200 RGB images, each with
size 321× 481× 3. As pointed out by [23], most natural images
have the low tubal-rank structure, therefore we can inpaint these
natural images by the low-rank tensor completion method.

Fig. 9 gives the visualizations of the image inpainting on some
images with 0.4 sampling rate. Our methods have the highest
PSNR among all the competing completion methods. We choose
p = [1, 2] for Ours1 and p = [2, 2, 2] for Ours2. According to
the results, our methods can deal with the details of images
better than TNN. The reason is that our t-Schatten-p norm is
much tighter than the tensor nuclear norm in approximating the
tensor tubal-rank. Thus the t-Schatten-p norm has a smaller pos-
sibility of over penalizing the singular values of each frontal slice
of the Fourier transformed tensor. Therefore, the t-Schatten-p
norm based method is more suitable for inpainting images with
complex details.

Table II shows the average PSNR results on 40 natural images,
randomly chosen from the dataset, with different sampling rates.
It is obvious that our methods still work well when the sampling
rate is very low (rate = 0.2). Our methods outperform the others
much more when rates are less than 0.6. Note that although all
the competing methods have similar results when the sampling
rate is high, our methods are more memory saving than the
others due to the factorization strategy.

4) Video Inpainting: We evaluate our methods on the widely
used YUV Video Sequences.7 Each sequence contains at least
150 frames. In the experiments, we test our methods and other

6Obtained from https://www.eecs.berkeley.edu/Research/Projects/CS/vision/
bsds/

7Obtained from http://trace.eas.asu.edu/yuv/
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Fig. 9. Examples of image inpainting. (a) the original image. (b) the observed image. (c)–(h) the inpainting results of SiLRTC, TCTF, TMac-inc, TNN,
Ours1 (p = [1, 1]), and Ours2 (p = [2, 2, 2]), respectively.

TABLE II
COMPARISON OF PSNR RESULTS ON NATURAL IMAGES WITH DIFFERENT

SAMPLING RATES

methods on two videos. The frame sizes of the two videos are
both 144× 176 pixels. The work in [23] reveals that the tensor
of grayscale video has much redundant information because of
its similar contents within and between frames, and thus its low
tubal-rank structure is notable. We can complete the missing
entries of the tensor by tensor low-rank minimization.

Due to the computational limitation, we only use the first 30
frames of the two sequences. As shown in Fig. 11, we display
the 10-th frame of the two testing videos, respectively. From
the recovery results, our methods perform better in filling the
missing values of the two video sequences. It can deal with the
details better.

Table III shows the PSNR metric of the competing methods.
Our methods achieve the best inpainting recovery, consistent
with the observations in Fig. 11. Low tubal-rank methods (TNN
and Ours) are also better than the others, which demonstrate that
the low tubal-rank structure does benefit the tensor completion
task on video sequence. Comparing to TNN, our methods can
maintain the details of the video sequence better. This is be-
cause, one hand, the t-Schatten-p norm is much tighter than the
nuclear norm for approximating the tensor multi-rank. On the
other hand, the surrogate of the t-Schatten-p norm introduces
the convexity and smoothness to the subproblems of the opti-
mization, which will reduce the disadvantages of setting p < 1
for our norm. Hence, by Theorem 5 we can still achieve a good
stationary point.

TABLE III
COMPARISON OF PSNR RESULTS ON VIDEO INPAINTINGS WITH DIFFERENT

SAMPLING RATES

Fig. 10. RSEs of the TC and the TRPCA problems with respect to various
selections of p for the t-Schatten-p norm.

C. Discussion on the Choice of p

In this section, we study the relation between the performance
and the value of p for our t-Schatten-p norm. We generate a low
tubal-rank tensor X ∈ Rn1×n2×n3 (n1 = n2 = n3 = 50) with

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:37:22 UTC from IEEE Xplore.  Restrictions apply. 



KONG et al.: T-SCHATTEN-p NORM FOR LOW-RANK TENSOR RECOVERY 1417

Fig. 11. Examples of video inpainting. (a) the original image. (b) the observed image. (c)–(h) the inpainting results of SiLRTC, TCTF, TMac-inc, TNN,
Ours1 (p = [1, 1]), and Ours2 (p = [2, 2, 2]), respectively.

rankt(X ) = 20 and the noise rate and sampling rate equaling
0.4. For each value of p ∈ {1/4, 1/3, 2/5, 1/2, 2/3, 1}, each ex-
periment is repeated 20 times and the average RSEs are reported
in Fig. 10, from which we can see that the RSEs increase when
the value of p rises in the range [2/5, 1]. This result clearly jus-
tifies the validity of our proposed t-Schatten-p norm for solving
the LRTR problems when p < 1. Actually, a smaller p repre-
sents a tighter approximation to the tensor tubal-rank. Note that
when p = 0, the t-Schatten-p norm reduces to the tensor rank
function. However, a smaller p makes the objective function
more non-convex and non-smooth and thus more difficult to
optimize. And accoarding to Theorem 1, a smaller p (in the
range (0, 2/5)) may require more tensor factors, and tensor
multiplication makes the problem (20) non-convex, which may
lead to a bad solution. Besides, the equivalence condition of
Theorem 1 for each factor Xi is not a single point. Instead, each
Xi belongs to a large subset by multiplying unitary tensors,
which also increases the difficulty of optimization.

VII. CONCLUSIONS

We propose a new definition of tensor Schatten-p norm named
as the t-Schatten-p norm. When p < 1, our t-Schatten-p norm
can better approximate the �1 norm of tensor multi-rank than
TNN. Therefore, we use this norm to solve the LRTR problem
as a tighter regularizer. We further provide the surrogate theo-
rem for our proposed t-Schatten-p norm and give an efficient
algorithm to solve the LRTR problem. We also provide some
theoretical analysis on exact recovery and the corresponding
error bound for the noise case. The experimental results on TR-
PCA and TC show that our methods perform better than the
mainstream methods when the clean data have a large tubal-
rank or a high noise/corruption ratio. Finally, We also discuss
the choice of p, and recommend a range for selecting p for the
LRTR problem.

APPENDIX

A. Supplementary Definition

The followings are the definitions of tensor transpose, identity
tensor, and orthogonal tensor, respectively.

Definition 8: (Tensor transpose) [1] The conjugate transpose
of a tensor T ∈ Rn1×n2×n3 is the T ∗ ∈ Rn2×n1×n3 obtained by

conjugate transposing each frontal slice of T , i.e.,

T ∗is the transpose of T ⇐⇒ T∗
(k)

=
(
T

(k)
)H

. (43)

T ∗ can also be obtained by conjugate transposing each of T ’s
frontal slice and then reversing the order of transposed frontal
slices 2 through n3 .

Definition 9: (Identity tensor) [1] Let I ∈ Rn×n×n3 , then I
is an identity tensor if its first frontal slice I(1) is the n× n
identity matrix and all other frontal slices I(i) , i = 2 . . . , n3 , are
zero matrices.

Definition 10: (Orthogonal tensor) [1] Let Q ∈ Rn×n×n3 ,
then Q is orthogonal if it satisfies

Q∗ ∗ Q = Q ∗ Q∗ = I. (44)

B. Proof of Theorem 2

Proof: For convenience, we let the variables without and
with superscript + represent the variable in the k and k + 1
iteration variable and ‖ · ‖ denote any well-defined ma-
trix/tensor norm. Assume we already have ‖Y+ − Y‖ → 0 and
‖Z+ −Z‖ → 0, then ‖∇ZL‖ = 1

ρ2
‖Z+ −Z‖ = ‖X1 ∗ X2 ∗

· · · ∗ XI − G‖ → 0 and ‖∇YL‖ = 1
ρ1
‖Y+ − Y‖ = ‖Ψ(G) +

E − T ‖ → 0, hence the equality constraint is satisfied at the
limit points. Since our optimization problem is a multi-linear
optimization, by Corollary 6.21 in [39], if we have ‖X+

i −
Xi‖, ‖G+ − G‖, and ‖E+ − E‖ all approaching 0, then there
exists υ ∈ ∂L with υ → 0. Hence, any limit point produced by
our algorithm is a constrained stationary point. We now prove
the convergence of the differences to 0.

Lemma 2: The change in the augmented Lagrangian when
the primal variable Xi is updated to X+

i is given by

L(Xi ,G, E ,Y,Z)− L(X+
i ,G, E ,Y,Z)

=
1
pi
‖Xi‖pi

Sp i
− 1

pi
‖X+

i ‖
pi

Sp i
− 〈υ,Xi −X+

i 〉

+ ρ2Li‖Xi −X+
i ‖2F +

ρ2

2
‖C(Xi)− C(X+

i )‖2F , (45)

where C(Xi) = Q1:(i−1) ∗ Xi ∗ Q(i+1):I − G is a linear trans-
formation and υ ∈ ∂( 1

pi
‖X+

i ‖
pi

Sp i
).

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:37:22 UTC from IEEE Xplore.  Restrictions apply. 



1418 IEEE JOURNAL OF SELECTED TOPICS IN SIGNAL PROCESSING, VOL. 12, NO. 6, DECEMBER 2018

Proof: Expanding L(Xi ,G, E ,Y,Z)− L(X+
i ,G, E ,Y,Z),

the change is

1
pi
‖Xi‖pi

Sp i
− 1

pi
‖X+

i ‖
pi

Sp i
+ 〈Z, C(Xi)− C(X+

i )〉

+
ρ2

2
(‖C(Xi)− G‖2F − ‖C(X+

i )− G‖2F )

=
1
pi
‖Xi‖pi

Sp i
− 1

pi
‖X+

i ‖
pi

Sp i
+

ρ2

2
‖C(Xi)− C(X+

i )‖2F

+ 〈Z, C(Xi)− C(X+
i )〉+ ρ2〈C(Xi)− C(X+

i ), C(X+
i )− G〉.

We observe that

〈Z, C(Xi)− C(X+
i )〉+ ρ2〈C(Xi)− C(X+

i ), C(X+
i )− G〉

= 〈Z + ρ2(C(X+
i )− G), C(Xi)− C(X+

i )〉

= 〈CT (Z + ρ2(C(X+
i )− G)),Xi −X+

i 〉.

Note that CT (Z + ρ2(C(X+
i )− G)) = ρ2∇f+

i (X+
i ). On the

other hand, by the optimality of Eq. (23), we have ρ2∇f+
i

(X+
i ) + ρ2Li(X+

i −Xi) ∈ −∂( 1
pi
‖X+

i ‖
pi

Sp i
). Hence, we can

obtain Eq. (45) directly.
Due to Lemma 2 and the convexity of the function ‖ · ‖pi

Sp i

when pi ≥ 1, we have

L(X+
i ,G, E ,Y,Z) + c1‖(X+

i −Xi)‖2F ≤ L(Xi ,G, E ,Y,Z),
(46)

where c1 = ρ2Li > 0. Since we update G by the closed-form
solution of Eq. (27), together with the strong convexity of the
objective, we have

L(X+
i ,G+ , E ,Y,Z) +

μ1

2
‖G − G+‖2F ≤ L(X+

i ,G, E ,Y,Z),
(47)

where μ1 > 0. By the same derivation of Lemma 2,

L(X+
i ,G+ , E ,Y,Z)− L(X+

i ,G+ , E+ ,Y,Z)

= g (E)− g
(
E+)− 〈υ, Ei − E+

i 〉+
ρ1

2
‖C(Ei)− C(E+

i )‖2F ,

where υ = ∇(g (E+)) and C(E) = Ψ(G) + E − T . Note that
g (·) in Theorem 2 is convex in our case, hence we get

L(X+
i ,G+ , E+ ,Y,Z) +

ρ1

2
‖E − E+‖2F

≤ L(X+
i ,G+ , E ,Y,Z). (48)

According to the Eq. (33), it is easy to verify that

L(X+
i ,G+ , E+ ,Y+ ,Z+)− L(X+

i ,G+ , E+ ,Y,Z)

=
1
ρ1
‖Y+ − Y‖2F +

1
ρ2
‖Z+ −Z‖2F . (49)

By the optimality of E+ , we have

Y+ = ρ1(Ψ(G+) + E+ − T ) + Y = −λ∇(g
(
E+)). (50)

The objective of (27) is differentiable and by the optimality of
G+ , we similarly have

Ψ(Y+) = Z+ . (51)

Therefore, we conclude

L(X+
i ,G+ , E+ ,Y+ ,Z+)− L(X+

i ,G+ , E+ ,Y,Z)

(a)
≤ 2

ρ1
‖Y+ − Y‖2F

(b)
≤ 2λ2c2

ρ1
‖E+ − E‖2F , (52)

where c2 is some constant, we assume ρ2 ≥ ρ1 in (a) and use the
gradient Lipschitz property of g (·) for (b). Combing the Eq. (46)
and (52), we find that the augmented Lagrangian function is
monotonically decreasing. The function L is upper bounded. It
is easy to verify the Lagrangian functionL is also lower bounded
and coercive. Thus, all the variables produced by our algorithm
are bounded. We also obtain

L(Xi ,G, E ,Y,Z)− L(X+
i ,G+ , E+ ,Y+ ,Z+)

≥ c1‖(X+
i −Xi)‖2F +

μ1

2
‖G − G+‖2F

+
(

ρ1

2
− 2λc2

ρ1

)
‖E − E+‖2F . (53)

With the proper choice of ρ1 and ρ2 such that ( ρ1
2 −

2λc2
ρ1

) > 0,
we can derive
∞∑

k=1

(c1‖(X+
i −Xi)‖2F + c3‖G − G+‖2F + c4‖E − E+‖2F

≤
∞∑

k=1

(L(Xi ,G, E ,Y,Z)− L(X+
i ,G+ , E+ ,Y+ ,Z+)) <∞,

(54)

where c3 = μ1
2 > 0 and c4 = ρ1

2 −
2λc2
ρ1

> 0. We conclude that

‖X+
i −Xi‖ → 0, ‖G+ − G‖ → 0, and ‖E+ − E‖ → 0. Based

on Eqs. (50) and (51) and ‖E+ − E‖ → 0, we can have ‖Y+ −
Y‖ → 0 and ‖Z+ −Z‖ → 0. The proof is finished. �
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