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Subspace Clustering Under Complex Noise
Baohua Li, Huchuan Lu , Senior Member, IEEE, Ying Zhang, Zhouchen Lin , Fellow, IEEE, and Wei Wu

Abstract— In this paper, we study the subspace clustering
problem under complex noise. A wide class of reconstruction-
based methods model the subspace clustering problem by com-
bining a quadratic data-fidelity term and a regularization term.
In a statistical framework, the data-fidelity term assumes to be
contaminated by a unimodal Gaussian noise, which is a popular
setting in most current subspace clustering models. However,
the realistic noise is much more complex than our assumptions.
Besides, the coarse representation of the data-fidelity term may
depress the clustering accuracy, which is often used to evaluate
the models. To address this issue, we propose the mixture of
Gaussian regression (MoG Regression) for subspace clustering.
The MoG Regression seeks a valid way to model the unknown
noise distribution, which approaches the real one as far as
possible, so that the desired affinity matrix is better at character-
izing the structure of data in the real world, and furthermore,
improving the performance. Theoretically, the proposed model
enjoys the grouping effect, which encourages the coefficients
of highly correlated points are nearly equal. Drawing upon
the ideal of the minimum message length, a model selection
strategy is proposed to estimate the numbers of the Gaussian
components that shows a way how to seek the number of
Gaussian components besides determining it by empirical value.
In addition, the asymptotic property of our model is investigated.
The proposed model is evaluated on the challenging datasets. The
experimental results show that the proposed MoG Regression
model significantly outperforms several state-of-the-art subspace
clustering methods.

Index Terms— Subspace clustering, mixture of Gaussian
regression, expectation maximization.
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I. INTRODUCTION

THE goal of subspace clustering is to gather the given
data points into disparate group which contains the data

points that come from the same underlying subspace. It has
been attracting more and more attentions in recent years
and has found many applications in computer vision and
image processing, such as image segmentation [2], motion
segmentation [3], face clustering [4], and image representa-
tion and compression [5].

There exists numbers of major subspace clustering
approaches which have been proposed in the past two decades.
These methods may be roughly divided into four main cate-
gories: algebraic methods [6]–[8], iterative methods [9], [10],
statistical methods [11]–[13], and spectral-clustering-based
methods [14]–[20]. It should be noted specially that the sub-
space clustering self-reconstruction based methods [16]–[20],
which take root in the elegant spectral graph theory [21], have
shown excellent performance in many real applications.

Generally, the subspace clustering self-reconstruction based
methods consist of two steps. Firstly, building an affinity
matrix which is used to capture the similarity between pairs of
sample points. Secondly, graph cut is applied to a undirected
graph, whose vertices are the samples and whose weights are
prescribed by the affinity matrix, for segmenting the sample
points. Building a “good” affinity matrix is key to guarantee a
good clustering result which leads to some subspace clustering
methods focus on how to build a good affinity matrix.

Based on the ideal that each data point in a union of
several subspaces can be represented as a linear or affine
combination of other points, the Sparse Subspace Cluster-
ing (SSC) algorithm [16] utilizes the �1-norm regulariza-
tion to find the sparsest representation of a data point,
where points come from the same subspace correspond to
the nonzero representation coefficients. Low-Rank Represen-
tation (LRR) [17] aims to get a low rank reconstruction
coefficient for robust subspace recovery of the data con-
taining corruptions, the �2,1 is used to make the algorithm
more robust to outliers. Least Squares Regression (LSR) [18]
employs the Frobenius norm regularization to speed up the
clustering process, while still ensuring the grouping effect of
the representation matrix. However, the reconstruction coeffi-
cient of SSC may be too sparse to encode the data correla-
tion, and the reconstruction coefficient derived by both LRR
and LSR may result in dense connections between-clusters
besides the within-clusters. In order to achieve a good balance
between within-cluster density (which we call grouping effect
afterwards) and between-cluster sparsity, Correlation Adap-
tive Subspace Segmentation (CASS) [20] adopts trace Lasso
norm regularization, which is adaptive to the data correlation,
to trade-off the representation matrix.
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As pointed out by Liu et al. [17], the noises that always
exist in data can perturb the subspace structures, which leads
to unreliable subspace clustering result. To cluster the real
subspaces when the data are corrupted by noises, SSC, LRR,
LSR, and CASS employ different norms to select the solution
of various properties, respectively.

Given a data matrix X = (x1, x2, . . . , xN ) ∈ R
M×N

with N samples in R
M , here, we denote E ∈ R

M×N and
Z ∈ R

N×N as the noise matrix and the representation matrix,
respectively, where the component Zi j of Z measures the
similarity between points xi and x j in the data matrix. In this
paper, we use ‖ · ‖F , ‖ · ‖1, ‖ · ‖2, ‖ · ‖2,1, and ‖ · ‖∗ to
denote Frobenius norm, the �1-norm (sum of absolute values),
the �2-norm, the �2,1-norm (sum of the �2-norm of columns
of a matrix), and the nuclear norm (sum of singular values),
respectively. The mathematical models of mentioned subspace
clustering methods are listed as follows.

Sparse Subspace Clustering (SSC) [16]:

min
Z,E
‖E‖1 + λ‖Z‖1

s.t . X = X Z + E, diag (Z) = 0.

Low-Rank Representation (LRR) [17]:

min
Z,E
‖E‖2,1 + λ‖Z‖∗

s.t . X = X Z + E.

Least Squares Regression (LSR) [18]:

min
Z,E
‖E‖2F + λ‖Z‖2F

s.t . X = X Z + E, diag (Z) = 0.

Correlation Adaptive Subspace Segmentation (CASS) [20]:

min
Z,E
‖E‖2F + λ

N∑

n=1

‖Xdiag (zi ) ‖∗
s.t . X = X Z + E.

In the above mentioned formulations, zi is represented
the i -th column of Z, diag (Z) is a diagonal matrix with
entries of zii on its diagonal, and λ > 0 is a regularization
parameter to balance the effects of two terms. E denotes
the reconstruction error. ‖E‖2F is utilized to model Gaussian
noise, ‖E‖2,1 is for sample-specific corruptions, and ‖E‖1 is
for entry-wise corruptions.

All the clustering algorithms mentioned above rely on
specific norms on Z and E to encourage either the
between-cluster sparsity and within-cluster density or grouping
effect of the representation matrix which makes the model
be valid. However, they all use a relatively simple norm to
describe the data fidelity term that coincides with the noises.

In fact, the real noise scenario in practice often exhibits
very complex statistical distributions, rather than simply being
a unimodal Gaussian or Laplace [22]. Therefore, to describe
the noise by a simple norm like the Frobenious norm,
�1-norm, or �2,1-norm, may lead to the obtained affinity matrix
depress the clustering accuracies.

To alleviate this issue, we employ a fundamental result
from the probability theory that almost any distribution can
be well approximated by a mixture of a suitable number of

Gaussian type distributions. Namely, we employ the mixture
of Gaussian (MoG) model to describe the real noise accurately,
rather than assuming a specific distribution for the noise.
As for the regularization the term, we simply choose the
Frobenius norm which means that we select the minimal
Frobenius norm solution among the candidates. The reasons
are two-fold. First, we want to demonstrate the effect of noise
modeling on subspace clustering. So a simple regularization
on Z can better exhibit such an effect. Second, it makes
the computational procedure much easier with the Frobenious
norm on Z. For example, the traditional Expectation Max-
imization (EM) algorithm can be used to find the solution
of our new subspace clustering model. We prove that the
prosed model holds the grouping effect [23] for correlated
data points, which encourages the coefficients of correlated
data pints are approximately equal. How to determine the
number of Gaussians K is another crux problem. Aside from
empirically fixing K , we proposed a model selection strategy
to estimate K inspired by [24] and [25]. Besides, we prove
the asymptotic properties of our model for fixed M and K
in the spirit of [26]. In summary, we list the outline of the
contributions as follows:
• A Mixture of Gaussian Regression (MoG Regression)

based subspace clustering method was proposed.
• We prove that MoG Regression has the grouping effect,

which is important for subspace clustering.
• We provide a model selection method based on the

minimum message length (MML) criterion to estimate
the numbers of Gaussian components.

• To investigate the property of our proposed model under
Expectation Maximization(EM) Algorithm, we provide
the asymptotic properties of solution.

The remainder of the paper is organized as follows.
In Section II, we motivate and introduce the MoG Regression
method in detail for clustering data. In Section III we prove
that the proposed model possesses the grouping effect. The
asymptotic property is shown in section IV. Based on MML,
we show how to estimate K in section V. Section VII reports
the experimental results. We relegate the main steps of proof
to section VIII. Partial results of this paper appear in our
conference version [1].

II. SUBSPACE CLUSTERING VIA MOG REGRESSION

As described in [27], we model the subspace clustering issue
as the following optimization problem:

min
Z,E

L (E)+R (Z)

s.t . X = X Z + E, (1)

where L (E) is to be described the noise in the loss function,
and R (Z) is the regularization term to impose some desired
properties on the representation matrix Z.

In fact, the noise is a nuisance, that may spoil the ability
of (1) to cluster the real subspaces. So, it becomes signifi-
cant importance to describe the unknown noise in subspace
clustering problems. Lu et al. [27] proposed Correntropy
Induced L2 (CIL2) graph, which uses correntropy to process
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non-Gaussian and impulsive noise for robust subspace clus-
tering, and the effectiveness is demonstrated by experiments
of face clustering under various types of corruptions and
occlusions. In fact, the variation of the width of kernel function
makes the behavior of Correntropy Induced Metric changes
between �0, �1, and �2 norms, which is effective for many
types of noise but not for general noise anyway. However,
as Liu et al. [28] pointed that the correntropy strategy is
more suitable for the impulsive noise environment, which may
cripple the performance of clustering by correntropy induced
metric [27] if the noise is not in the listed specified types.

Inspired by the probability theory that almost any con-
tinuous density can be approximated by using s sufficient
number of Gaussians to arbitrary accuracy. We propose a
novel clustering method called MoG Regression based on the
reconstruction, which employs MoG to characterize the gen-
eral noise, and uses the regression coefficient to carry out the
subspace clustering. The previous MoG strategies [29], [30],
etc. whose mechanism is to assign the data points that come
from the same group to the corresponding component, which
is the major difference from the proposed method in this work.
We assume that each column en (n = 1, . . . , N) of E follows
the MoG distribution, i.e.,

p (en) =
K∑

k=1

πkN (en |0,�k) , (2)

where K is the number of Gaussian components and πk

denotes the mixing weight which is satisfy with the con-
strain πk ≥ 0 and

∑K
k=1 πk = 1. N (en |0,�k) is denoted the

zero-mean multivariate Gaussian distribution, with �k(k =
1, 2, . . . , K ) representing the invertible and symmetrical
covariance matrix. Note that, we have 0 replaced the unknown
means in (2) lies in two aspects: lighting the computation
burden of the (5), on the other hand, the clustering accuracies
of both estimating means and no estimating means in our
frame (5) are about the same.

It is analogous to the classical regression analysis that the
columns of E are assumed to be independently and identically
distributed in the MoG Regression setting. Thus we have

p (E) =
N∏

n=1

K∑

k=1

πkN (en|0,�k) . (3)

In the general MoG model, our mission is to find π =
(π1, . . . , πK )� and � = (�1, . . . ,�K ) that maximize p (E),
which is also equivalent to minimizing the negative log like-
lihood function that is defined as

− ln p (E) = −
N∑

n=1

ln

(
K∑

k=1

πkN (en |0,�k)

)
. (4)

If we use L (E) = − ln p (E) to replace the Frobenius norm
that is related to the reconstruction error term in the LSR
model, then the proposed MoG Regression method can be

formulated as follows:

min
Z,π,�

−
N∑

n=1

ln

(
K∑

k=1

πkN (en |0,�k)

)
+ λ‖Z‖2F

s.t . X = X Z + E, diag (Z) = 0,

πk ≥ 0, �k ∈ S
+, k = 1, . . . , K ,

K∑

k=1

πk = 1, (5)

where λ > 0 is the regularization parameter, S
+ is denoted

the set of symmetrical positive definite (SPD) matrices and
the constraint diag (Z) = 0 discourages using a sample to
represent itself. Here we simply choose the Frobenius norm
of Z as the regularization term. As declared before, we chose
the Frobenious norm on Z that can not only reduce the
computation cost but also expose the effect of MoG regression
based noise modeling on subspace clustering. In model (5),
we will bear some limitations of Frobenius norm, for instance,
it is sensitive to outliers, and may obtain the dense coefficient
matrix, ect.. On the other hand, using the MoG to describe
the unknown noise is very common [31]–[33]ect., however,
the mentioned works do not use the coefficient matrix to carry
out the subspace clustering.

A natural way to capture the solution of (5) may
be the powerful EM algorithm [34], [35], which finds the
maximum-likelihood estimate of the parameters iteratively.
Its procedure starts from an initial guess and iteratively runs
an expectation (E) step, which evaluates the posterior prob-
abilities using currently known parameters, and a maximiza-
tion (M) step, which will re-estimate the parameters based on
the probabilities calculated in the E step. The iterations will
stop until some convergence criteria are satisfied [36]–[38].
Integrating the traditional processes of the EM algorithm,
we can obtain the solution of problem (5) in the following
three main steps.

First, we initialize the representation matrix Z, mixing
weighting πk , and covariance matrices �k , for k = 1, . . . , K .

In the E-step, we compute the posterior probabilities based
on the current parameters:

γn,k = πkN (̃en|0,�k)∑K
j=1 π jN

(
ẽn|0,� j

) , (6)

where ẽn = X̃n zn− xn and X̃n is a copy of X except that the
n-th column is 0.

In the M-step, we want to minimize the log likelihood
with respect to the parameters, using the current posterior
probabilities.

To find �k, k = 1, 2, . . . , K , we should solve the following
optimization problem

min
�k
−

N∑

n=1

ln

(
K∑

k=1

πkN (̃en |0,�k)

)

s.t . �k ∈ S
+.

Letting the derivative of the objective function with respect
to �k to be zero, we obtain

�k = 1

γn,k

(
N∑

n=1

πkN (̃en|0,�k)∑K
j=1 π jN

(
ẽn |0,� j

) ẽn · ẽ�n + � I

)
, (7)
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Fig. 1. The affinity matrices of 10 objects obtained by different methods on the AR database. (a) SSC [16]. (b) LRR [17]. (c) LSR [18]. (d) CASS [20].
(e) CIL2 [27]. (f) Ours.

where � > 0 is a small regularization parameter to avoid that
the determinant of �k equals to zero.

Each mixing weighting πk , k = 1, 2, . . . , K , is updated by
solving

min
πk≥0
−

N∑

n=1

ln

(
K∑

k=1

πkN (̃en |0,�k)

)
+ β

(
K∑

k=1

πk − 1

)
,

where β > 0 is the Lagrangian multiplier. We find β = N
and accordingly

πk = 1

N

N∑

n=1

πkN (̃en|0,�k)∑K
j=1 π jN

(
ẽn |0,� j

) . (8)

Each column of Z is found by solving the following
problem:

min
zn
−

N∑

n=1

ln

(
K∑

k=1

πkN (̃en |0,�k)

)
+ λ ‖ zn ‖2F . (9)

By setting the derivative of above object function with
respect to zn to zero, we obtain

zn =
(∑K

k=1 πkN (̃en|0,�k) X̃
�
n �−1

k X̃n
∑K

j=1 π jN
(
ẽn|0,� j

) + 2λI

)−1

bn,

(10)

where

bn =
∑K

k=1 πkN (̃en|0,�k) X̃n�−1
k∑K

j=1 π jN
(
ẽn|0,� j

) xn .

Then we plug the renewed �k , πk (k = 1, 2, · · · , K ), and Z
in (5) for the next round iteration. The optimization procedure
for solving (5) is the standard EM iteration, which is shown
in our conference version [1].

A. MoG Regression for Subspace Clustering

The proposed method falls into the category of spectral
based clustering [21], [39], which is the analogy to the pre-
vious methods [16]–[18]. After solving the MoG Regression

TABLE I

THE CONTRAST (%) OF AFFINITY MATRICES IN FIGURE 1

problem (5), the desired representation matrix Z is found.
We define the affinity matrix as

C = |Z| + |Z�|,

where each value of entry Cij in C measures the similarity
between data points xi and x j .

We illustrate the affinity matrices of 10 subjects clustering
derived by SSC, LRR, LSR, CASS, CIL2, and the proposed
MoG Regression, respectively with Figure 1 on the AR
database, where the facial variations, illumination variations,
and occlusions can be regarded as complex noise added to the
original images. Because of the function of variable selection,
the affinity matrix derived by SSC is sparse, which depresses
the correlations within clusters. Although the trace lasso norm
enjoys correlation adaptive, the complex noises breaks this
property, and the obtained affinity matrix shows the unseemly
correlations. So they may be less ability of grouping data
points in the same cluster. On contrast, the affinity matrices
derived by LRR, LSR, CIL2, and MoG Regression are very
dense. The value of representation coefficients within clusters
are large, which indicates the relevant clustering method to
be good ability to group correlated data together. Meanwhile,
we can see that the contrast between diagonal blocks and
non-diagonal parts of MoG Regression is much higher than
those of LRR, LSR, and CIL2.

In order to quantitatively evaluate the contrast of the
diagonal blocks against the non-diagonal parts of affinity
matrices derived by each method, we define the contrast by
(Sd − Snd )/‖C‖1, where Sd and Snd are the sums of absolute
values of entries in diagonal and non-diagonal parts, respec-
tively. Table I lists the contrast of the affinity matrices from
different methods. We notice that the contrast value of MoG
Regression precedes other approaches. This demonstrates that,
with complex noise corruption the data, our method is suit-
able for describing the distribution of noise, thus presenting

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:01:55 UTC from IEEE Xplore.  Restrictions apply. 



934 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, VOL. 29, NO. 4, APRIL 2019

stronger grouping effect and greater ability to recover the true
subspace structures.

In the end, we employ the famous Normalize Cut [19]
strategy on the affinity matrix C to produce the final clustering
results.

III. THE GROUPING EFFECT

In this section we will theoretically expound the validity
of the proposed MOG regression model for subspace clus-
tering. A regression method shows the grouping effect if the
coefficients of a group of correlated data tend to be equal.
In [23] and [40] the grouping effect is detailed studied. The
validity of clustering comes from the grouping effect for
the models in [18], [20], and [27] has been proved. In this
section we will show that our proposed MoG Regression
model also possesses the grouping effect for correlated data.
Now, we declare the grouping effect of MoG Regression as
follows.

Theorem 1: Given a sample point x ∈ R
M , the normalized

data matrix X and the regularization parameter λ, let ẑ be the
optimal solution to

min
z
− ln

(
K∑

k=1

πkN (X z − x|0,�k)

)
+ λ‖z‖2, (11)

then there exists a constant a such that

|̂zi − ẑ j | ≤ a

λ

√
1− ρ

2
,

where ρ = cos〈xi , x j 〉. Here we denote ẑi and ẑ j as the
i -th and j -th entries of vector ẑ, and xi and x j as the
i -th and j -th columns of X , respectively.

From the above Theorem 1 we can see that, if xi and x j

are highly correlated, i.e. ρ is close to 1, then the upper bound
of the difference between ẑi and ẑ j approaches 0. In this case,
xi and x j would be grouped into the same cluster due to the
grouping effect, which encourages the clustering performance.

IV. ASYMPTOTIC PROPERTY

In fact, our method is similar to [16]–[18], [20], and [27]
belonging to the self reconstruction category which needs
enough data points. On the other hand, due to the non-convex
of our model, it is necessary to analysis the asymptotic
property of Z in (5). We assume that the number of mixture
Gaussian components K and the dimension of each data point
M are fixed. Let θ ini

Z and θ t
Z denote the initial value and the

true parameter value of Z , where θ ini
Z =

(
zini

1 , . . . , zini
N

)
and

θ t
Z =

(
zt

1, . . . , zt
N

)
. In the spirit of [26] and [41], we obtain

the following result.
Theorem 2: Let the columns of data matrix X ∈ R

M×N

with independent and identically distributed (i.i.d), If λ√
n
=

o (1), θ ini
Z − θ t

Z = Op

(
n
−1
2

)
, then, under the regularity

conditions (A)− (C) [26] on (9), and keep K invariably. We
obtain that the local minimizer θ lm

Z of model (9) holds

√
n

(
zlm

i − zt
i

)
d−→N

(
0, Is

(
zt

i

)−1
)
, i = 1, . . . , n (12)

Where the notions Op and
d−→ denote the order to be equal in

probability, and convergence in distribution [42] respectively,
and Is (·) denotes the information matrix [42]. Equipped with
the regularity conditions(A)−(C) [26] we derive the theorem 2
and postpone the proof in appendix

V. A STRATEGY FOR FINDING THE NUMBER

OF MIXTURE COMPONENTS

So far, we assume the number of the components K is fixed
by empirical value. Inspired by [24], [25], and [30] we provide
a strategy to estimation the number of components K based on
the minimum message length (MML) criterion [43], [44]. For
the sake of self-contained, we give a glance of MML criterion.

To formalize the MML ideal, we notice that the equation (3)
can be viewed as p (E|
) which agrees with parameter


 = (π1, · · ·πK ,�1, · · · ,�K ) (13)

In the spirit of [43] and [44], the parameter estimation issue
boils down a transmission encoding problem. If a short code
can be found for the provide data, we will obtain a good data
generation mode [43], [45], [46]. This leads to

length (E,
) = length (E|
)+ length (
) (14)

where length (E,
) = − ln p (E,
). In this context,
the finite code length can only be obtained by quantizing the
parameter 
 to finite precision after we undergo a loop of
finding Z. In fact, a fine precision is truncated, length (
)
may be large, but length (E|
) will be small because 

closes to the optimal value. Conversely, a coarse precision
is used, length (
) may be small, but length (E|
) will
be large because 
 departs from the optimal value [25].
In [25], the Taylor approximation method is used to balance
the optimal quantization. In this case the optimal 
 is found by


̂ = arg min


{− ln p (
)− ln p (E|
)

+ 1

2
ln |F (
) | + D (
)

2

(
1+ ln

1

12

)
} (15)

where |F (
) | denotes the determinant of the expected Fisher
information matrix and D (
) denotes the dimension of the
parameter 
.

We adopt the approach in [25], which allows equation (15)
to be rewritten as the following equivalent problem:


̂ = arg min


{− ln p (
)− ln p (E|
)

+ 1

2
ln |Fc (
) | + D (
)

2

(
1+ ln

1

12

)
} (16)

where Fc (
) denotes the expected complete Fisher informa-
tion matrix that is shown

Fc (
) = diag

(
π1

n∑

i=1

Fi (�1) , · · · , πK

n∑

i=1

Fi (�K ) , nM

)

Fi (�k) is the Fisher information matrix of the i th obser-
vation for the kth component, and M is the Fisher
information matrix of the multinomial distribution, that is
M = diag (π1, · · · , πK )−1 [47]. We adopt the same setting
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with [25] for the distributions p (�k) (k = 1, · · · , K ) and
p (π1, · · · , πK ). Furthermore, let Kno denote the number of
non-zero components and D denote the dimensionality of
covariance matrix �k (k = 1, · · · , K ). We have

min

,Z

L (
, Z)

= min

,Z
{D

2

∑

k:πk>0

ln
(nπk

12

)
+ Kno

2
ln

( n

12

)
+ λ ‖ Z ‖2F

+ Kno (D + 1)

2
−

N∑

n=1

ln

(
K∑

k=1

πkN
(
ẽn|0,�k

)
)
}

s.t . πk ≥ 0, �k ∈ S
+, k = 1, . . . , K ,

K∑

k=1

πk = 1

(17)

in our particular case. 
 is the same as (13).
Based on this preparatory work, we will discuss how to

determine the numbers of the Gaussian components. Notice
that the optimal problem (17) is equal to use a symmetric
improper Dirichlet type prior which is conjugate to multino-
mial likehoods [48]. Therefore, the modified estimation mixing
weight is

πmnew
k = max{0,

∑N
n=1 γn,k − D

2 }∑K
j=1 max{0,

∑N
n=1 γn, j − D

2 }
(18)

From (18), it shows whether the kth component is annihi-
lated. Once the required support D

2 can not be reached from
the provide data, the mixing weight πk equals to zero. In this
scenario, the corresponding component is removed. Thus we
can estimate the number of the components. As discussed
in [25] and [30], we should provide both the maximum K
and the minimum K . If we begin with a large K , which
leads to several empty components. To avoid this singular
case, we use the component-wise EM procedure [25], [49].
The crucial difference between the modified EM algorithm
and the older version in that the formulation (8) is replaced
by formulation (18). We list the modified EM in algorithms 2.
Each iterative t runs the component-wise E and M step. If one
of the components is removed, the parameters are updated
accordingly, until |�Lenth| is below a given threshold. In this
case, if the current length is not more than the Lenthmin,
the current parameters, coefficient matrix, and length are
assigned to 
min, Zmin and L (
mne, Znew) respectively. For
sake of exploring the full range of K+, the less populated
component is artificially removed, run the component-wise
EM procedure again in sprit of [25].

We evaluate this tentative EM strategy on the contami-
nated Extended Yale Face Dataset B, and compare it with
Algorithm 1 in the Supplementary Material. Although the
modified EM algorithm 2 provides a way for automatically
selecting the number of Gaussian components rather than by
empirical value. The price it pays is more heavier computa-
tional burden than the common EM algorithm [25].

VI. COMPUTATIONAL COMPLEXITY

In this section, we provide a concise computational com-
plexity analysis of our proposed MoG method in a round.

Algorithm 2 Finding the Solution of (5) by Modified EM
Based on MML

Initialize: input data matrix X , covariance matrices �k , πk ,
parameter λ, threshold value ε, initial representation matrix Zold ,
and the components number Kmin and Kmax
output: The minimum length mixture model: The coefficient
matrix Z, K+
Set t ←− 0, K+ ←− Kmax, Lenthmin←− +∞
while K+ ≥ Kmin do
repeat
t = t + 1;
for k = 1 to Kmax do
E–step: Compute γn,k :

γn,k = πkN (̃en |0,�k)
∑Kmax

j=1 π jN
(
ẽn |0,� j

) ,

where ẽold
n = X̃n zold

n − xn .
M–step:

πmnew
k = max{0,

∑N
n=1 γn,k − D

2 }∑K
j=1 max{0,

∑N
n=1 γn, j − D

2 }
if πmnew

k > 0

�mnew
k = 1

γn,k

⎛

⎜⎝
N∑

n=1

πmnew
k N (̃en |0,�k) ẽold

n

(
ẽold

n

)�

∑Kmax
j=1 πmnew

j N (
ẽn |0,� j

) + � I

⎞

⎟⎠,

else
K+ = K+ − 1
end if
end for
updata Z

znew
n =

⎛

⎝
∑Kmax

k=1 ξk X̃�n
(
�mnew

k

)−1 X̃n
∑Kmax

j=1 ξ j

+ 2λI

⎞

⎠
−1

bn ,

where

bn =
∑Kmax

k=1 ξk X̃n
(
�mnew

k

)−1

∑Kmax
j=1 ξ j

xn,

and

ξk = πmnew
k N

(
ẽold

n |0, �new
k

)
,

ξ j = πmnew
j N

(
ẽold

n |0,�mnew
j

)
.

Zold ← Znew

Compute the optimal length using the new parameters and Z
Compute the length L (


mne, Znew)
via (17)

until
|�Lenth| ≤ ε
if L (


mne, Znew)
< Lenthmin

L (

mne, Znew) ← Lenthmin


min ← 
mne

Zmin ← Znew

end if
k = arg mink{πmnew

k }+
πmnew

k ← 0
K+ ← K+ − 1
end while
Using the representation matrix Z to cluster
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Fig. 2. Exemplar results of motion segmentation on the Hopkins
155 Database. (a) Checkerboard. (b) Cars. (c) People.

Assume that we have collected M samples with dimension N̂ ,
which contained the unknown noise that can be approached
by mixture Gaussian with K components. Here, N̂ is the
dimension after dimension reduction. To compute the determi-
nant needs O (

N̂3
)

operations, which leads to the E step (6)
costs O (

K M N̂3
)
. Using the obtained result from E step,

we proceed to run the M step. Thus, the step (7)and (8) need
O (K M) and O (

K M N̂
)

operations respectively. Especially,
the step (10) costs due to the matrix inversion. Now, it is easy
to see that the modified model (17) needs heavier computa-
tional burden than the prime model (5) because the additional
mission that how to annihilate the Gaussian components.

VII. EXPERIMENTS

In this section, we evaluate the proposed MoG Regression
model for clustering on the Hopkins 155 database [50],
the Rotated MNIST Dataset [51], the AR database [52], and
the Extended Yale Face Dataset B [53]. Experimental results
demonstrate that the proposed method is valid and robust to
noise in motion segmentation, handwritten digits clustering,
and complex face clustering.

We also run SSC [16], LRR [17], LSR [18], CASS [20],
and CIL2 [27] on these datasets. Meanwhile, we tune the
parameters of each method so that every model achieves
its best performance. We use PCA method to project data
matrix to a low dimension space by maintaining at least 90%
energy for all concerned databases. Especially, we determine
the regularization parameter and K by empirical value in
our model (5). The clustering accuracy [16] is employed
in quantitative evaluation. The comparison results show that
our approach outperforms the mentioned five state-of-the-art
methods.

A. Hopkins 155 Database

In this situation, we will recorder the average accuracy
over 2 motions and 3 motions videos on Hopkins 155 motion
segmentation database respectively.

After resorting to PCA on the data matrix, we test the
proposed MoG Regression method on each video sequence.
Some motion segmentation visually results of our approach
are shown in Figure 2, where motions of different objects and
background trajectories can be accurately segmented.

Table II lists the average clustering accuracies of different
methods. We can see that MoG Regression achieves signifi-
cantly higher accuracies than the other methods.

TABLE II

THE CLUSTERING ACCURACIES (%) ON THE HOPKINS 155 DATABASE

TABLE III

THE CLUSTERING ACCURACIES (%) ON THE
MNIST-BACK-RAND DATABASE

TABLE IV

THE CLUSTERING ACCURACIES (%) ON THE AR DATABASE

B. MNIST-Back-Rand Dataset

In this subsection we randomly select 10 images for each
digit of MNIST-back-rand database to build a subset, thus
the candidate dataset contains 100 samples. The experi-
ment results are reported in Table III, which declares that
the advantage of our method is notable. This experiment
also shows that when the data are corrupted with non-
Gaussian or complex noise, the proposed method is more
capable of clustering the underlying subspaces with the help
of MoG.

C. AR Dataset

The AR database is another challenging database for sub-
space clustering mission. We design two subspace clustering
tasks by selecting first 5 and 10 subjects based on this dataset,
respectively. The clustering results on the AR database of
different algorithms are recorded in Table IV. We can see
that the performance of MoG Regression method for subspace
clustering is superior to the other methods in both clustering
tasks. This is because MoG Regression has both a strong
grouping effect on this challenging database and reasonably
model the noise, which can be seen in Figure 1.

D. Extended Yale Face Dataset B

In order to further show the ability of MoG model for
describing the noises, we add the noise on each image of
Extended Yale Database B database by replacing randomly its
pixels with samples from a uniform distribution on the interval
from 0 to 255 [27], and the percentage of corrupted pixels
range from 10% to 100%. In order to reduce the computational
cost and memory requirements, we tailor the grayscale images
to a resolution of 32 × 32 pixels. The clustering accuracies
of all methods on the corrupted Extended Yale B database
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Fig. 3. The clustering accuracies (%) with pixel corruption on the Extended
Yale B database.

Fig. 4. Comparison of the empirical value K with the estimated K based
on MML, and their clustering accuracies

are reported by Figure 3. From Figure 3 we can see that the
proposed method performs much better when face images are
randomly contaminated at a level from 10% to 40%, exhibiting
better adaptability and greater robustness in noise situation.
When the percentage of corrupted pixels is over than 60%,
the discriminative information are destructive damaged, thus
will weaken the performance of all methods.

When the pixels are corrupted over 40%, the accuracies
are too low. So, we evaluate K , accuracies obtained by
Algorithm 1 and Algorithm 2 respectively on the data set
that the pixels are corrupted not more than 40%. Fig 4
reveals the experimental results. We take Kmin = 1 and
Kmax = 25 for iteration. It can be seen that, the number
of Gaussian components of both two algorithms are increase
when the level of the pixels corruption is high. While the
accuracies obtained by these two algorithms go down when
the pixels corruption has high level. In the case of 10% and
20% pixels are corrupted, the estimated K is 2 that equals
to the empirical value. In case of 30% and 40% pixels are
corrupted, the estimated values of K are 3 and 4 respectively.
In this case the empirical values of K are 4 and 5. The
accuracies that obtained by empirical values K have relatively
small deviations from the accuracies that obtained by MML
based. If the data contains simple unknown noise we advocate

TABLE V

THE CLUSTERING ACCURACIES (%) OF UNIMODAL GAUSSIAN SCENARIO

TABLE VI

THE CLUSTERING ACCURACIES (%) OF MIXTURE GAUSSIAN SCENARIO

to use the empirical value K . When the data suffers from
serious corruption, we need more Gaussian components to
approximate the unknown noises. In this scenario using the
explorative method is seems blind. Notice that the accuracies
between MML based EM algorithm and the common EM
algorithm are different under the optimal K estimated by
MML based EM algorithm. The reason is that the update
mechanism of mixing weights and covariance matrices MML
based is different from the common EM algorithm.

E. Estimation K Under the Known Noise

In this subsection, we intend to investigate whether the
model (17) can find the proper the number of Gaussian compo-
nents. We use the Gaussian noise N (0.01, 0.02) corrupt the
Extended Yale Face Dataset B, and evaluate the related algo-
rithms. In another experiment, we use a mixture noise which
is a superposition of N (0.01, 0.02) and N (0.03, 0.01) to
corrupt the Extended Yale Face Dataset B, and proceed to
evaluate the concerned models. We select the first 5 subjects
of mentioned dataset in these two experiments. The experiment
results are reported in different tables. We use OursI and
OursII to denote the model (5) and (17) respectively in the
following tables. In the unimodal Gaussian scenario, the esti-
mated K is 2 by OursII which has a deviation from the ground
truth 1. In the mixture Gaussian scenario, the estimated K
equals to 2 by OursII which is just the ground truth. Although,
the modified model (17) may yield to the imprecise K ,
the model (17) provides an illuminating strategy to find the
proper K .

From the two tables we can see that the proposed model (5)
is superior to the other models. And its modified version (17)
provides a satisfied performance.

VIII. CONCLUSIONS

In this paper, we propose a new subspace clustering method
by employing the MoG model to describe the distribution of
complex noise. In fact, the SSC, LRR, LSR, CASS, CIL2,
and MoG are all reconstruction based methods for subspace
clustering by computing a reconstruction matrix which is also
called coefficient matrix. Using the model (1) can be written
in a unified form. The models SSC, LRR, LSR, and CASS
describe the noise as the unimodal Gaussian or sparse type,
while the CIL2 borrows the idea of [28] which deals with
the non-Gaussian noise especially for impulsive noise. In real
scenario, the noise goes beyond the Gaussian or impulsive
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types. Inspired by the property of mix Gaussian distribution,
we use MoG model to group the subspaces. On one hand,
our proposed model can character the complex noise by the
property mix Gaussian model, on the other hand we give the
theoretical analysis shows that the MoG Regression model
maintains the grouping effect. The experiments on motion
segmentation, handwritten digits clustering, and complex face
clustering demonstrate the superiority of our proposed method,
regarding stability and robustness in handling general noise,
over the state-of-the-art subspace clustering methods, SSC,
LRR, LSR, CASS, and CIL2 which assume Gaussian or sparse
noise or impulsive type. In the future, we will deal with the
accelerating aspect of the solution for MoG Regression.

APPENDIX

The detail proof of theorem 1 can be found in [1].
We thus omit it.
Proof of theorem2: Let

Q (zi ) = −L (zi )+ λ‖zi‖2F .

where −L (zi ) replaces −∑N
n=1 ln

(∑K
k=1 πkN (̃en|0,�k)

)

for simplification.
Since zlm

i is the local minimizer of Q (zi ), which reads

0 = ∂ Q (zi )

∂ zi
|zi=zlm

i
= −∂L (zi )

∂ zi
|zi=zlm

i
+ 2λzlm

i (19)

We let
∂L(

zlm
i

)

∂ zi
denote ∂L(zi )

∂ zi
|zi=zlm

i
. Thanks for the Taylor

expansion, we obtain

∂L (
zlm

i

)

∂ zi

= ∂L (
zt

i

)

∂ zi
+

(
∂2L (

zt
i

)

∂ z2
i

)� (
zlm

i − zt
i

)

+ 1

2

(
I ⊗

(
zlm

i − zt
i

))�
(

∂3L (
znt

i

)

∂ z3
i

)� (
zlm

i − zt
i

)
(20)

where znt
i belongs to the ball neighborhood of zt

i and I is an
identity matrix of size M × M . Using (20), we rearrange the
equation (19) that yields to

0 = −1

n

∂L (
zt

i

)

∂ zi
− 1

n

(
∂2L (

zt
i

)

∂ z2
i

)� (
zlm

i − zt
i

)

− 1

2n

(
I ⊗

(
zlm

i − zt
i

))�
(

∂3L (
znt

i

)

∂ z3
i

)� (
zlm

i − zt
i

)

+ 2λ

n
zlm

i (21)

Now employing the regularity conditions (A) − (C) [26],
which reads

1

n

(
∂2L (

zt
i

)

∂ z2
i

)�
= −I

(
zt

i

)+ op (1)

where I
(
zt

i

)
is the information matrix at zt

i .

1

n

(
∂3L (

zt
i

)

∂ z3
i

)�
= Op (1)

Notice the consistency of θ ini
Z − θ t

Z = Op

(
N
−1
2

)
, which

means that θ ini
Z − θ t

Z = op (1). Thus

1

2n

(
I ⊗

(
zlm

i − zt
i

))�
(

∂3L (
znt

i

)

∂ z3
i

)�
= op (1)

After rearrange (21), we get

− 1√
n

∂L (
zt

i

)

∂ zi
= (−I

(
zt

i

)+ op (1)
)√

n
(

zlm
i − zt

i

)

+ 2λ√
n

zlm
i (22)

Note that λ√
N
= o (1) by assumed condition, I

(
zt

i

)
is the

mentioned information matrix. Using the center limit the-

ory, we get − 1√
n

∂L(zt
i)

∂ zi

d−→N (
0, I

(
zt

i

))
, which leads to the

conclusion.
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