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a b s t r a c t 

Compressed Sensing (CS) is a new data acquisition theory based on the existence of a sparse representa- 

tion of a signal and a projected dictionary PD , where P ∈ R 

m ×d is the projection matrix and D ∈ R 

d×n is 

the dictionary. To recover the signal from a small number m of measurements, it is expected that the pro- 

jected dictionary PD is of low mutual coherence. Several previous methods attempt to find the projection 

P such that the mutual coherence of PD is low. However, they do not minimize the mutual coherence 

directly and thus they may be far from optimal. Their used solvers lack convergence guarantee and thus 

the quality of their solutions is not guaranteed. This work aims to address these issues. We propose to 

find an optimal projection matrix by minimizing the mutual coherence of PD directly. This leads to a 

nonconvex nonsmooth minimization problem. We approximate it by smoothing, solve it by alternating 

minimization and prove the convergence of our algorithm. To the best of our knowledge, this is the first 

work which directly minimizes the mutual coherence of the projected dictionary and has convergence 

guarantee. Numerical experiments demonstrate that our method can recover sparse signals better than 

existing ones. 

© 2018 Elsevier B.V. All rights reserved. 
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. Introduction 

Compressed Sensing (CS) [1,2] is a new sampling/data acquisi-

ion theory asserting that one can exploit sparsity or compressibil-

ty when acquiring signals of interest. It shows that signals which

ave a sparse representation with respect to appropriate bases can

e recovered from a small number of measurements. A fundamen-

al problem in CS is how to construct a measurement matrix such

hat the number of measurements is near minimal. 

Consider a signal x ∈ R 

d which is assumed to have a sparse

epresentation with respect to a fixed overcomplete dictionary D ∈
 

d×n ( d < n ). This can be described as 

 = D α, (1) 

here α ∈ R 

n is a sparse representation coefficient, i.e., ‖ α‖ 0 � n .

ere ‖ α‖ 0 denotes the � 0 -norm which counts the number of

onzero elements in α. The solution to problem (1) is not unique

ince d < n . To find an appropriate solution in the solution set of

1) , we need to use some additional structures of D and α. Con-
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idering that α is sparse, we are interested in finding the sparsest

epresentation coefficient α. This leads to the following sparse rep-

esentation problem 

in 

α
‖ 

α‖ 0 , s . t . x = D α. (2) 

owever, the above problem is NP-hard [3] and thus is challeng-

ng to solve. Some algorithms, such as Basis Pursuit (BP) [4] and

rthogonal Matching Pursuit (OMP) [5] , can be used to find sub-

ptimal solutions. 

An interesting theoretical problem is that under what condi-

ions the optimal solution to (2) can be computed. If the solution

s computable, can it be exactly or approximately computed by BP

r OMP? Some previous works answer the above questions based

n the mutual coherence of the dictionary D [6] . 

efinition 1. Given D = [ d 1 , . . . , d n ] ∈ R 

d×n , its mutual coherence

s defined as the largest absolute and normalized inner product be-

ween different columns of D , i.e., 

(D ) = max 
1 ≤i, j≤n 

i � = j 

| d 

T 
i 

d j | 
‖ 

d i ‖ 

∥∥d j 

∥∥ . 
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The mutual coherence measures the highest correlation be-

tween any two columns of D . It is expected to be as low as possi-

ble in order to find the sparest solution to (2) . 

Theorem 1. [6 , 7 , 8] For problem (2) , if α satisfies 

‖ 

α‖ 0 < 

1 

2 

(
1 + 

1 

μ(D ) 

)
, (3)

then the following results hold: 

• α is the solution to (2) . 
• α is also the solution to the following convex � 1 -minimization

problem 

min 

α
‖ 

α‖ 1 , s . t . x = D α, 

where ‖ α‖ 1 = 

∑ 

i | αi | is the � 1 -norm of α. 
• α can be obtained by OMP. 

The above theorem shows that if the mutual coherence of D is

low enough, then the sparest solution to (2) is computable. Thus,

how to construct a dictionary D with low mutual coherence is cru-

cial in sparse coding. In CS, to reduce the number of measure-

ments, we face a similar problem on the sensing matrix construc-

tion. 

The theory of CS guarantees that a signal having a sparse rep-

resentation can be recovered exactly from a small set of linear

and nonadaptive measurements. This result suggests that it may be

possible to sense sparse signals by taking far fewer measurements

than what the conventional Nyquist–Shannon sampling theorem

requires. But note that CS differs from classical sampling in sev-

eral aspects. First, the sampling theory typically considers infinite-

length and continuous-time signals. In contrast, CS is a mathemat-

ical theory that focuses on measuring finite-dimensional vectors in

R 

n . Second, rather than sampling the signal at specific points in

time, CS systems typically acquire measurements in the form of in-

ner products between the signal and general test functions. At last,

the ways to dealing with the signal recovery are different. Given

the signal x ∈ R 

d in (1) , CS suggests replacing these n direct sam-

ples with m indirect ones by measuring linear projections of x de-

fined by a proper projection or sensing matrix P ∈ R 

m ×d , i.e., 

y = Px , (4)

such that m � d . It means that instead of sensing all n elements of

the original signal x , we can sense x indirectly by its compressed

form y in a much smaller size m . Surprisingly, the original signal

x can be recovered from the observed y by using the sparse rep-

resentation in (1) , i.e, y = PD α with the sparest α. Thus the recon-

struction requires solving the following problem 

min 

α
‖ 

α‖ 0 , s . t . y = M α, (5)

where M = PD ∈ R 

m ×n is called the effective dictionary. Problem

(5) is also NP-hard. As suggested by Theorem 1 , if the mutual co-

herence of PD is low enough, then the solution α to (5) is com-

putable by OMP or by solving the following convex problem 

min 

α
‖ 

α‖ 1 , s . t . y = M α. (6)

Finally, the original signal x can be reconstructed by x = D α. So it

is expected to find a proper projection matrix P such that μ( PD )

is low. Furthermore, many previous works [9,10] show that the re-

quired number of measurements for recovering the signal x by CS

can be reduced if μ( PD ) is low. 

In summary, the above discussions imply that by choosing an

appropriate projection matrix P such that μ( PD ) is low enough,

the true signal x can be recovered with high probability by ef-

ficient algorithms. At the beginning, random projection matrices

were shown to be good choices since their columns are incoher-

ent with any fixed basis D with high probability [11] . However,
any previous works [9,10,12] show that well designed determin-

stic projection matrices can often lead to better performance of

ignal reconstruction than random projections do. In this work, we

ocus on the construction of deterministic projection matrices. We

rst give a brief review on some previous deterministic methods. 

.1. Related work 

In this work, we only consider the case that D is fixed while P

an be changed. Our target is to find P by minimizing μ( M ), where

 = PD . If each column of M is normalized to have unit Euclidean

ength, then μ(M ) = ‖ G ‖ ∞ , off, where G = (g i j ) = M 

T M is named

s the Gram matrix and ‖ G ‖ ∞ , off = max i � = j | g i j | is the largest off-

iagonal element of | G |. Several previous works used the Gram ma-

rix to find the projection matrix P [9,10,12] . We give a review on

hese methods in the following. 

.1.1. The algorithm of Elad 

The algorithm of Elad [9] considers minimizing the t -averaged

utual coherence defined as the average of the absolute and nor-

alized inner products between different columns of M which are

bove t , i.e., 

t (M ) = 

∑ 

1 ≤i, j≤k, i � = j χt (| g i j | ) | g i j | ∑ 

1 ≤i, j≤k, i � = j χt (| g i j | ) , 

here χ t ( x ) is the characteristic function defined as 

t (x ) = 

{
1 , if x ≥ t, 
0 , otherwise , 

nd t is a fixed threshold which controls the top fraction of the

atrix elements of | G | that are to be considered. 

To find P by minimizing μt ( M ), some properties of the Gram

atrix G = M 

T M are used. Assume that each column of M is nor-

alized to have unit Euclidean length. Then 

iag ( G ) = 1 , (7)

ank ( G ) = m. (8)

he work [9] proposed to minimize μt ( M ) by iteratively updating

 as follows. First, initialize P as a random matrix and normalize

ach column of PD to have unit Euclidean length. Second, shrink

he elements of G = M 

T M (where M = PD ) by 

 i j = 

{ 

γ g i j , if | g i j | ≥ t, 
γ t sign (g i j ) , if t > | g i j | ≥ γ t, 
g i j , if γ t > | g i j | , 

here 0 < γ < 1 is a down-scaling factor. Third, apply SVD and re-

uce the rank of G to be equal to m . At last, build the square root S

f G : S T S = G , where S ∈ R 

m ×n , and find P = SD 

† , where † denotes

he Moore–Penrose pseudoinverse. 

There are several limitations of the algorithm of Elad. First, it

s suboptimal since the t -averaged mutual coherence μt ( M ) is dif-

erent from the mutual coherence μ( M ) which is our real target.

econd, the proposed algorithm to minimize μt ( M ) has no con-

ergence guarantee. So the quality of the obtained solution is not

uaranteed. Third, the choices of two parameters, t and γ , are cru-

ial for the signal recovery performance in CS. However, there is

o guideline for their settings and thus in practice it is usually dif-

cult to find their best choices. 

.1.2. The algorithm of Duarte-Carajalino and Sapiro 

The algorithm of Duarte-Carajalino and Sapiro [12] is not a

ethod that is based on mutual coherence. It instead aims to find

he sensing matrix P such that the corresponding Gram matrix is

s close to the identity matrix as possible, i.e., 

 = M 

T M = D 

T P 

T PD ≈ I , (9)
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here I denotes the identity matrix. Multiplying both sides of the

revious expression by D on the left and D 

T on the right, it be-

omes 

D 

T P 

T PDD 

T ≈ DD 

T . (10)

et DD 

T = V�V 

T be the eigen-decomposition of DD 

T . Then (10) is

quivalent to 

V 

T P 

T PV � = �. (11)

efine � = PV . Then they finally formulate the following model

.r.t. �

in 

�

∥∥� − ��T ��
∥∥

F 
. (12) 

fter solving the above problem, the projection matrix can be ob-

ained as P = �V 

T . 

However, usually the signal recovery performance of the algo-

ithm of Duarte-Carajalino and Sapiro is not very good. The reason

s that M is overcomplete and the Gram matrix G cannot be an

dentity matrix. In this case, simply minimizing the difference be-

ween the Gram matrix G and the identity matrix does not imply

 solution M with low mutual coherence. 

.1.3. The algorithm of Xu et al. 

The algorithm of Xu et al. [10] is motivated by the well-known

elch bound [13] . For any M ∈ R 

m ×n , the mutual coherence μ( M )

s lower bounded, e.g., 

(M ) ≥
√ 

n − m 

m (n − 1) 
. (13) 

he algorithm of Xu et al. aims to find M such that the off-diagonal

lements of G = M 

T M approximate the Welch bound well. They

roposed to solve the following problem 

min 

G 
‖ 

G − G �‖ F 

.t. G � = G 

T 
�, diag (G �) = 1 , ‖ 

G �‖ ∞ , off ≤ μW 

, 
(14) 

here μW 

= 

√ 

n −m 

m (n −1) 
. The proposed iterative solver for the above

roblem is similar to the algorithm of Elad. The main difference

s the shrinkage function used to control the elements of G . See

10] for more details. 

However, their proposed solver in [10] for (14) also lacks con-

ergence guarantee. Another issue is that, for M ∈ R 

m ×n , the Welch

ound (13) is not tight when n is large. Actually, the equality of

13) can hold only when n ≤ m (m +1) 
2 . This implies that the algo-

ithm of Xu et al. is not optimal when n > 

m (m +1) 
2 . 

Beyond the above three methods, there are also some other

utual coherence optimization based methods for the dictionary

earning. For example, the work [14] proposes a joint sparse cod-

ng and incoherent dictionary learning model which shares a simi-

ar idea as the algorithm of Duarte-Carajalino and Sapiro [12] . The

ork [15] considers a model with hard constraint on the mutual

oherence and sparsity and proposes a heuristic iterative projec-

ion solver. Greedy algorithms are proposed in [16,17] to find a

ensing matrix for a dictionary that gives low cumulative coher-

nce. 

.2. Contributions 

There are at least two main issues in the previous methods re-

iewed above. First, none of them aims to find P by directly mini-

izing μ( PD ) which is our real target. Thus the objectives of these

ethods are not optimal. For their obtained solutions P , μ( PD ) is

sually much larger than the Welch bound in (13) . Second, the al-

orithms of Elad and Xu et al. have no convergence guarantee and
hus they may produce very different solutions given slightly dif-

erent initializations. The convergence issue may limit their appli-

ations in CS. 

To address the above issues, we develop Direct Mutual Coher-

nce Minimization (DMCM) models. First, we show how to con-

truct a low mutual coherence matrix M by minimizing μ( M ) di-

ectly. This leads to a nonconvex and nonsmooth problem. To solve

ur new problem efficiently, we first smooth the objective function

uch that its gradient is Lipschitz continuous. Then we solve the

pproximate problem by proximal gradient which has convergence

uarantee. Second, inspired by DMCM, we propose a DMCM based

rojection (DMCM-P) model which aims to find a projection P by

inimizing μ( PD ) directly. To solve the nonconvex DMCM-P prob-

em, we then propose an alternating minimization method and

rove its convergence. Experimental results show that our DMCM-

 achieves the lowest mutual coherence of PD and also leads to

he best signal recovery performance. 

. Low mutual coherence matrix construction 

In this section, we show how to construct a matrix M ∈ R 

m ×n 

ith low mutual coherence μ( M ) by DMCM. Assume that each col-

mn of M is normalized to unit Euclidean length. Then we aim to

nd M by the following DMCM model 

min 

M ∈ R m ×n 
μ(M ) = 

∥∥M 

T M 

∥∥
∞ , off

s . t . ‖ 

M i ‖ 2 = 1 , i = 1 , . . . , n, 

(15) 

here M i (or ( M ) i ) denotes the i th column of M . The above prob-

em is equivalent to 

min 

M ∈ R m ×n 
f (M ) = 

∥∥M 

T M − I 
∥∥

∞ 

s . t . ‖ 

M i ‖ 2 = 1 , i = 1 , . . . , n, 

(16) 

here ‖ A ‖ ∞ 

= max i, j | a i j | denotes the � ∞ 

-norm of A . Solving the

bove problem is not easy since it is nonconvex and its objective is

onsmooth. In general, due to the nonconvexity, the globally opti-

al solution to (16) is not computable. We instead consider finding

 locally optimal solution with convergence guarantee. 

First, to ease the problem, we adopt the smoothing technique

n [18] to smooth the nonsmooth � ∞ 

-norm in the objective of (16) .

y the fact that the � 1 -norm is the dual norm of the � ∞ 

-norm, the

bjective function in (16) can be rewritten as 

f (M ) = 

∥∥M 

T M − I 
∥∥

∞ 

= max 
‖ V ‖ 1 ≤1 

〈 M 

T M − I , V 〉 , 

here ‖ V ‖ 1 = 

∑ 

i j | v i j | denotes the � 1 -norm of V . Since

 V | ‖ V ‖ 1 ≤ 1} is a bounded convex set, we can define a proximal

unction d ( V ) for this set, where d ( V ) is continuous and strongly

onvex on this set. A natural choice of d ( V ) is d(V ) = 

1 
2 ‖ V ‖ 2 

F 
,

here ‖ · ‖ F denotes the Frobenius norm of a matrix. Hence, we

ave the following smooth approximation of f defined in (16) : 

f ρ (M ) = max 
‖ V ‖ 1 ≤1 

〈 M 

T M − I , V 〉 − ρ

2 

‖ 

V ‖ 

2 
F , (17)

here ρ > 0 is a smoothing parameter. Note that the smooth func-

ion f ρ can approximate the nonsmooth f with an arbitrary preci-

ion and it is easier to be minimized. Indeed, f and f ρ have the

ollowing relationship 

f ρ (M ) ≤ f (M ) ≤ f ρ (M ) + ργ , 

here γ = max V { 1 2 ‖ V ‖ 2 F | ‖ V ‖ ∞ 

≤ 1 } . For any ε > 0, if we choose

= 

ε
γ , then | f (M ) − f ρ (M ) | ≤ ε. This implies that if ρ is suffi-

iently small, then the difference between f and f ρ can be very

mall. This motives us to use f ρ to replace f in (16) and thus we
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have the following relaxed problem 

min 

M ∈ R m ×n 
f ρ (M ) 

s . t . ‖ 

M i ‖ 2 = 1 , i = 1 , . . . , n. 
(18)

As f ρ can approximate f at an arbitrary precision, solving (18) can

still be regarded as directly minimizing the mutual coherence.

Problem (18) is easier to solve since ∇ f ρ (M ) = M (V 

∗ + V 

∗T ) ,

where V 

∗ is the optimal solution to (17) , is Lipschitz continuous.

That is, for any M 1 , M 2 ∈ R 

m ×n , there exists a constant L = 1 /ρ
such that 

‖∇ f ρ (M 1 ) − ∇ f ρ (M 2 ) ‖ F ≤ L ‖ 

M 1 − M 2 ‖ F . 

With the above property, problem (18) can be solved by the prox-

imal gradient method which updates M in the (k + 1) th iteration

by 

M k +1 = arg min 

M 

〈∇ f ρ (M k ) , M − M k 〉 + 

1 

2 α
‖ 

M − M k ‖ 

2 
F 

= arg min 

M 

1 

2 

∥∥M −
(
M k − α∇ f ρ (M k ) 

)∥∥2 

F 
(19)

s . t . ‖ 

M i ‖ 2 = 1 , i = 1 , . . . , n, 

where α > 0 is the step size. To guarantee convergence, it is re-

quired that α < ρ . In this work, we simply set α = 0 . 99 ρ . The

above problem has a closed form solution by normalizing each col-

umn of M k − α∇ f ρ (M k ) , i.e., 

(M k +1 ) i = 

(M k − α∇ f ρ (M k )) i 
‖ 

(M k − α∇ f ρ (M k )) i ‖ 2 

. (20)

To compute ∇ f ρ (M k ) = M k (V k + V k 
T ) , where V k is optimal to

(17) when M = M k , one has to solve (17) which is equivalent to

the following problem 

V k = arg min 

V 

1 

2 

∥∥V − (M 

T 
k M k − I ) /ρ

∥∥
F 
, 

s . t . ‖ 

V ‖ 1 ≤ 1 . 

(21)

Solving the above problem requires computing a proximal projec-

tion onto the � 1 ball. This can be done efficiently by the method in

[19] . 

Iteratively updating V by (21) and M by (19) leads to the Proxi-

mal Gradient (PG) algorithm for solving problem (18) . We summa-

rize the whole procedure of PG for (18) in Algorithm 1 . For the

Algorithm 1 Solve (18) by Proximal Gradient algorithm. 

Initialize: k = 0 , M k ∈ R 

m ×n , ρ > 0 , α = 0 . 99 ρ , K > 0 . 

Output: M 

∗ = PG (M k , ρ) . 

while k < K do 

1. Compute V k by solving (21); 

2. Compute M k +1 by solving (19); 

3. k = k + 1 . 

end while 

convergence guarantee, PG can be proved to be convergent. But

we omit its proof since we will introduce a more general solver

and provide the convergence guarantee in Section 3 . For the per-

iteration cost of Algorithm 1, there are two main parts. For the up-

date of M by (19) , we need to compute ∇ ρ f (M k ) = M k (V k + M 

T 
k 
)

which costs O ( mn 2 ). For the update of V by (21) , we need to com-

pute M 

T 
k 

M k which costs O ( mn 2 ). Thus, the per-iteration cost of Al-

gorithm 1 is O (m 

2 n + mn 2 ) . 

Though PG is guaranteed to converge, the obtained suboptimal

solution to (18) may be far from optimal to problem (16) which

is our original target. There are two important factors which may

affect the quality of the obtained solution by PG. First, due to the
onconvexity of (18) , the solution may be sensitive to the initial-

zation of M . Second, the smoothing parameter ρ > 0 should be

mall so that the objective f ρ in (18) can well approximate the

bjective f in (16) . However, if ρ is directly set to a very small

alue, PG may decrease the objective function value of (18) very

lowly. This can be easily seen from the updating of M in (19) ,

here α < ρ . To address the above two issues, we use a continua-

ion trick to find a better solution to (16) by solving (18) with dif-

erent initializations. Namely, we begin with a relatively large value

f ρ and reduce it gradually. For each fixed ρ , we solve (18) by

G in Algorithm 1 and use its solution as a new initialization of

 in PG. To achieve a better solution, we repeat the above pro-

edure T times or until ρ reaches a predefined small value ρmin .

e summarize the procedure of PG with the continuation trick in

lgorithm 2 . 

lgorithm 2 Solve (18) by PG with continuation trick. 

nitialize: ρ > 0 , α = 0 . 99 ρ , η > 1 , M , t = 0 , T > 0 . 

hile t < T do 

1. M = PG (M , ρ) by calling Algorithm 1; 

2. ρ = ρ/η, α = 0 . 99 ρ; 

3. t = t + 1 . 

nd while 

Finally, we would like to emphasize some advantages of our

MCM model (16) and the proposed solver. A main merit of our

odel (16) is that it minimizes the mutual coherence μ( M ) di-

ectly and thus the mutual coherence of its optimal solution can

e low. Though the optimal solution is in general not computable

ue to the nonconvexity of (16) , our proposed solver, which first

mooths the objective and then minimizes it by PG, has conver-

ence guarantee. To the best of our knowledge, this is the first

ork which directly minimizes the mutual coherence of a matrix

ith convergence guarantee. 

. Low mutual coherence based projection 

In this section, we show how to find a projection matrix P such

hat μ( PD ) can be as low as possible. This is crucial for signal

ecovery by CS associated to problem (5) . Similar to the DMCM

odel shown in (16) , an ideal way is to minimize μ( PD ) directly,

.e., 

min 

P ∈ R m ×d 

∥∥(PD ) T (PD ) − I 
∥∥

∞ 

s . t . ‖ 

PD i ‖ 2 = 1 , i = 1 , . . . , n. 

(22)

owever, the constraint of (22) is more complex than the one in

16) , and thus (22) is much more challenging to solve. We instead

onsider an approximate model of (22) based on the following ob-

ervation. 

heorem 2. For any M 1 , M 2 ∈ R 

m ×n , if M 1 → M 2 , then

( M 1 ) → μ( M 2 ) . 

It is easy to prove the above result by the definition of the mu-

ual coherence of a matrix. The above theorem indicates that the

ifference of the mutual coherences of two matrices is small when

he difference of two matrices is small. This motivates us to find

 such that μ( M ) is low and the difference between M and PD is

mall. So we have the following approximate model of (22) : 

min 

 ∈ R m ×d , M ∈ R m ×n 
‖ M 

T M − I ‖ ∞ 

+ 

1 

2 β
‖ M − PD ‖ 

2 
F 

s . t . ‖ M i ‖ 2 = 1 , i = 1 , . . . , n, 

(23)
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here β > 0 trades off μ( M ) and the difference between M and

D . To distinguish from the DMCM model in (16) , in this paper we

ame the above model as DMCM based Projection (DMCM-P). 

Now we show how to solve (23) . First, we smooth ‖ M 

T M − I ‖ ∞ 

s f ρ ( M ) defined in (17) . Then problem (23) can be approximated

y the following problem with a smooth objective: 

in 

P , M 

F (M , P ) = f ρ (M ) + 

1 

2 β
‖ M − PD ‖ 

2 
F 

s . t . ‖ M i ‖ 2 = 1 , i = 1 , . . . , n. 

(24) 

hen both ρ and β are small, f ρ is very close to f . So is μ( PD )

o μ( M ) because ‖ M − PD ‖ F has to be small. Thus solving problem

24) can still be regarded as minimizing the mutual coherence di-

ectly. We propose to alternately update P and M to solve problem

24) . 

1. Fix P = P k and update M by 

M k +1 

 arg min 

M 

〈∇ f ρ (M k ) , M − M k 〉 + 

1 

2 α
‖ 

M − M k ‖ 

2 
F 

+ 

1 

2 β
‖ M − P k D ‖ 

2 
F (25) 

 arg min 

M 

1 

2 

∥∥∥∥∥M −
(

1 
α M k + 

1 
β

P k D − ∇ f ρ (M k ) 
)

1 
α + 

1 
β

∥∥∥∥∥
2 

F 

s . t . ‖ 

M i ‖ 2 = 1 , i = 1 , . . . , n, 

here α > 0 is a step size satisfying α < ρ . Similar to (19) , the

bove problem has a closed form solution. To compute ∇f ρ ( M k )

n (25) , we also need to compute V k by solving (21) . 

2. Fix M = M k +1 and update P by solving 

P k +1 = argmin 

P 

‖ M k +1 − PD ‖ 

2 
F , (26) 

hich has a closed form solution P = M k +1 D 

† . 

Iteratively updating P by (26) and M by (25) leads to the Al-

ernating Minimization (AM) method for (24) . We summarize the

hole procedure of AM in Algorithm 3 . It can be easily seen that

lgorithm 3 Solve (24) by Alternating Minimization. 

nitialize: k = 0 , P k ∈ R 

m ×d , M k ∈ R 

m ×n , ρ > 0 , α = 0 . 99 ρ , β > 0 . 

utput: { P 

∗M 

∗} = AM (M k , P k , ρ, β) . 

hile k < K do 

1. Compute V k by solving (21); 

2. Compute M k +1 by solving (25); 

3. Compute P k +1 by solving (26); 

4. k = k + 1 . 

nd while 

he per-iteration cost of Algorithm 3 is O ((d + m ) n 2 + n 3 ) . We can

rove that the sequence generated by AM converges to a critical

oint. 

We define 

 (M ) = 

{
0 , if ‖ M i ‖ 2 = 1 , i = 1 , . . . , n, 

+ ∞ , otherwise . 
(27) 

heorem 3. Assume that D in problem (24) is of full row rank. Let

( M k , P k )} be the sequence generated by Algorithm 3 . Then the fol-

owing results hold: 

(i) There esits some constants a > 0 and b > 0 such that 

h (M k +1 ) + F (M k +1 , P k +1 ) 

2 2 
≤h (M k ) + F (M k , P k ) − a ‖ M k +1 − M k ‖ F − b ‖ 

P k +1 − P k ‖ F . (28) d  
ii) There exists W k +1 ∈ ∇ M 

F (M k +1 , P k +1 ) + ∂h (M k +1 ) and constants

c > 0, d > 0, such that 

‖ 

W k +1 ‖ F ≤ c ‖ 

M k +1 − M k ‖ F + d ‖ 

P k − P k +1 ‖ F , (29) 

∇ P F (M k +1 , P k +1 ) = 0 . (30) 

ii) There exist a subsequence { (M k j 
, P k j 

) } and ( M 

∗, P 

∗) such that

(M k j 
, P k j 

) → (M 

∗, P 

∗) and F (M k j 
, P k j 

) + h (M k j 
) → F (M 

∗, P 

∗) +
h (M 

∗) . 

The proof of Theorem 3 can be found in Appendix . Note that to

uarantee the convergence of Algorithm 3, Theorem 3 requires D

n problem (24) to be of full row rank. Such an assumption usu-

lly holds in CS since D ∈ R 

d×n is an over complete dictionary with

 < n . 

Based on Theorem 3 , we then have the following convergence

esults. 

heorem 4. (Convergence to a critical point). The sequence {( M k ,

 k )} generated by Algorithm 3 converges to a critical point of

 (M , P ) + h (M ) . Moreover, the sequence {( M k , P k )} ha a finite length,

.e., 

+ ∞ 

 

k =0 

( a ‖ 

M k +1 − M k ‖ 

+ b ‖ 

P k +1 − P k ‖ ) < ∞ , 

here a > 0 and b > 0 are constants as in Theorem 3 (i). 

Theorem 4 is directly obtained by Theorem 2.9 in [20] based on

he results in Theorem 3 . Though AM is guaranteed to converge,

he obtained solution to (24) may be far from optimal to prob-

em (23) which is our original target. In order for (24) to approx-

mate (23) well, ρ > 0 should be small. On the other hand, β > 0

hould also to be small such that the difference between M and

D is small and thus μ( PD ) can well approximate μ( M ). Similar

o Algorithm 2 , we use a continuation trick to achieve a good so-

ution to (23) . Namely, we begin with a relatively large value of

> 0 and β > 0 and reduce them gradually. For each fixed pair ( ρ ,

), we solve (24) by AM in Algorithm 3 and use its solution as

 new initialization of P and M in AM. We repeat the procedure

 times or until ρ and β reach predefined small values ρmin and

min . We summarize the procedure of AM with the continuation

rick in Algorithm 4 . 

lgorithm 4 Solve (24) by AM with continuation trick. 

nitialize: ρ > 0 , α = 0 . 99 ρ , β > 0 , η > 1 , M , P , t = 0 , T > 0 . 

hile t < T do 

1. (P , M ) = AM (P , M , ρ, β) by calling Algorithm 3; 

2. ρ = ρ/η, α = 0 . 99 ρ; 

3. β = β/η; 

4. t = t + 1 . 

nd while 

Finally, we would like to emphasize some advantages of our

MCM-P over previous methods. The main merit of our DMCM-P

s that it is the first model which minimizes μ( PD ) directly and the

roposed solver also has convergence guarantee. The algorithms of

lad [9] and Xu et al. [10] are also mutual coherence based meth-

ds. But their objectives are suboptimal and their solvers lack con-

ergence guarantee. 

It is worth mentioning that the sparse signal recovery can be

uaranteed under some other different settings and conditions. The

ow mutual coherence property still plays an important role. For

xample, a similar recovery bound can be obtained under the ad-

itional assumption that the signs of the non-zero entries of the



50 C. Lu et al. / Signal Processing 151 (2018) 45–55 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Comparison of running time (in seconds) of DMCM-P, Elad, Xu and 

Duarte on problem (23) under different settings. 

DMCM-P Elad Xu Duarte 

m = 10 , d = 30 , n = 60 181 5 5 0.0033 

m = 20 , d = 60 , n = 120 582 8 8 0.004 

m = 30 , d = 90 , n = 180 838 14 12 0.004 
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signal are chosen at random [21,22] . The theory requires incoher-

ence between the sensing and sparsity bases. The variable density

sampling is a technique to recover the signal of highest sparsity

by optimizing the sampling profile [23] . The proposed technique

which directly minimizes the mutual coherence may be also ap-

plied in the variable density sampling to improve the recovery per-

formance. 

4. Numerical results 

In this section, we conduct several experiments to verify the

effectiveness of our proposed methods by comparing them with

previous methods. The experiments consist of two parts. The first

part shows the values of mutual coherence. The second part shows

the signal recovery errors in CS. 

4.1. Comparing the mutual coherence 

This subsection presents two experiments to show the effec-

tiveness of DMCM and DMCM-P, respectively. In the first exper-

iment, we show that our DMCM is able to construct a matrix

M ∈ R 

m ×n with lower mutual coherence than previous methods do.

We compare DMCM with 

• Random: random matrix whose elements are drawn indepen-

dently from the standard normal distribution. 
• Elad: the algorithm of Elad [9] with D = I . 
• Xu: the algorithm of Xu et al. [10] with D = I . 
• Duarte: the algorithm of Duarte-Carajalino and Sapiro [12] with

D = I . 
• Welch bound: the Welch bound [13] shown in (13) . 

Note that the compared algorithms of Elad [9] , Xu et al.

[10] and Duarte-Carajalino and Sapiro [12] were designed to find

a projection P such that M = PD has low mutual coherence. They

can still be compared with our DMCM by setting D as the identity

matrix I . 

To solve our DMCM model in (18) , we run Algorithm 2 for 15

iterations and Algorithm 1 for 10 0 0 iterations. In Algorithm 2 , we

set ρ0 = 0 . 5 and η = 1 . 2 . M is initialized as a Gaussian random

matrix. In the method of Elad, we follow [9] to set t = 0 . 2 and

γ = 0 . 95 . In the method of Xu, we try multiple choices of the con-

vex combination parameter α and set it as 0.5 which results in

the lowest mutual coherence in most cases. The method of Duarte

do not need special parameters. All the compared methods have

the same random initializations of P (except Duarte, which has a

closed form solution). 

The compared methods are tested on three settings with differ-

ent sizes of M ∈ R 

m ×n : (1) m = [6 : 2 : 16] , n = 60 ; (2) m = [10 : 5 :

35] , n = 120 ; and (3) m = [10 : 10 : 50] , n = 180 . Note that the con-

structed matrices may not be the same for the compared methods

with different initializations. So for each choice of size ( m, n ), we

repeat the experiment for 100 times and record the means and

standard deviations of the mutual coherences of the constructed

matrices M . The means and standard deviations of mutual coher-

ences vs. the number m of measurements are shown in Fig. 1 . It

can be seen that the matrix constructed by our DMCM achieves

much lower mutual coherences than previous methods do. The

main reason is that our DMCM minimizes the mutual coherence

of M directly, while the objectives of all the previous methods are

indirect. It can also be seen that the standard deviations of our

method is close to zero, while some other compared methods may

not be stable in some cases. A possible reason is that the solver of

our method has convergence guarantee, while other methods do

not. 

For the second experiment in this subsection, we show that for

given D ∈ R 

d×n our DMCM-P is able to compute a projection P ∈
 

m ×d such that PD ∈ R 

m ×n has low mutual coherence. We choose

 to be a Gaussian random matrix in this experiment. To solve our

MCM-P model in (23) , we run Algorithm 4 for 15 iterations and

lgorithm 3 for 10 0 0 iterations. In Algorithm 4 , we set ρ0 = 0 . 5 ,

= 2 and η = 1 . 2 . P is initialized as a Gaussian random matrix. 

We compare our DMCM-P with the algorithms of Elad [9] , Xu

t al. [10] and Duarte-Carajalino and Sapiro [12] on the mutual

oherence of PD . We test on three settings: (1) m = [6 : 2 : 16] ,

 = 60 , d = 30 ; (2) m = [10 : 5 : 35] , n = 120 , d = 60 ; and (3) m =
10 : 10 : 50] , n = 180 , d = 90 . Fig. 2 shows the mutual coherence

f PD as a function of the number m of measurements. It can be

een that our DMCM-P achieves the best projection such that PD

as the lowest mutual coherences in all the three settings. So are

he standard deviations. Note that our algorithm does not use any

pecial property of D . So it is expected to work for D in other dis-

ributions as well. We test our method in the case that the ele-

ents of D are uniformly distributed in [0,1] and report the results

n Fig. 3 . It can be seen that our method still outperforms other

ethods in both mean and standard deviation. 

Furthermore, Fig. 4 shows the distribution of the absolute val-

es of inner products between distinct columns of PD with m =
0 , n = 120 , and d = 60 . It can be seen that our DMCM-P has the

hortest tail, showing that the number of elements in the Gram

atrix that are closer to the ideal Welch bound is larger than the

ompared methods. Such a result is consistent with the lowest mu-

ual coherences shown in Fig. 2 . 

Finally, we report the running time of the algorithms of Elad,

u, Duarte and our DMCM-P in Table 1 . The settings of the algo-

ithms are the same as those in Fig. 2 and the running time is re-

orted based on different choices of m, d and n . It can be seen that

uarte is the fastest method since it has a closed form solution.

ur DMCM-P is not very efficient since we use the continuation

rick in Algorithm 4 , which repeats Algorithm 3 many times. Note

hat speeding up the algorithm, although valuable, is not the main

ocus of this paper. Actually, for many applications the projection

atrix P can be computed offline. So we leave the speeding-up is-

ue as future work. 

.2. Comparing the CS performance 

In this subsection, we apply the optimized projection by our

MCM-P to CS. We first generate a T -sparse vector α ∈ R 

n , which

onstitutes a sparse representation of signal x = D α, where x ∈ R 

d .

he locations of nonzeros are chosen randomly and their val-

es obey a uniform distribution in [ −1 , 1] . We choose the dic-

ionary D ∈ R 

d×n as a Gaussian random matrix, the DCT ma-

rix and the matrix learned by K-SVD, respectively. Then we ap-

ly different projection matrices P learned by our DMCM-P, ran-

om projection matrix, and the algorithms of Elad [9] , Xu et al.

10] and Duarte-Carajalino and Sapiro [12] to generate the com-

ressed y via y = PD α. At last, we solve problem (5) by OMP

o obtain 

ˆ α. We compare the performance of projection matri-

es computed by different methods using the relative reconstruc-

ion error ‖ x − x ∗‖ 2 / ‖ x ∗‖ 2 and the support recovery rate |sup-

ort( x ) ∩ support( x ∗)|/|support( x ∗)|, where x ∗ is the ground truth. A

maller reconstruction error and larger support recovery rate mean

etter CS performance. 
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Fig. 1. Plots of the means and standard deviations of mutual coherences of M vs. the number m of measurements. 

Fig. 2. Plots of the means and standard deviations of mutual coherences of PD vs. the number m of measurements, where D is a standard Gaussian random matrix. 

Fig. 3. Plots of the means and standard deviations of mutual coherences of PD vs. 

the number m of measurements, where the elements of D are uniformly distributed 

in [0, 1]. 

 

c  

c  

p  

a

Fig. 4. Distributions of the absolute values of ( PD ) T ( PD ). 
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We conduct two experiments in this subsection. The first one

hanges the number m of measurements and the second one

hanges the sparsity level T . For every value of the aforementioned

arameters we perform 30 0 0 experiments and calculate the aver-

ge relative reconstruction error and support recovery rate. 
In the first experiment, we vary m and set n = 60 , d = 30 , T = 2

hen D is the Gaussian random matrix, n = 60 , d = 60 , T = 2

hen D is the DCT matrix and n = 100 , d = 100 , T = 4 when D

s the matrix learned by K-SVD, respectively. Figs. 5 , 6 and 7 show

he average relative reconstruction error (left) and support recov-



52 C. Lu et al. / Signal Processing 151 (2018) 45–55 

Fig. 5. Signal reconstruction errors and support recovery rate vs. number of measurements, where D is the Gaussian random matrix. 

Fig. 6. Signal reconstruction error and support recovery rate vs. number of measurements, where D is the DCT matrix. 

Fig. 7. Signal reconstruction error and support recovery rate vs. number of measurements, where D is learned by K-SVD. 
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ery rate (right) vs. the number m of measurements ( T is fixed). In

the last case, we follow [24] to train a dictionary for sparsely rep-

resenting patches of size 10 × 10 extracted from the image Bar-

bara. This image is of size 512 × 512 and thus has 253,009 possi-

ble patches, considering all overlaps. We extract one tenth of these

patches (uniformly spread) to train on using the K-SVD with 50

iterations. The CS performance improves as m increases. Also, as

expected, all the optimized projection matrices produce better CS

performance than the random projection does, and our proposed
MCM-P consistently outperforms the algorithms of Elad, Xu et al.

nd Duarte-Carajalino and Sapiro. 

In the second experiment, we vary the sparsity level T and

et m = 18 , n = 180 and d = 90 when D is the Gaussian random

atrix, m = 15 , n = 180 and d = 180 when D is the DCT matrix

nd m = 12 , n = 100 and d = 100 when D is the matrix learned

y K-SVD. Figs. 8 , 9 and 10 show the average relative recon-

truction error and support recovery rate as a function of the

parsity level T ( m is fixed). The CS performance also improves
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Fig. 8. Signal reconstruction error and support recovery rate vs. sparsity, where D is the Gaussian random matrix. 

Fig. 9. Signal reconstruction error and support recovery rate vs. sparsity, where D is the DCT matrix. 

Fig. 10. Signal reconstruction error and support recovery rate vs. sparsity, where D is learned by K-SVD. 
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s T decreases. Also, our DMCM-P consistently outperforms ran-

om projection and other deterministic projection optimization

ethods. This is due to the low mutual coherence of PD thanks

o our optimized projection method as verified in the previous

xperiments. 

We also test the noisy case. We add Gaussian random noise

ith 0 mean and 0.01 variance to each element of the observation

 and then recover the true signal from this noisy y . This time we
est with D in another different distribution and another choice of T  
he ratio n / d . We generate elements of D by a uniform distribution

n [0,1]. We choose m = [6 : 2 : 16] , d = 40 and n = 60 . Besides

he sensing matrices constructed via optimization, we also com-

are DMCM-P with the random binary matrix and Fourier matrix

ith random selected rows. Fig. 11 shows the performance com-

arison based on the relative reconstruction error and support re-

overy rate vs. the number of measurements. It can be seen that

ur method also achieves the best performance in almost all cases.

he improvement of our method over the random sensing matrices
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Fig. 11. Signal reconstruction error and support recovery rate vs. measurement in the noisy case, where D is the Gaussian random matrix. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

P

 

 

 

P

M

B

≤  

F

=

 

A

 

(using Fourier matrix with random selected rows or the random

binary matrices) are significant. 

5. Conclusions 

This paper focuses on optimizing the projection matrix in CS

for reconstructing signals which are sparse in some over com-

plete dictionary. We develop the first model which aims to find

a projection P by minimizing the mutual coherence of PD directly.

We solve the nonconvex problem by alternating minimization and

prove the convergence. Simulation results show that our method

does achieve much lower mutual coherence of PD , and also leads

to better CS performance. Considering that mutual coherence is

important in many applications besides CS, we expect that the pro-

posed construction will be useful in many other applications as

well, besides CS. 

There is some interesting future work. First, though we give the

first solver with convergence guarantee in Algorithm 1 for (16) ,

the obtained solution is not guaranteed to be globally optimal due

to the nonconvexity of the problem. It is interesting to investi-

gate when the obtained solution is globally optimal. Second, cur-

rently the proposed method is not efficient, and it is valuable to

find faster solvers. For example, we may consider solving (16) and

(22) by Alternating Direction Method of Multiplier (ADMM) after

introducing some auxiliary variables, which may be more efficient

than our current solvers. But proving its convergence for noncon-

vex problems, (16) and (22) , will be challenging. 
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Appendix 

In this section, we give the proof of Theorem 3 . 

Definition 2. [25,26] Let g be a proper and lower semicontinuous

function. 

1. For a given x ∈ dom g , the Frechét subdifferential of g at x , writ-

ten as ˆ ∂ g(x ) , is the set of all vectors u ∈ R 

n which satisfies 

lim inf 
g(y ) − g(x ) − 〈 u , y − x 〉 ≥ 0 . 
y � = x , y → x ‖ y − x ‖ 

=

2. The limiting-subdifferential, or simply the subdifferential, of g

at x ∈ R 

n , written as ∂g ( x ), is defined through the following

closure process 

∂g(x ) := { u ∈ R 

n : ∃ x k → x , g(x k ) → g(x ) , 

u k ∈ 

ˆ ∂ g(x k ) → u , k → ∞} . 
roposition 1. [25 , 26] The following results hold: 

1. In the nonsmooth context, the Fermat’s rule remains unchanged: If

x ∈ R 

n is a local minimizer of g, then 0 ∈ ∂g ( x ) . 

2. Let ( x k , u k ) be a sequence such that x k → x, u k → u , g ( x k ) → g ( x )

and u k ∈ ∂g ( x k ) . Then u ∈ ∂g ( x ) . 

3. If f is a continuously differentiable function, then ∂( f + g)(x ) =
∇ f (x ) + ∂g(x ) . 

roof of Theorem 3:. First, (25) can be rewritten as 

 k +1 = arg min 

M 

〈∇ f ρ (M k ) , M − M k 〉 + 

1 

2 α
‖ 

M − M k ‖ 

2 
F 

+ 

1 

2 β
‖ M − P k D ‖ 

2 
F + h (M ) . 

y the optimality of M k +1 , we have 

h (M k +1 ) + 〈 ∇ f ρ (M k ) , M k +1 − M k 〉 
+ 

1 

2 α
‖ M k +1 − M k ‖ 

2 
F + 

1 

2 β
‖ M k +1 − P k D ‖ 

2 
F 

h (M k ) + 

1 

2 β
‖ M k − P k D ‖ 

2 
F . (31)

rom the Lipschitz continuity of ∇f ρ ( M ), we have 

F (M k +1 , P k ) 

 f ρ (M k +1 ) + 

1 

2 β
‖ M k +1 − P k D ‖ 

2 
F 

≤ f ρ (M k ) + 〈 ∇ f ρ (M k ) , M k +1 − M k 〉 (32)

+ 

1 

2 ρ
‖ M k +1 − M k ‖ 

2 
F + 

1 

2 β
‖ M k +1 − P k D ‖ 

2 
F . 

dd (31) and (32) , we have 

h (M k +1 ) + F (M k +1 , P k ) 

≤h (M k ) + f ρ (M k ) −
(

1 

2 α
− 1 

2 ρ

)
‖ M k +1 − M k ‖ 

2 
F 

+ 

1 

2 β
‖ M k − P k D ‖ 

2 
F (33)

 h (M k ) + F (M k , P k ) −
(

1 

2 α
− 1 

2 ρ

)
‖ M k +1 − M k ‖ 

2 
F . 
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ote that F (M k +1 , P ) = 

1 
2 β

‖ M k +1 − PD ‖ 2 F is 1 
β
σ 2 

min 
(D ) -strongly

onvex, where σ min ( D ) denotes the smallest singular value of D

nd it is positive since D is of full rank. Then by Lemma B.5 in

27] and the optimality of P k +1 to (26) , we have 

 (M k +1 , P k +1 ) ≤ F (M k +1 , P k ) −
1 

2 β
σ 2 

min (D ) ‖ 

P k +1 − P k ‖ 

2 
F . (34) 

ombining (33) and (34) leads to 

M k +1 ) + F (M k +1 , P k +1 ) 

≤ h (M k ) + F (M k , P k ) −
(

1 

2 α
− 1 

2 ρ

)
‖ M k +1 − M k ‖ 

2 
F 

− 1 

2 β
σ 2 

min (D ) ‖ 

P k +1 − P k ‖ 

2 
F . (35) 

Second, by the optimality of M k +1 , we have 

 ∈ ∂h (M k +1 ) + ∇ f ρ (M k ) + 

1 

α
(M k +1 − M k ) 

+ 

1 

β
(M k +1 − P k D ) . (36) 

hus, there exists W k +1 ∈ ∇ M 

F (M k +1 , P k +1 ) + ∂h (M k +1 ) , such

hat 

 k +1 ∈ ∇ f ρ (M k +1 ) + 

1 

β
(M k +1 − P k +1 D ) + ∂h (M k +1 ) 

= ∇ f ρ (M k ) + 

1 

β
(M k +1 − P k D ) + ∂h (M k +1 ) (37) 

+ ( f ρ (M k +1 ) − f ρ (M k )) + 

1 

β
(P k − P k +1 ) D . 

hen, combining (36) and (37) leads to 

 

W k +1 ‖ F ≤
∥∥∥∇ f ρ (M k ) + 

1 

β
(M k +1 − P k D ) + ∂h (M k +1 ) 

∥∥∥
F 

+ ‖ 

f ρ (M k +1 ) − f ρ (M k ) ‖ F + 

1 

β
‖ 

(P k − P k +1 ) D ‖ F (38) 

1 

α
‖ 

M k +1 − M k ‖ F + 

1 

ρ
‖ 

M k +1 − M k ‖ F + 

1 

β
‖ 

D ‖ 

2 ‖ 

P k − P k +1 ‖ F , 

(39) 

here (39) uses the property that ∇f ρ ( M ) is Lipschitz continuous

ith the Lipschitz constant 1/ ρ . Also, by the optimality of P k +1 , we

ave 

 = ∇ P F (M k +1 , P k +1 ) = (M k +1 − P k +1 D ) D 

T . (40) 

Third, note that F ( M, P ) is coercive, i.e., F ( M, P ) is bounded from

elow and F (M , P ) → + ∞ when ‖ [ M , P ] ‖ F → + ∞ . It can be seen

rom (35) that F ( M k , P k ) is bounded. Thus { M k , P k } is bounded.

hen there exists an accumulation point ( M 

∗, P 

∗) and a sub-

equence { M k j 
, P k j 

} such that (M k j 
, P k j 

) → (M 

∗, P 

∗) as j → + ∞ .

ince F ( M, P ) is continuously differentiable, we have F (M k j 
, P k j 

) →
 (M 

∗, P 

∗) . As h (M k ) = 0 for all k and the set { M : ‖ M i ‖ 2 = 1 , i =
 , . . . , n } is closed, we have h (M 

∗) = 0 and F (M k j 
, P k j 

) + h (M k j 
) →

 (M 

∗, P 

∗) + h (M 

∗) . �
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