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The Augmented Homogeneous Coordinates
Matrix-Based Projective Mismatch Removal

for Partial-Duplicate Image Search
Yan Zheng and Zhouchen Lin , Fellow, IEEE

Abstract— Mismatch removal is a key step in many
computer vision problems that involve point matching. The
existing methods for checking geometric consistency mainly
focus on similarity or affine transformations. In this paper,
we propose a novel mismatch removal method that can cope with
the projective transformation between two corresponding point
sets. Our approach is based on the augmented homogeneous
coordinates matrix constructed from the coordinates of anchor
matches, whose degeneracy can indicate the correctness of anchor
matches. The set of anchor matches is initially all the matches
and is iteratively updated by calculating the difference between
the estimated matched points, which can be easily computed in
a closed form, and the actually matched points and removing
those with large differences. Experimental results on synthetic
2D point matching data sets and real image matching data sets
verify that our method achieves the highest F-score among all the
methods under similarity, affine, and projective transformations
with noises and outliers. Our method can also achieve faster speed
than all other iterative methods. Those non-iterative methods
with slight advantage in speed are not competitive in accuracy
when compared with ours. We also show that the set of anchor
matches is stable through the iteration and the computation time
grows very slowly with respect to the number of matched points.
When applied to mismatch removal in partial-duplicate image
search, our method achieves the best retrieval precision, and its
computing time is also highly competitive.

Index Terms— Point matching, image retrieval, partial-
duplicate image search, mismatch removal, projective transfor-
mation, augmented homogeneous coordinates matrix.

I. INTRODUCTION

PARTIAL duplicate image search is an important problem
in computer vision. Given a query image, the goal is

to search target images in a large database, such as web
images at a billion scale. The target images may contain
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duplicated parts, which may be part of the query image after
scaling, rotation, translation, skewing and projective deforma-
tion. The technology has many applications, such as image
registration [1], copyright infringement detection [2], [3],
security surveillance and redundant image filtering [4], [5].
Nevertheless, it is a difficult problem. On the one hand, there
are a large amount of images distracting search for target
images. On the other hand, the duplicated part may not be
exactly the same as that in the query image because it usually
undergoes some transformations, e.g., due to view change or in
order to counteract the detection.

Image-based search usually relies on the bag-of-features
model (BOF) [6] in computer vision, which treats image fea-
tures as words. Based on the feature points extracted from cor-
responding images (e.g., ASIFT [7], SIFT [8], and SURF [9]
apply to two dimensional images, and MeshDoG [10] apply to
three dimensional depth surfaces), the descriptor consistency
is usually utilized to obtain enough putative matches. Namely,
the feature points are matched if their descriptors are similar.
However, reliable correspondence cannot be ensured only by
the descriptor consistency because the descriptors only encode
local information in an imperfect way. So the retrieval result
offered by the BOF model is unsatisfactory due to the presence
of a lot of mismatches.

Hence it is necessary to use another constraint, geometric
consistency, that putative matches should satisfy, to refine the
coarse matching result. Namely, the geometric relationship
among the points in one image should be preserved in another
image. The points that break the geometric consistency are
considered as mismatches. This is also termed as geomet-
ric verification in computer vision. As the total number of
matches is commonly used as a measurement for re-ranking
the retrieval results, mismatch removal is of great importance
to improve the retrieved results in large scale image search.

Therefore, how to efficiently verify the geometric consis-
tency among the matched points is a key problem. As we
have mentioned above, one of the main difficulties is handling
the complex transformation between the duplicated parts. The
difficulties also lie in the error of the feature location caused
by the detector and a large percentage of unmatched features
caused by occlusions or the limitation of detector, we call
noises and outliers, respectively, in the sequel. Hence, a good
mismatch removal algorithm should establish geometric cor-
respondence between two point sets containing noises and
outliers under complex geometric transformations, in order to
detect as many mismatches as possible.
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In the literature, the commonly considered geometric trans-
formation include similarity transformation and affine trans-
formation, where the similarity transformation involves trans-
lation, rotation and scaling:[

x̂i

ŷi

]
= s ·

[
cos θ − sin θ
sin θ cos θ

]
·
[

xi

yi

]
+

[
tx

ty

]
, (1)

where [̂xi , ŷi ]T and [xi , yi ]T represent the coordinates of the
i th corresponding feature points in two images, and s, θ and
[tx , ty]T are the scaling factor, rotation angle and translation
vector, respectively. The projective transformation is much less
studied due to its difficulty. Accordingly, we can divide all the
mismatch removal methods into three categories, i.e., meth-
ods for similarity transformation [3], [11]–[13], affine trans-
formation [14]–[18] and projective transformation [19]–[21],
respectively. Much work has been done on similarity and affine
matching. Unfortunately, projective transformation is very
common in large scale image databases. So the performance
of these methods drops sharply when projective transformation
exists. Although there have been some iterative methods that
can handle projective transformation [19]–[21], their time
costs for robustly estimating the transformation are relatively
high.

A. Our Contributions

In this paper, we propose a novel mismatch removal algo-
rithm for point sets undergoing projective transformation.
Besides high detection accuracy, our method is much faster
than other ones for projective transformation. Actually, it is
almost the fastest even if it is compared with methods for
similarity transformation only.

Our method is based on a new matrix called the augmented
homogeneous coordinates (AHC) matrix, constructed from the
coordinates of some anchor matches which we temporarily
assume to be correct matches. The rank of the AHC matrix can
be an indicator of whether there exist mismatches in the chosen
anchor matches. The degeneracy of the AHC matrix can be
judged by the determinant of the AHC matrix multiplied
with its transpose. Then given some anchor matches, we can
utilize the determinant to estimate the coordinates of points
in the target image that match those in the query image,
which we call the estimated matched points and have closed-
form solutions. Thus we can find corresponding points in
the target image without explicitly recovering the projective
transformation, which is in stark contrast to RANSAC based
methods [19], [20]. Then the new anchor matches are chosen
as those having relatively small distances between the esti-
mated matched points and the actually matches point, which
we call the reprojection error. The initial set of anchor matches
is simply all the putative matches and the iteration terminates
when the reprojection errors of the anchor matches are all
below a threshold, namely the quality of anchor matches is
good enough. We illustrate the iterative process in Figure 1.

In summary, the main contributions of our paper are as
follows:

• We propose the augmented homogeneous coordinates
(AHC) matrix for projective mismatch removal. Its rank

Fig. 1. Illustration of our AHC matrix based approach. (a) Putative matches
given by the BOF matching between two images that undergo a projective
transformation. Construct AHC matrices based on anchor matches, which is
initially all the putative matches. (b) In the iteration, the distance between
the fourth point in the target image, denoted by the blue diamond, and the
estimated matched point, denoted by the light blue diamond, is greater than a
threshold. Thus the fourth match will not be considered as an anchor match in
the next iteration. (c) The procedure of (a) and (b) iterate until convergence.
In this example, only the fourth match is detected as a mismatch, represented
by the red dashed line.

indicates whether there exist mismatches in the given
anchor matches. The AHC matrices only utilize the
coordinates of features, making our method simple and
general. In comparison, many of traditional geometric
verification methods require extra spatial prior (e.g., scale
and orientation of SIFT features [8]).

• Based on the AHC matrices, we provide closed-form
solutions to estimate the coordinates of matched points in
the target image. Thus we need not recover the underlying
projective transformation.

• We choose new anchor matches by finding those with
relatively small reprojection errors. We show that the
set of anchor matches is stable through the iteration
and our AHC matrix based mismatch removal algorithm
has better performance on robustness in most cases than
least squares based approaches, such as RANSAC based
ones [19], [20].

• We compare our approach with the state-of-the-art geo-
metric verification methods on both synthetic and real
datasets in the tasks of mismatch removal and partial-
duplicate image search. Experimental results show that
our approach achieves the highest accuracy and almost
the fastest speed.

II. RELATED WORK

We review the recent development of geometric consistency
based mismatch removal methods. We classify these methods
into three categories. Namely, methods for similarity transfor-
mation, affine transformation and projective transformation,
respectively.

A. Methods for Similarity Transformation

Detecting mismatches under similarity transformation
(see (1)) is relatively easy. Thus a great many methods
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have been proposed to efficiently verify the geometric consis-
tency maintained by similarity transformation. Representative
methods include:

Weak Geometric Consistency (WGC) Jegou et al. [11]
assumed that matched features should be consistent in ori-
entation and scale. So they collected the differences between
the orientations and the scales of the features in the two
images, forming two histograms. The peak values of the two
histograms indicate the most possible differences in orientation
and scale, which can be used to determine the consistent
matches.

Enhanced Weak Geometric Consistency (EWGC)
Unlike [11], Zhao et al. [3] built a histogram of the �2
norm of the translation vector derived from (1) then found
its peak value. Such a one dimensional value was efficient
for finding matched feature pairs but inevitably loses a lot of
geometrical information.

Strong Geometric Consistency (SGC) On the basis of WGC
and EWGC, Wang et al. [12] first grouped the matches based
on their rotation angles. Then in each group, they utilized
the histogram peak of the translation vector as the dominant
translation of the group. After removing matched feature pairs
with significant differences from the dominant translation in
each group, the number of remaining pairs of the largest group
was used to measure the similarity between two images.

Pairwise Geometric Matching (PGM) Li et al. [13]
used global scaling and rotation relationship to enforce the
local geometric consistency derived from the coordinates of
matches. Mapping the coordinates of points to pairwise rota-
tion and scaling made the method more tolerant to noises.
Also, using filtering steps reduced the number of matches,
leading to relatively high image matching reliability without
high computational cost.

With scales and dominant orientations in SIFT, the above
four approaches try to estimate a similarity transformation
from putative matches. When the transformation between two
images is affine or projective, they will be ineffective.

B. Methods for Affine Transformation

Geometric Coding (GC) Zhou et al. [14], [15] proposed
a spatial coding to encode relative spatial locations among
features, which could encode rotation changes and discover
false feature matches effectively.

Low Rank Global Geometric Consistency (LRGGC)
Inspired by GC [14], [15], Yang et al. [16] modeled the global
geometric consistency with a low rank matrix, then formulated
the problem of detecting false matches as a problem of
decomposing the stacked squared distance matrices into a
low rank matrix representing the true matches and a sparse
matrix representing the mismatches, which can be solved by
the Alternating Direction Method efficiently.

L1-norm Global Geometric Consistency (L1GGC)
Lin et al. [17] first formed the squared distance matrices
from all the matched feature points, which is similarity
invariant. Then L1GGC solves a one-variable �1-norm error
minimization problem by adopting the Golden Section Search
method.

Identifying point correspondences by Correspondence Func-
tion (ICF) Li and Hu [22] proposed an iterative algorithm
based on a diagnostic technique and SVM to learn correspon-
dence functions that mutually map one point set to the other.
Then mismatches are identified by checking whether they are
consistent with the estimated correspondence functions.

Shape Interaction Matrix-based affine invariant (SIM)
Lin et al. [18] proposed a non-iterative mismatch removal
method that achieves affine invariance by computing the
shape interaction matrices of two corresponding point sets.
The method detects the mismatches by picking out the most
different entries between the two shape interaction matrices.

The above five methods are efficient in filtering mismatches
under similarity or affine transformations. However, they fail
when severe projective transformation exists, which is quite
common when retrieving natural images.

C. Methods for Projective Transformation

Handling projective transformation is much more difficult
than similarity transformation and affine transformation due to
its nonlinearity. Thus work on this aspect is relatively sparse.

Random Sample Consensus (RANSAC) As a classic method,
RANSAC [19] and its variants (e.g., MLESAC [20]) tried
to estimate the projective transformation between two images
directly. They repeatedly picked a random subset of the whole
matches to estimate a projective transformation. The trial
procedure was repeated for a fixed number of times or is
terminated when the correspondence error was below a thresh-
old, each time producing either a transformation which is
rejected if too few points are classified as inliers or a refined
transformation with a lower correspondence error.

Vector Field Consensus (VFC) Ma et al. [21] proposed
a vector field learning method, which learns an interpolated
vector motion field fitting the putative matches based on the
Tiknonov regularization in a vector-valued reproducing kernel
Hilbert space. Meanwhile, true matches were estimated by
the EM algorithm. Sparse Vector Field Consensus (Sparse-
VFC) [21] was an improved version of VFC with higher speed
but no performance degradation.

Robust Point Matching (RPM) Wang et al. [23] introduced
and improved a robust registration framework based on partial
intensity invariant feature descriptor, which performed well
even when confronted a large number of outliers in the
correspondence set.

Non-Rigid Point Set Registration with Robust Transforma-
tion Estimation under Manifold Regularization (MR-RPM)
Ma et al. [24] proposed a robust transformation estimation
method based on manifold regularization for non-rigid point
set registration, which iteratively recovers the point correspon-
dence and estimates the spatial transformation between two
point sets.

Locality Preserving Matching (LPM) Ma et al. [25] pro-
posed a locality preserving matching method in 2017, the prin-
ciple of which is to maintain the local neighborhood structures
of the potential true matches. They formulated the problem
into a mathematical model and derived a closed-form solution
with linearithmic time and linear space complexities.
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TABLE I

MAIN NOTATIONS USED IN THE PAPER

RANSAC, MLESAC, VFC and SparseVFC can handle
projective transformation even when a large percentage of
outliers exist. However, RANSAC and MLESAC are based
on randomness and usually need a lot of trials in order to
have satisfactory results. Thus RANSAC and MLESAC are
quite time-consuming. VFC and SparseVFC are somewhat
sensitive to noises and their performances are unsatisfactory
when the initial number of inliers is relatively small. LPM can
accomplish the mismatch removal from thousands of putative
correspondences in a few milliseconds, but it is sensitive to
noises and large percentage of outliers. RPM and MR-RPM
are for non-rigid matching and are quite time-consuming,
unsuitable for image retrieval.

III. OUR APPROACH

In this section, we introduce our mismatch removal algo-
rithm in five parts. We first introduce the augmented homo-
geneous coordinates (AHC) matrix, which lays the foundation
of our method, and illustrate the intuition about this matrix.
Then we deduce how to calculate the estimated matched points
in a robust and efficient way. Next, we present the iterative
procedure for choosing anchor matches. Finally, we test the
robustness of our approach. The major notations used in the
paper are listed in Table I.

A. Modeling Global Geometric Consistency
by the AHC Matrices

In principle, our method can be generalized to any dimen-
sion of projective matching problems. Here we only take
the two-dimensional point matching as an example. Given a
set of putatively matched pairs, let ui = [xi , yi , 1]T ∈ R

3,
i ∈ {1, 2, · · · , n} be the feature points extracted from the
query image Q, and their matched ones ũi = [̃xi , ỹi , 1]T ∈
R

3, i ∈ {1, 2, · · · , n} in the target image Q̃. For notational
simplicity, we assume that the first k pairs of points are correct
matches used for inference and we call them anchor matches.
Initially, we set k = n. When the iteration goes on, k gradually
decreases. Although the first k pairs of points are correct
matches, there may still be noises in the coordinates of the
points due to the imperfection of feature point detector and
numerical quantization.

To make the mathematical deduction simple, we first assume
that there are no noises in correct matches.

Definition 1 (Augmented Homogeneous Coordinates (AHC)
Matrix):

Hx =

⎡
⎢⎢⎢⎢⎢⎢⎣

x̃T � xT

x̃T � yT

x̃T � 1T

xT

yT

1T

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
6×k and Hy =

⎡
⎢⎢⎢⎢⎢⎢⎣

ỹT � xT

ỹT � yT

ỹT � 1T

xT

yT

1T

⎤
⎥⎥⎥⎥⎥⎥⎦

∈ R
6×k,

are called the x and y Augmented Homogeneous Coordinates
(AHC) Matrices, respectively.

Theorem 1: If there exists a projective transformation
between the two point sets

{
ui = [xi , yi , 1]T

}k
i=1 and{

ũi = [x̃i , ỹi , 1]T
}k

i=1, then rank(Hx) � 5 and rank(Hy) � 5.
Proof 1: Assume that the projective transformation matrix

is P = (Pij ) ∈ R
3×3. Then

(P31xi+P32 yi+P33)

⎡
⎣x̃i

ỹi

1

⎤
⎦

= (P31xi+P32yi+P33)

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

P11xi + P12 yi + P13

P31xi + P32 yi + P33
P21xi + P22 yi + P23

P31xi + P32 yi + P33
P31xi + P32 yi + P33

P31xi + P32 yi + P33

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

=
⎡
⎣P11 P12 P13

P21 P22 P23
P31 P32 P33

⎤
⎦

⎡
⎣xi

yi

1

⎤
⎦, i = 1, · · · , k.

Writing the above k equations in a matrix form, we have
⎡
⎣P31 · x̃T � xT + P32 · x̃T � yT + P33 · x̃T � 1T

P31 · ỹT � xT + P32 · ỹT � yT + P33 · ỹT � 1T

P31 · xT + P32 · yT + P33 · 1T

⎤
⎦

=
⎡
⎣P11 · xT + P12 · yT + P13 · 1T

P21 · xT + P22 · yT + P23 · 1T

P31 · xT + P32 · yT + P33 · 1T

⎤
⎦.

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:32:07 UTC from IEEE Xplore.  Restrictions apply. 



ZHENG AND LIN: AHC MATRIX-BASED PROJECTIVE MISMATCH REMOVAL FOR PARTIAL-DUPLICATE IMAGE SEARCH 185

Comparing the first two rows gives

P31 · x̃T � xT + P32 · x̃T � yT + P33 · x̃T � 1T

= P11 · xT + P12 · yT + P13 · 1T ,

P31 · ỹT � xT + P32 · ỹT � yT + P33 · ỹT � 1T

= P21 · xT + P22 · yT + P23 · 1T ,

which show that the rows of Hx and Hy are linearly depen-
dent. So rank(Hx) � 5 and rank(Hy) � 5.

B. Intuition About the AHC Matrix

Any two images of the same planar surface in space are
related by a homography. Much work has been done in
matching or estimation of affine homography, whose last row
is fixed to P31 = 0, P32 = 0, P33 = 1. That is⎡

⎣̃xT

ỹT

1̃T

⎤
⎦ =

⎡
⎣P11 P12 P13

P21 P22 P23
0 0 1

⎤
⎦

⎡
⎣x

y
1

⎤
⎦.

Therefore,
[
x y 1

]T and
[̃
x ỹ 1

]T are linearly related.
However, when the homography matrix represents the pro-
jective transformation that does not degenerate to affine
transformation,

λi

⎡
⎣x̃i

ỹi

1

⎤
⎦ =

⎡
⎣P11 P12 P13

P21 P22 P23
P31 P32 P33

⎤
⎦

⎡
⎣xi

yi

1

⎤
⎦

where

λi = P31xi + P32 yi + P33.

For each point, λi is unknown, which brings great difficulty
in estimating the projective transformation. But if we want to
recover the linear relation between

[
x y 1

]T and
[̃
x ỹ 1

]T ,
we can just multiply [̃xi , ỹi , 1]T by λi . And then, we can
substitute λi by its physical meaning λi = P31xi+P32 yi+P33,
which derives the linear relation among the permutated coor-
dinates in vector form presented in Theorem 1. This idea
is just the basic intuition to construct the AHC matrix in
Definition 1 and Theorem 1.

C. Calculating the Estimated Matched Points
Based on the AHC Matrices

Now we consider a point ui = [xi , yi , 1]T in image Q.
We want to estimate its matched point ui = [xi , yi , 1]T in Q̃.
We show how to compute xi and yi robustly and efficiently.
For brevity, we only give the details of computing xi .

In Hx , every column is only relevant to coordinates of one
pair of matched points. So it is free to append or reduce few
columns. Suppose we get the Hx constructed from coordinates
of two point sets and we assume the data are perfect without
noise and outliers. Then we get another pair of perfectly
matched points, knowing their coordinates. We can construct
the new column by this new pair and append it to Hx . The new
Hx should also have rank 5. Now we look at the added column
and consider the added x to be an unknown variable. When
the value of this variable deviates from the value with the
physical meaning (coordinate x), the rank of Hx becomes 6,

which can be reflected sensitively by its determinant. By this
idea, we derive a method to estimate matched coordinates with
a closed-form solution.

Suppose that [α, β, 1]T exactly matches [xi , yi , 1]T . We add
a column hx

i (α) = [αui ; ui ] = [α·xi , α·yi , α, xi , yi , 1]T to Hx

and obtain

Hx
i (α) = [hx

i (α), Hx ]. (2)

Since all the points are assumed to be matched, by Theorem 1
rank(Hx

i (α)) ≤ 5. Thus det(Hx
i (α)Hx

i (α)T ) should be zero.
However, Theorem 1 is deduced under the assumption that all
the points are correctly matched and there are no noises in the
matched points. These may not be true. Instead, due to the
positive semi-definiteness of Hx

i (α)Hx
i (α)T , most likely we

will have det(Hx
i (α)Hx

i (α)T ) > 0. Thus we can solve

min
α∈R

det(Hx
i (α)Hx

i (α)T ) (3)

instead and assign its minimizer to xi .
Next, we show that det(Hx

i (α)Hx
i (α)T ) is actually a

quadratic function of α. Hence, (3) has a simple closed form.

Theorem 2: Partitioning (HxHx,T )−1 as

[
Zx

11 Zx
12

Zx
21 Zx

22

]
,

the solution to (3) is

x i = −uT
i Zx

21ui

uT
i Zx

11ui
, i = 1, · · · , n. (4)

Proof 2: First,

det(Hx
i (α)Hx

i (α)T ) = det(hx
i (α)hx

i (α)T + HxHx,T ). (5)

Since there actually exist noises in the coordinates, it is
reasonable to assume that Hx is of full rank.1 Therefore
HxHx,T is positive definite. Hence there exists an invertible
square matrix Vx , such that Vx(HxHx,T )Vx,T = I(6). Then
we can check that Vx,T Vx = (HxHx,T )−1 and

det(Hx
i (α)Hx

i (α)T )

= 1

det(VxVx,T )
det((Vxhx

i (α))(Vx hx
i (α))T + I(6))

= 1

det(VxVx,T )

[
1 + hx

i (α)T Vx,T Vx hx
i (α)

]

= 1

det(VxVx,T )

[
1 + hx

i (α)T (HxHx,T )−1hx
i (α)

]

= 1

det(VxVx,T )

(
1 + α2uT

i Zx
11ui +2αuT

i Zx
21ui +uT

i Zx
22ui

)
.

(6)

It is a quadratic function of α and its minimizer is (4).
An efficient Matlab implementation of computing all xi ’s

given in (4), rather than looping (4) from 1 to n, is as follows:

xT = −sum(Bx (4 : 6, :))./sum(Bx(1 : 3, :)),
where Bx =

[
U
U

]
�

([
Zx

11
Zx

21

]
U

)
. (7)

Note that we do not explicitly recover the projective trans-
formation but still obtain the estimated matched points in the
target image. The algorithm to estimate the matched points in

1Even if Hx is degenerate, we may still add small perturbation to Hx and
let the perturbation approach zero. So the following arguments are still valid.
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Algorithm 1 Estimating the Matched Points Based on Existing
Anchor Matches

the target image is summarized in Algorithm 1, where I (t)

is the index set of anchor matches in the t-th iteration whose
choice will be explained immediately.

D. Selecting Anchor Matches

Estimating the matched points requires reliable anchor
matches. Unfortunately, there is no guarantee that the chosen
anchor matches are indeed correct matches. So we have to
update the set of anchor matches iteratively so that it becomes
more and more trustworthy. The initial choice of anchor
matches is simply all the matches, i.e., I (1) = {1, · · · , n}.

A robust method should have relatively small reprojection
errors for correct matches and relatively large reprojection
errors for mismatches. Therefore, we may select anchor
matches which correspond to points with relatively small
reprojection errors. More specifically, in the t-th iteration we
first compute the estimated matched points, stored in U

(t)
,

by Algorithm 1. Then we perform z-score normalization on
the first two rows of Ũ − U

(t)
, getting the mean μ

(t)
x and

variance σ
(t)
x for x coordinates of anchor and the mean μ

(t)
y

and variance σ
(t)
y for y coordinates of anchor. Then indices

whose corresponding matches have relatively small normalized
reprojection errors are considered as in the index set of anchor
matches for the next iteration:

I (t+1) =
{

i

∣∣∣∣∣
∣∣∣∣∣
(̃xi −x (t)

i )−μ
(t)
x

σ
(t)
x

∣∣∣∣∣<δ(t),

∣∣∣∣∣
(ỹi −y(t)

i )−μ
(t)
y

σ
(t)
y

∣∣∣∣∣<δ(t)

}
.

(8)

During the iteration, the threshold δ(t) is gradually lowered,
which means a stricter threshold is set to seek more qualified
anchor matches. In our implementation, we set δ(t+1) =
ρ ∗ δ(t), where ρ ∈ (0, 1) is a constant factor to lower
the filtering threshold δ(t) and we take ρ = 0.98 in all
experiments.

To help decide when to terminate the iteration, we use
a quantity D(t) to measure the quality of anchor matches,

Algorithm 2 Iterative Procedure for Selecting Anchor Matches

defined as the maximum reprojection error among the anchor
matches:

D(t) = max
i∈I (t)

∥∥∥[x (t)
i , y(t)

i , 1]T − [̃xi , ỹi , 1]T
∥∥∥

F
. (9)

If D(t) ≤ end_threshold, where end_threshold is a threshold,
the quality of anchor matches is considered good enough, thus
the iteration should terminate. The anchor match selection
process is summarized in Algorithm 2. Normally, the iteration
terminates quickly.

E. Robustness Analysis on Our Algorithm

In this subsection, we empirically analyze the robustness of
our algorithm.

1) AHC Matrix Based Approach Compared With Least
Squares Based One in Robustness of Estimating Matched
Points: At the first glance, it seems that the framework of our
method is similar to the classic RANSAC in that both are itera-
tive and refine the anchor matches for better estimation. How-
ever, they are of different mechanisms. RANSAC randomly
initializes the set of anchor matches multiple times, while our
method does not. Moreover, our method does not explicitly
recover the projective transformation, while RANSAC esti-
mates the transformation via least squares. Instead, we use
the AHC matrix based approach to directly estimate matched
points in the target image, thus choosing the anchor matches
more straightforwardly. Here we will show that our AHC
matrix based approach is more robust than the least squares
based approach in estimating the matched points, in particular
when the noises and outliers are severe.

We randomly generate a transformation matrix P = [0.189,
0.362, 7.342E −10;−0.423, 0.220,−9.778E −9;−5.334E −4,
2.777E −4, 1] and a point set including 10, 000 points within
an image of 1, 000 × 1, 000 pixels. To test the robustness to
noises and outliers, we first add weak Gaussian noises with
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Fig. 2. (a)-(f) display the reprojection errors (2D vectors) after iteration 2, 4, 6, 8, 10, and 12, respectively. All the error vectors of outliers are marked as
blue scattered points and those for inliers are red. Through the iterations, the reprojection errors gradually approach the ground truth errors. This experiment
ends up with F-score 1 after 12 iterations.

Fig. 3. The reprojection errors after the first iteration by (a) our AHC based method and (b) the least square method. All the reprojection errors (2D vectors)
of outliers are marked as blue scattered points and those for inliers are red. In (a), the reprojection errors of inliers distribute in a much smaller area than
those of outliers, which makes more accurate selection of inliers possible. In contrast, in (b) the reprojection errors of inliers and outliers are mixed up and
distribute across a large area, making the separation of inliers and outliers difficult. The inset figure give the complete range of all the error vectors.

1 pixel standard deviation (μ = 0, σ = 1) to all the true
matched points in the image to simulate the noises caused by
the imperfection of the feature point detector and quantization.
Then we replace 70% of the true matched points in image Q̃
with uniformly randomly chosen points in Q̃. The resulted
matches are regarded as outliers.

After BOF matching, we take all the resulted putative
matches to calculate the estimated matched points in image Q̃.
We call the distance between the true matched point (mapped
by the ground truth transformation) and the actually matched
point as ground truth error. If the ground truth error of a
match is greater than 5 pixels, the match is considered a
mismatch, or outlier. If the error is below 5 pixels, the match
is considered a correct match, or inlier.

Figure 2 displays the reprojection errors (2D vectors) after
certain iterations. We can see the reprojection errors of inliers

distribute in a much smaller region than those of outliers.
Thus it is easy to separate the inliers from the outliers. There-
fore, the anchor matches can be more and more trustworthy.
In comparison, as shown in Figure 3(b), if the estimated
matched points are mapped by the projective transformation
estimated by the least squares method, it is very hard to
separate the inliers from the outliers because they are mixed
up and distribute across a large area.

2) Stability of Anchor Matches: As the reprojection errors
of inliers and outliers are relatively easy to identify, the quality
of anchor matches can be improved constantly through the
iterations, as shown in Figure 2. In this part, we show the
stability of anchor matches through the iterations.

As described in subsection III-D, we determine an index
set of anchor matches in each iteration. If Algorithm 1
works ideally, the set of anchor matches determined in the
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TABLE II

TRACKING WHETHER A POINT IS IN THE SET OF ANCHOR MATCHES
(A) OR NOT (N) THROUGH THE ITERATIVE PROCESS

last iteration should naturally include the one in the current
iteration without extra processing. In the experiment, there are
10, 000 given matches with 100% points added with 1-pixel-
standard-deviation noises and 80% true matched points are
made outliers by replacing them with uniformly random points
in the target image. Algorithm 1 terminates after 9 iterations
with F-score (defined in (10)) 1, which means that all the
outliers are detected correctly.

Part of the tracking results of anchor matches is shown
in Table II. We can see that the set of anchor matches is almost
always shrinking along with iteration. Actually, 97.31% of all
the points have zero or one label change. This experiment
verifies the great stability of our method.

IV. EXPERIMENTS

In this section, we first compare our method with nine state-
of-the-arts for removing mismatches from putative matches in
synthetic datasets, including RANSAC [19], MLESAC [20],
SparseVFC [21], VFC [21], ICF [22], LPM [25], SIM [18],
L1GGC [17], and LRGGC [16]. Then we compare with five
more state-of-the-arts for removing mismatches from putative
matches in real datasets, including GC [14], [15], PGM [13],
SGC [12], EWGC [3], and WGC [11]. These five methods
are not compared with on the synthetic datasets because
they need scale and orientation of SIFT features as input,
which is unavailable from synthetic datasets. Finally, all these
fourteen methods are applied to partial-duplicate image search
to see how they improve the retrieval performance. All the
experiments are done using MATLAB R2016b on a desktop
computer with an Intel Core i5-4570 3.2GHz processor and
32GB of RAM.

We use F-score to evaluate the performance of all the
methods. F-score is defined as:

F-score=2×(precision × recall)/(precision + recall),

(10)

where precision is defined as the number of true positive
matches divided by the number of all positive matches pre-
dicted, and recall is defined as the number of true positive
matches divided by the number of all actual positive matches.
In our experiment, precision and recall have an equal weight
in F-score.

A. Mismatch Removal on Synthetic Datasets

We generate 1, 000 trials in total. For each trial, we ran-
domly generate a projective transformation matrix and a

Fig. 4. Convergence results on synthetic datasets. (a) synthetic dataset with
noise, (b) synthetic dataset with outliers.

point set including 200 points within an image of 1, 000 ×
1, 000 pixels. To make sure that the transformation matrix is
reasonable and meaningful in image matching, we construct a
rectangular pyramid with a square base. Then we use a random
plane to intersect with the pyramid, obtaining a quadrilateral.
Then P is computed as the transformation matrix from the
quadrilateral to the square.

In our evaluation we consider the following two scenarios:
affine transformation and projective transformation. So we
make two copies of the given point set to generate true
matches. One is for affine transformation and the other is
for projective transformation. For affine transformation, we set
P(3, :) = [0, 0, 1] after generating the random P. When two
transformed point sets are generated, we add Gaussian noises
with different standard deviations and outliers with different
percentages to them.

Now we analyze the performance of the methods in com-
parison on synthetic data.

1) Comparison at Different Levels of Noises: For different
levels of noises, we set the standard deviation of Gaussian
noises to be 1, 2, 3, 4, 5, 6, 7, and 8 pixels, respectively.
They are added to 100% data. With added noises, the matches
whose ground truth errors are greater than 2 (3, 4, 5, 6, 7, 8,
and 9 pixels, respectively) are considered as mismatches
(outliers). As is shown in Figures 5(a) and (c), our method
achieves the highest F-score among all the state-of-the-arts
at all levels of Gaussian noises. For affine transformations,
only our method can achieve an average F-score higher than
0.80 at 8 pixels noises. For projective transformations, only our
method can achieve an average F-score higher than 0.78 at all
levels of noises. Moreover, we note that, compared with results
on affine transformations, our method can handle projective
transformations well with less drop in F-score. Though SIM
is the only algorithm other than our method that can achieve an
average F-score higher than 0.70 under affine transformations
at 8 pixels, its F-score under projective transformation is
about 0.1 lower than that under affine transformation, because
it is designed for affine transformation only. This testifies to
the effectiveness of our method on projective transformations.

2) Comparison at Different Percentages of Outliers: To
make the data even more challenging, we combine weak
noises with outliers in this experiment. We first add weak
Gaussian noises with the standard deviation of 1 pixel (μ = 0,
σ = 1) to all the points to simulate measurement errors.
Next, by replacing 10%, 20%, 30%, 40%, 50%, 60%, 70%,
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Fig. 5. The average F-scores of ten methods on synthetic datasets under different: (a) standard deviations of Gaussian noises under affine transformation,
(b) percentages of outliers under affine transformation, (c) standard deviations of Gaussian noises under projective transformation, (d) percentages of outliers
under projective transformation.

and 80% true matched points with uniformly random ones in
the target image, we have different percentages of outliers.
As is shown in Figures 5(b) and (d). Though our method,
RANSAC, MLESAC, VFC, and SparseVFC all have satisfac-
tory robust performance in this test, the time cost of RANSAC,
MLESAC, and VFC is much higher.

3) Comparison on Computing Efficiency: The computing
time of the methods in comparison are shown in Table III.
Our method achieves the best performance on detecting true
matches with almost the shortest time. Its time cost is only
higher than SIM and LPM, two non-iterative methods.

To conclude, our AHC matrix based method demonstrates
its capability of handling strong affine and projective transfor-
mations and achieves higher F-score than those of the state-
of-the-arts. It is also shown to be quite robust under noises
and outliers.

B. Mismatch Removal on Real Image Dataset

In this subsection, to test the performance of our method
under several types of transformations and distortions,
we select Mikolajczyk and Schmid [26] as the benchmark
dataset, which has forty images in eight groups. Each group
includes five matched images with similarity, affine and pro-
jective transformations and different lighting conditions. The
ground truth transformation matrices between the query image
and the five matched images are provided respectively, which

TABLE III

AVERAGE F -score AND TIME COST COMPARISON OF TEN

METHODS ON THE SYNTHETIC DATASET WITH AFFINE

OR PROJECTIVE TRANSFORMATION

help calculate the true matched points. We take the points
whose ground truth errors are within 5 pixels as the correct
matches. We use ASIFT [7] with default settings as the
detector and descriptor to obtain putative matches. The average
percentage of the correct matches in the dataset is 94.34%, and
the average number of putative matches is about 3, 468.

Table IV shows comparisons between our method and other
fourteen state-of-the-arts on the average F-score and the
average time cost. In the experiment, our method achieves the
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TABLE IV

COMPARISONS AMONG ALL THE METHODS ON THE AVERAGE F -score
AND TIME COST ON THE MIKOLAJCZYK AND SCHMID DATASET

highest F-score with almost the fastest speed, our average
runtime is merely 4ms. Note that we also count the average
number of iterations of each method. Results in Table IV
display that in average our method only requires 1.5 iterations,
while all the others require more than 5. This also explains
why our method excels in speed on the dataset though it is
iterative.

In Table IV, the competitive methods are those whose aver-
age runtime is shorter than 1s and whose average F-scores
are higher than 0.95, including our method, SparseVFC, SIM,
and LPM. Figure 8 shows the curves of these four algorithms,
reflecting the increase of their average runtime with respect to
the increase of the number of putative matches. We can see
that the average runtime of SIM is sensitive to the number of
putative matches on the Mikolajczyk and Schmid dataset, but
the speed of our method and SparseVFC is not significantly
influenced by the number of putative matches. Note that SIM
is non-iterative. In the inset figure, we can see that the growth
of time cost of our method is much more stable than that of
SparseVFC, besides being lower.

In addition, the F-scores of all the methods on the ‘graf’
group are shown alone in Figure 6, The group includes five
matched image pairs with strongly projective transformations
on the Mikolajczyk and Schmid dataset. Our method achieves
the highest F-score among all the state-of-the-art geometric
verification methods under strongly projective transformation.

As the Mikolajczyk and Schmid dataset includes only
two groups with strongly projective transformations, we have
captured 50 image pairs naturally in wild. The natural distor-
tions in these image pairs are mainly presented as projective
transformations caused by different viewpoints of acquisition.
Due to the limitation of space, five examples of these pairs are
shown in Figure 7(a). After obtaining the putative matches of
these image pairs by ASIFT, we follow the strategy in [25] to
determine the ground-truth of each image pair. The sizes of the
captured images are all 800 × 600. The average percentage of

Fig. 6. The F-score of 2nd-6th ‘graf’ image matching 1st image with the
strongly projective transformation on the Mikolajczyk and Schmid dataset.

TABLE V

COMPARISONS AMONG ALL THE METHODS ON THE AVERAGE F -score
AND TIME COST ON THE SELF-CAPTURED IMAGE PAIRS

the correct matches is 85.25%, and the average number of
putative matches is 1, 196. The average F-score and time
cost of all methods on the self-captured projective image
pairs are reported in Table V. According to the statistics, our
method achieves the highest F-score with the second fastest
speed. The only method faster than ours, WGC, achieves the
unsatisfactory F-score 0.59 compared with our 0.95. The
competitive methods are those whose average F-scores are
higher than 0.90. Figures 7(b), (c), (d), and (e) display the
visual effect of mismatch removal result by these algorithms,
that is our AHC, RANSAC, VFC/SparseVFC, and LPM,
respectively. The visual effect of MLESAC is the same as
RANSAC. In comparison, Figures 7(f) and (g) display the
visual effect of ICF and PGM, respectively, which have less
competitive F-scores of 0.89 and 0.85, presenting obviously
more false matches than the former ones.
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Fig. 7. (a) Five examples of image pairs with projective transformations
captured naturally in wild. (b), (c), (d), (e), (f), and (g) The visual effect
of mismatch removal result by our AHC, RANSAC, VFC/SparseVFC, LPM,
ICF and PGM, respectively. The visual effect of MLESAC is the same as
RANSAC. The true positive pairs are in blue. The true negative pairs are
in green. The false positive pairs are in yellow. The false negative pairs are
in red.

Fig. 8. The curves of computing time of our AHC matrix based method, SIM,
SparseVFC and LPM vs. number of putative matches. The inset figure gives
more details near the horizontal axis.

C. Convergence Analysis on Our Algorithm

In this section, we present the empirical convergence analy-
sis of our algorithm by the data from the synthetic dataset.
We generate a projective transformation matrix and a point
set including 200 points in each trial and run 2,000 times for
synthetic experiments with noises and outliers respectively.

For the data with noise, we record the squared error from
the estimated coordinates to the real coordinates of the batch
of images in each iteration. The average error vs. iteration
is plotted in Figure 4(a). Similarly, Figure 4(b) show the
convergence performance on data with outliers.

TABLE VI

THE AVERAGE MAP AND THE AVERAGE TIME COST COMPARISON
AMONG ALL THE METHODS ON THE THREE

DATASETS WITH 10K DISTRACTORS

D. Mismatch Removal for Partial-Duplicate Image Search

In this subsection, we apply our method to partial-duplicate
image search to test its robustness and efficiency. We compare
it with other fourteen state-of-the-art geometric verification
methods on the performance of filtering outliers. The number
of remaining matches is considered as a measure for re-ranking
the coarse retrieval results by BOF matching.

1) Datasets: We test and evaluate on three popular bench-
mark datasets, the GCDup dataset [27] with 1, 104 partial-
duplicate images in 33 groups collected from the Internet,
the Holiday dataset [11] with 1, 491 near-duplicate images in
500 groups taken on many different scenes and the Oxford5k
dataset [28] with 5, 062 high resolution photos in 55 groups
collected from Flickr by searching for some famous landmarks
in Oxford. We set the first five images of each group in the
three benchmark datasets as the query images. Then the rest
of the images in the same group are expected to be ranked at
the top of the retrieval results. We also use the MIRFlickr-1M
dataset [29]2 as distractors. It contains one million unrelated
images downloaded from Flickr.

2) Experiment Settings: After getting features from
ASIFT [7] on the three benchmark datasets, we use the method
of hierarchical k-means clustering [5] to train a codebook,
which have one million visual words. Each 128-dimension
feature descriptor is quantized into a visual word with the
trained codebook. Once the visual words of one pair of feature
points are the same, the pair is determined as a putative match.

Then we filter the mismatches with all the mismatch
removal methods. Every method has its own number of
remaining matches for re-ranking the coarse retrieval results.
With different numbers of distracting images 1K , 10K , 100K ,

2The image retrieval community often utilizes MIRFlickr to examine the
scalability and robustness performance of a method by adding different
numbers of its images to the benchmark datasets as distractors.
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Fig. 9. The mAP on the three benchmark datasets after applying all the geometric verification methods with different number of distractor images.
(a) Holiday dataset. (b) GCDup dataset. (c) Oxford5k dataset. (d) The mAPs on the strongly projective dataset with different numbers of distractors.

and 1M , the re-ranking range is set to be the top 500, 1, 000,
5, 000, and 10, 000 images of the coarse retrieval results,
respectively.

3) Evaluation Metrics: We evaluate the accuracy of com-
pared methods with mean average precision (mAP) [27] and
evaluate their speed with average computing time.

The mAP is defined as: m AP = ∑Q N
q=1 AP(q)/QN , where

QN is the number of queries and AP(q) is the average
precision of the qth query. AP [28] is the area under the
precision-recall curve. AP = ∑

r∈R(Nrel/r)/Nall , where r
means the r -th ranked images, R is the set of all the truly
relevant images, Nrel is the total number of R, and Nall is the
number of all the images.

4) Performance and Discussions: Figure 9 displays the
mAPs of all methods on the three datasets. Our method
achieves the highest performance in mAP among all compared
methods. Without any geometric verifications, BOF gets the
worst results.

To put more emphasis on images with strongly projective
transformation, we manually select 20 groups of images from
the three benchmark datasets which have strongly projective
transformation between them. Part of the examples are shown
in Figure 10. Figure 9(d) gives the mAPs of all methods on

Fig. 10. Examples of the pairs of images with strongly projective transfor-
mations selected from the three benchmark datasets.

this dataset. As one can see, our method performs better than
all the other ones.

Table VI shows the average mAP and the average time cost
per image query of all methods on the three datasets with
10K distractors. The time costs of feature extraction, codebook
generation, and feature matching are excluded, as they are
common steps in all these methods. We can see that our
method is only slower than EWGC and WGC, two non-
iterative methods. But they both achieve lower mAPs.

According to the above results, we conclude that our
method is more suitable for handling projective transformation
efficiently.
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V. CONCLUSIONS

We propose a novel mismatch removal method based on
the newly constructed augmented homogeneous coordinates
matrix. Given anchor matches, we only use the coordinates
of feature points to construct augmented homogeneous coor-
dinates matrices to establish the geometric and algebraic
correspondence between two images. The AHC matrix based
approach gives robust estimation on the matched points in
the target image and can select high-quality anchor matches
iteratively. Compared with state-of-the-arts, our method is
simpler, faster, and is robust to projective transformations and
noises and outliers, as shown in experimental results on both
synthetic data and real data. In the future, we will target
on giving in-depth theoretical analysis on the robustness of
our AHC matrix based approach and generalizing our method
to handle more complex transformations, such as articulated
motion and non-rigid deformation.
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