
406 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Binary Multidimensional Scaling for Hashing
Yameng Huang and Zhouchen Lin , Senior Member, IEEE

Abstract— Hashing is a useful technique for fast nearest
neighbor search due to its low storage cost and fast query speed.
Unsupervised hashing aims at learning binary hash codes for
the original features so that the pairwise distances can be best
preserved. While several works have targeted on this task, the
results are not satisfactory mainly due to the over-simplified
model. In this paper, we propose a unified and concise unsuper-
vised hashing framework, called binary multidimensional scaling,
which is able to learn the hash code for distance preservation
in both batch and online mode. In the batch mode, unlike most
existing hashing methods, we do not need to simplify the model
by predefining the form of hash map. Instead, we learn the
binary codes directly based on the pairwise distances among the
normalized original features by alternating minimization. This
enables a stronger expressive power of the hash map. In the online
mode, we consider the holistic distance relationship between
current query example and those we have already learned, rather
than only focusing on current data chunk. It is useful when
the data come in a streaming fashion. Empirical results show
that while being efficient for training, our algorithm outperforms
state-of-the-art methods by a large margin in terms of distance
preservation, which is practical for real-world applications.

Index Terms— Hashing, approximate nearest neighbor search,
large-scale image search, multidimensional scaling.

I. INTRODUCTION

THE recent decade witnessed the flourish of the notion
“Big Data”. With the explosive growth of data, large-

scale information retrieval has attracted significant attention.
Given a query, it becomes a challenge to retrieve the desired
information from the datasets in the magnitude of millions
or billions, because traditional nearest neighbor search that
based on linear scan would fail in terms of both efficiency
and storage. To overcome this difficulty, efforts have been
made to alternative solution, namely Approximate Nearest
Neighbor search (ANN). This technique has been widely
used in document retrieval [11], recommendation system [29],
image matching [30], image retrieval [31], object detection [4],
etc.

Manuscript received December 7, 2016; revised June 5, 2017,
August 3, 2017, and September 15, 2017; accepted September 15, 2017.
Date of publication October 4, 2017; date of current version November 3,
2017. The work of Z. Lin was supported in part by the National Basic
Research Program of China (973 Program) under Grant 2015CB352502,
in part by the National Natural Science Foundation of China under Grant
61625301, Grant 61731018, and Grant 61231002, and in part by Qual-
comm. The associate editor coordinating the review of this manuscript and
approving it for publication was Prof. Dacheng Tao. (Corresponding author:
Zhouchen Lin.)

The authors are with the Key Laboratory of Machine Perception (Ministry of
Education), School of Electronics Engineering and Computer Science, Peking
University, Beijing 100871, China, and also with the Cooperative Medianet
Innovation Center, Shanghai Jiao Tong University, Shanghai 200240, China
(e-mail: huangyameng@pku.edu.cn; zlin@pku.edu.cn).

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TIP.2017.2759250

Hashing methods are among the most representative ANN
algorithms, which embed high-dimensional real vectors to
low-dimensional binary vectors. When additional label infor-
mation is not available, these algorithms can be further cat-
egorized as unsupervised hashing. The goal of unsupervised
hashing is to learn a hash map, namely a set of functions. Each
function takes the original features as input and generates a
binary output. By concatenating this set of outputs, we get
the binary codes of the examples, which are supposed to best
preserve the similarity (distance) structure [28]. This could be
viewed as a multidimensional scaling problem [2] constrained
in Hamming space. Unfortunately this problem is NP-hard due
to its discrete and non-convex nature. In order to get the results
in a reasonable time, we have to resort to its approximation.
To obtain a better solution, we may need to minimally relax
the constraints in the original problem. The design of such an
algorithm is still a great challenge.

Another challenge in real applications is that data sometimes
become available in a streaming fashion. In addition, for a truly
large scale dataset, data are usually stored on a distributed disk
group and are too large to be loaded into memory. We have to
turn to online hashing in these scenarios. The main difficulty
here is to reasonably model the connection between newly
arrived data and the data we have already seen so that the
holistic distance relationship between the example pairs could
be best preserved.

In this paper, we present a novel scheme for unsupervised
hashing, called Binary Multidimensional Scaling (BMDS),
which tries to address the challenges of both batch learning
methods and online learning methods we have mentioned
above. Our goal is to learn the binary codes such that the
pairwise distances between example points can be preserved.
In the batch mode, we generate the binary codes directly
by Alternating Minimization, based on the original features,
without predefining the form of hash functions or over-relaxing
the original problem. This makes the binary codes inference
accurate and scalable. We also have a tailored out-of-sample
extension, namely the algorithm to generate the hash codes
for the examples that are not in the training database, which
is able to preserve the holistic pairwise distances between the
new queries and the database. In the online mode, we learn
the connection between the current chunk and the previous
ones when updating the hash functions, without sacrificing the
efficiency. It turns out by experiments that the results are more
accurate. In summary, the main contributions of this work are
as follows:

• We propose a novel formulation and an optimization
method for binary codes inference without predefining
the form of hash functions. This enables the maxi-
mum expressive power of binary hash codes generation.

1057-7149 © 2017 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

https://orcid.org/0000-0003-1493-7569


HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 407

The proposed method is efficient and accurate in distance
preservation.

• We design a tailored out-of-sample extension which is
effective in generating binary codes for new data. We
not only validate the performance empirically, but also
provide a theoretical analysis on the error between our
solution and the globally optimal one.

• Our algorithm also enables an efficient online learn-
ing extension, which studies the distance relationship
between the current query example and those we have
already learned. Thus it outperforms the state-of-the-art
online hashing methods in terms of the retrieval accuracy.
This is valuable in real-world applications when the data
are provided in sequence.

II. RELATED WORK

Representative ANN algorithms could be roughly catego-
rized as tree-based, vector quantization (VQ), and hashing
methods. Tree-based methods [7] seek to store the reference
examples in a tree, the complexity of which is usually log-
arithmic time with respect to the number of examples. It is
fast for search, but may suffer from memory constraints.
VQ [8], [14] methods either build inverted indexing or quan-
tize vectors into codewords for search. Both schemes enable
efficient sub-linear time retrieval and light memory cost, while
preserving the precision to some degree. Hashing methods
map the original features into low-dimensional binary codes
such that the neighborhood structure in the original space is
preserved. With the binary-code representation, it enables fast
nearest neighbor search by using lookup tables or Hamming
distance based ranking, which is even faster than VQ. It is
also efficient for large-scale data storage. In a word, these
methods have quite different design philosophy and achieve
different tradeoff in efficiency and accuracy. Thus they have
their own advantage and the usage of which relies on the real-
world scenarios. In this paper, we will focus on hashing-based
methods.

Due to its importance, many efforts have been devoted to
the research of hashing algorithms. Based on whether the
analysis of a given dataset is required, there are two categories
of hashing techniques: data-independent and data-dependent.
Locality-Sensitive Hashing (LSH) [9] and its variants [19],
[29] are representative data-independent methods which gen-
erate hash codes via random projections. Although they are
ensured to have high collision probability for similar data
items, in practice they usually need long hash bits and multiple
hash tables to achieve both high precision and recall, which
may restrict their applications. So in this paper we mainly
discuss data-dependent methods. Subject to the availability of
additional label information, these methods can be further clas-
sified as unsupervised, supervised, and semi-supervised [34].
Unsupervised methods [10], [12], [17], [23], [24], [26], [38]
try to preserve the Euclidean distances (similarities) which
are calculated in the original feature space, while in super-
vised [5], [20], [22], [27] or semi-supervised [33], [39] set-
tings, label-based similarities could be incorporated to narrow
the semantic gap. Since additional label information is usually

unavailable in real applications, we concentrate on unsu-
pervised hashing in this work. Representative unsupervised
hashing methods include Iterative Quantization (ITQ) [12],
Circulant Binary Embedding (CBE) [38], Bilinear Binary
Embeding (BBE) [10], Asymmetric Inner-product Binary
Coding (AIBC) [26], Spectral Hashing (SH) [36], Anchor
Graph Hashing (AGH) [23], Binary Reconstructive Embed-
ding (BRE) [17], Discrete Graph Hashing (DGH) [21], and
Scalable Graph Hashing (SGH) [15].

As mentioned above, unsupervised hashing is in essence
a nonconvex and discrete problem. Besides relaxing the vari-
ables to continuous ones, previous works further simplified the
problem. For example, ITQ, CBE, BBE, and AIBC further
constrained the hash map to be linear perceptrons. SH uses
eigen-function as the hash map. AGH, SGH, DGH, and
BRE use graph, which relies on the choice of anchor points,
to approximate the holistic similarity (distance) relationship.
These simplifications usually suffer from the loss of informa-
tion, thus may lead to unsatisfactory accuracy.

As for online hashing, currently there is relatively few works
in this aspect. Among these approaches, Online Kernel-based
Hashing (OKH) [13] and Adaptive Hashing (AdaHash) [3]
update the parameters of hash functions according to pairwise
similarity of the newly available data pair and meanwhile stay
close to the old one. Online Sketch Hashing (OSH) [18] learns
a small size sketch for each data chunk and updates the hash
functions based on the data sketch. While being efficient, these
methods update the parameters only based on newly arrived
example pair or chunk. That is to say, they do not explicitly
build the model based on all the examples that appeared so far.
Thus the result might be inaccurate in preserving the holistic
distances.

III. BACKGROUND

Let X ∈ R
m×n denote the training examples in the data-

base, where n is the number of training examples and m
is the dimension of features in the original feature space.
Each column of X denotes an example in the database.
The goal of our algorithm is to learn the binary codes
Y ∈ {−1, 1}d×n for training examples as well as y ∈ {−1, 1}d

for each out-of-sample query x ∈ R
m , so that the pairwise

distances are well preserved. Different objective functions,
such as similarity-distance product minimization (SDPM) [36],
similarity-similarity difference minimization (SSDM) [35],
and distance-distance difference minimization (DDDM) [17],
lead to different algorithms.

Since we want the pairwise distance to be best preserved
by our hashing scheme, our algorithm falls into the class of
DDDM. The goal of DDDM is to minimize

∑
i, j (d

o
i j − dh

i j )
2,

so that the difference between the original feature distance do
i j

and the Hamming distance dh
i j is as small as possible. Binary

Reconstructive Embedding (BRE) [17] belongs to this group.
The objective function is:

min
∑

i, j

(
1

2
‖xi − x j‖2

2 − 1

2d
‖yi − y j ‖2

2

)2

. (1)



408 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

It aims at learning parameters {wmt } for a set of kernel-based
hash functions {hm(·)}, such that

ym = hm(x)=sgn

(
Tm∑

t=1

wmt K (smt , x)

)

, m = 1, 2, · · · , d,

(2)

where {smt } are anchor points, Tm is the total number of anchor
points, and K (·, ·) is a kernel function.

One should be reminded that ‖yi‖2
2 = d is a constant in (1).

If we assume that xi is normalized to have unit �2 norm,1

(1) can be transformed to the Maximum Inner Product Search
problem (MIPS) [29]:

Y ∗ = argminY

∑

i, j

(
1

2
‖xi − x j‖2

2 − 1

2d
‖yi − y j‖2

2

)2

= argminY

∑

i, j

‖d xT
i x j − yT

i y j ‖2

= argminY ‖Y T Y − d XT X‖2
F , s.t . Y ∈ {−1, 1}d×n.

(3)

Instead of directly solving (3), Shrivastava and Li [29] propose
an “Asymmetric LSH” scheme, which is based on random
projection, to generate the binary codes so that the inner
products between the examples could be preserved with high
probability. Since it is data-independent, the accuracy might
be low. Asymmetric Inner-product Binary Coding (AIBC) [26]
provides an asymmetric data-dependent, namely learning-
based solution, to learn the optimal in (3). Specifically, it
solves the following problem:

min
W ,R

‖ sgn(W T A)T sgn(RT X) − d AT X‖2, (4)

where W and R are two sets of parameters that we need to
learn from two sets of examples X and A such that the inner
products between their generated binary codes can preserve
the inner products between the original data vectors.

Unlike previous works which predefine the form of hash
function and learn from the data in a parametric way, Dis-
crete Graph Hashing (DGH) learns the binary codes directly
without involving the hash map. Specifically, they optimize
the following objective function:

max
B

tr(BT AB)

s.t . B ∈ {1,−1}n×r , 1T B = 0, BT B = n Ir , (5)

where A is a data-to-data affinity matrix obtained from
anchor graph. However, as it further relies on anchor graph
to approximate the pairwise similarity relationship and puts
additional balance and orthogonal constraints on binary codes,
the solution may further deviate from the the optimal one.
In addition, as they use SSDM instead of DDDM, the pairwise
distance may not be best preserved.

1It is common for preprocessing. Actually, to make DDDM feasible, we
have to maintain a proper scale for comparing distances in the input space
with distances in the Hamming space.

IV. BINARY MULTIDIMENSIONAL SCALING

A. Binary Codes Generation

Assume that each column of X has been normalized in
the �2-norm. We propose a more elegant and natural way to
solve the problem (3) and generate binary codes Y for training
example X . Unlike previous work which either explicitly con-
strains the form of hash map from X to Y or utilizes additional
approximation like the anchor graph and the balance and
orthogonality of binary code, we try to solve (3) directly. We
wish to gain better solution by less relaxation or approximation
to the original problem.

Since the objective function is quadratic with respect to
binary variable X , it is hard to solve directly. To overcome
this difficulty, we propose to introduce the auxiliary variable
B. In this way, problem (3) could be rewritten as:

(Y ∗, B∗) = argminY ,B ‖Y T B − d XT X‖2
F ,

s.t . Y = B, Y � B = E. (6)

Here � means the entry-wise matrix multiplication and E
represents the matrix whose entries are all 1’s. (6) is still hard
to optimize due to its equality constraints. We may relax the
problem as an unconstrained one with a penalty term over the
violation of the equality constraints:

(Y ∗, B∗) ≈ argminY ,B L(Y , B; λ)

= 1

2
‖Y T B − d XT X‖2

F

+ λ

2

(
‖Y − B‖2

F + ‖Y � B − E‖2
F

)
. (7)

Note that as λ goes to +∞, the optimal solution to (7) will
coincide with the solution to (6). We propose to solve (7)
directly by Alternating Minimization. It is an iterative proce-
dure and will eventually converge to a binary solution as we
gradually increase λ during the iterations. Specifically, each
iteration consists of three steps:

1) Update Y:

Yi+1 = argminY L(Y, Bi ; λi ). (8)

2) Update B:

Bi+1 = argminB L(Yi+1, B; λi ). (9)

3) Update λ:

λi+1 = min(ρλi , λmax). (10)

The algorithm terminates when

max{‖Yi+1 − Yi‖∞, ‖Bi+1 − Bi‖∞} < ε1, (11)

and

max{‖Yi+1 − Bi+1‖∞, ‖Yi+1 � Bi+1 − E‖∞} < ε2, (12)

where ‖ · ‖∞ denotes the maximum absolute values of the
entries in a matrix.

It is worth mentioning that all these steps have closed-form
solutions. For example, in step 1, to achieve the minimum, the



HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 409

gradient of the objective function with respect to Y must be
zeros. That is,

∂L
∂Y

= Bi (BT
i Y − d XT X) + λ(Y − 2Bi + Y � (Bi � Bi ))

= 0. (13)

Define Fi = Bi BT
i + λi I , Gi = λi (Bi � Bi ), and

Hi = 2λi Bi + d Bi XT X . Denote the j-th column of Gi , Hi ,
Bi , and Y as g j , h j , b j , and y j , respectively. It is easy to see
that y j is the solution to the equation

(Fi + diag(g j ))y = h j . (14)

Namely, y j = (Fi +diag(g j ))
−1h j . In a similar way, one can

get n columns of Yi+1 by solving n linear equations. Since
these equations are independent, it is easy to accelerate the
algorithm by parallelization when n is large. Analogously, we
can obtain the solution in step 2. We may gradually increase λ
to impose the binary constraint in step 3. The above procedure
will eventually converge to a local minimum [1] with Y and B
randomly initialized, as the objective function is smooth.

During the experiments, we set ε1 = ε2 = 0.01, λ0 = 0.5,
ρ = 1.5, and λmax = 105.

B. Out-of-Sample Extension

Given the database X and its binary hash codes Y , we get
the optimal binary code y for an out-of-sample query x by
minimizing the similar objective function:

y∗ = argminy

∑

i

(
1

2
‖x − xi‖2

2 − 1

2d
‖y − yi‖2

2

)2

= argminy ‖Y T y − d XT x‖2
2, s.t . y ∈ {−1, 1}d . (15)

Let Y T = QS be the polar decomposition of Y T ,
where Q is column orthonormal and S = (YY T )1/2 is
positive-semidefinite. Denote b = XT x, and b̃ = d QT b, (15)
is equivalent to:

y∗ = argminy ‖Sy − b̃‖2
2, s.t . y ∈ {−1, 1}d . (16)

Solving (16) is also NP-hard in general. However, if S is a
diagonal matrix whose entries are all positive, the solution is
simply given as y∗ = sgn(b̃). Actually, under mild assump-
tions below, we can show in Lemma 1 that S is close to a
diagonal matrix with extremely high probability when n, the
number of training examples, is large.

Assumption 1: Assume that each entry of Y is an i.i.d.
Bernoulli random variable, so that P(Yi j = 1) = P(Yi j =
−1) = 1

2 for any i ∈ {1, 2, · · · , d}, and j ∈ {1, 2, · · · , n}.
The independence among the bits of hash codes is natural if

we want all available hash codes to be uniformly distributed,
and it may not harm the preservation of the distances among
features. Note that it does not mean that given a feature the
bits of its hash code can be arbitrary.

Lemma 1: Based on Assumption 1, |Sii − √
n| ≤ C1ε

√
n

and |Si j | ≤ C2ε
√

n (i 
= j ) hold with probability at least

1 − d(d − 1) exp
(
− nε2

2

)
, where C1ε = c(d − 1)2ε2, C2ε =

c(d − 1)2ε2 + 1
2ε, and c is a constant that makes |√1 + γ −

1 − 1
2γ | ≤ cγ 2 true when |γ | ≤ (d − 1)ε.

The proofs in this section can be found in appendix. Next,
we point out that even if S is not strictly diagonal, we have
y∗

i = sgn(b̃i ) if |b̃i | is “large enough”.
Lemma 2: Let y∗ be the optimal solution to (16). If

|b̃i | > C0i �
∑

j 
=i(
∑

k 
=i |Sjk| + |b̃ j |)|Si j |
Sii

+
∑

k 
=i

|Sik |, (17)

then the i-th bit of y∗ must be sgn(b̃i).
Note that distinguishing whether |b̃i | is “large enough”

is meaningful because when |b̃i | is small, its sign can be
considered as ambiguous. Both the Lemmas above suggest
that sgn(b̃) might be a good approximate solution to (16).
However, the quantized least squares (QLS) solution

ŷ∗ = sgn
(

S−1 b̃
)

= sgn
(

Y+XT x
)

, (18)

where Y+ is the pseudo-inverse of Y , may be more natural as
the solution to (16) is S−1 b̃ if the binary constraint is removed.
The rationality and error bound of the QLS solution are
provided in Lemma 3 and Theorem 1, respectively. Namely,
sgn
(

b̃i

)
= sgn

(
(S−1 b̃)i

)
holds with large probability as

the number of example points increases, and the difference
between the objective function values with sgn(b̃) and global
optimal could be upper bounded, so that the error between
the QLS solution and the global optimal solution could be
estimated.

Lemma 3: Based on Assumption 1, if b̃i satisfies (17)

and ε < 1
2(d−1) , then sgn

(
b̃i

)
= sgn

(
(S−1 b̃)i

)
holds

with probability at least 1 − 2d(d − 1) exp(− nε2

2 ) −
2d exp

(

− C2
0i

2
[
(d−1)(2d−1)C̃3εε

]2

)

, where C̃3ε = d(1 + 2d(d −

1)2ε2 + (d−1)ε
2 ).

Theorem 1: Based on Assumption 1, if the first r bits in b̃
satisfy (17) and ε < 1

2(d−1) , then with probability at least 1 −
2d(d −1)r exp(− nε2

2 )−2d
∑r

i=1 exp

(

− C2
0i

2
[
(d−1)(2d−1)C̃3εε

]2

)

,

the difference between the objective function values with the
QLS solution and the global optimal solution y∗ is upper
bounded by

4
∑

i

(
∑

k

|Sik | +
∣
∣
∣b̃i

∣
∣
∣

)(
∑

k>r

|Sik |
)

− 4
∑

i>r

S2
ii , (19)

where C̃3ε is the same as in Lemma 3.
Note that in real problems, C0i is usually of the magnitude

of O(ε
√

n), thus the probability in Lemma 3 and Theorem 1 is
very close to 1 when n is large. Moreover, the computational
complexity of QLS solution is no more expensive than taking
the sign of b̃ directly as explicitly calculating b̃ relies on the
polar decomposition of Y T . Besides, the adoption of the QLS
solution allows an online learning extension, which will be
shown later. One should also be reminded that in practice
A � Y+XT can be pre-computed. Thus for out-of-sample
query xnew, its hash code can be easily obtained at a low
cost, by ynew = sgn(Axnew).



410 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

One should be reminded that we only use linear perceptrons
as hash map in out-of-sample query stage as a result of
theoretical analysis. The hash codes for the whole database and
training set are generated by alternating minimization, without
confining the form of hash function. This distinguishes our
work from previous ones.

C. BMDS With Sampling

Our method is scalable for big data at the scale of millions.
For truly large datasets, we may resort to the sampling
technique to accelerate the training stage and save the memory.
Specifically, we randomly select a small portion of the exam-
ples (10% in our experiments) in the database as the training
set. Then the remaining examples are treated as out-of-sample
queries, whose codes are predicted by (18). We will show that
significant acceleration can be achieved by doing so without
sacrificing much accuracy.

D. Online Learning Extension

Our method also enables a natural online learning extension
inspired by QLS. Suppose that we have already obtained n
examples in the databset and we have learned binary codes
Yn from the data matrix Xn . Then we map the new query
xn+1 to binary code yn+1 by

yn+1 = sgn((YnY T
n )−1Yn XT

n xn+1) � sgn(An xn+1). (20)

Similarly, we have

yn+2 = sgn(An+1xn+2), (21)

where An+1 = (Yn+1Y T
n+1)

−1Yn+1 XT
n+1. In fact, there

exists an efficient way to calculate An+1 recursively. Define
Zn = (YnY T

n )−1. According to the Sherman-Morrison
formula [25], noting that Yn+1 = [Yn yn+1] and Xn+1 =
[Xn xn+1], we have

Zn+1 = (Yn+1Y T
n+1)

−1

= (YnY T
n + yn yT

n )−1

= Zn − (Zn yn+1)(yT
n+1 Zn)

1 + yT
n+1 Zn yn+1

, (22)

An+1 = Zn+1Yn+1 XT
n+1

= (Zn − Zn yn+1 yT
n+1 Zn

1 + yT
n+1 Zn yn+1

)(Yn XT
n + yn+1 xT

n+1)

= Qn+1 − (Zn yn+1)(yT
n+1 Qn+1)

1 + yT
n+1 Zn yn+1

, (23)

where Qn+1 = An + (Zn yn+1)xT
n+1. Given An and Zn, it is

easy to see that we can get An+1 and Zn+1 by only several
matrix-vector multiplications, which are efficient.

In practice, we can generate the binary codes for the first
data chunk by Alternating Minimization, as introduced before.
Then we obtain the codes for the rest of the data chunks in an
online learning fashion as we have discussed in this section.
We will adopt this mechanism for experiments.

Fig. 1. Example images from SUN-397, CIFAR-10, GIST-1M, and
TINY-1M, respectively. (a) SUN-397. (b) CIFAR-10. (c) GIST-1M.
(d) TINY-1M.

E. Complexity Analysis

1) Training: We employ an iterative method for training.
In each iteration, we alternately update the matrix Y and B
in a similar way. That is to say, we need to do a big
matrix multiplication plus solving n independent linear equa-
tions of size d . Thus the total computational complexity is
O(nd3 + nmd) in each iteration. Note that n linear equa-
tions are independent of each other and can be solved in
parallel. Advanced linear equation solvers could accelerate the
algorithm further. In addition, the sampling technique that is
introduced before could significantly reduce the training time.
Thus our algorithm is scalable to large scale datasets.

2) Out-of-Sample Coding: As we can see, the time com-
plexity of out-of-sample coding is O(ndm + nd2 + d3) +
O(md). The former O results from pre-computing matrix A
once, and the latter is the time cost for each out-of-sample
query, which is the same as those hashing methods which rely
on linear perceptron mapping. One could further resort to the
sampling technique to accelerate the computation of A.

3) Online Learning: As mentioned above, our online learn-
ing scheme only involves several matrix-vector multiplications
for updating An+1, and one matrix-vector multiplication for
the generating hash code for the new query. So the total
computational complexity is O(md), which is very cheap.

V. EXPERIMENTS

We conduct extensive experiments to verify the superiority
of our method in terms of accuracy and efficiency, in both
batch and online fashions. We divide the datasets such that
95% examples are regarded as the training database, and
the remaining are the out-of-sample queries. Examples are
zero-centered and �2 normalized. For each query, we use
its top 1% nearest neighbors based on the �2 distances in



HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 411

Fig. 2. Precision-Recall curves (from top to bottom) with 32-bit, 64-bit, and 96-bit hash codes on CIFAR-10, SUN-397, TINY-1M, and GIST-1M (from left
to right), respectively. “BMDSsam” is BMDS with sampling. Best viewed in color.

the original feature space as the ground truth. We evaluate
our method based on the Hamming ranking scheme, and use
precision, recall, and mean average precision (mAP) as the
evaluation metric. We repeat the experiments 10 times with
different datasets splitting, initialization and sampling. We
report average scores in this section. All experiments are done
on a server with an Intel Corporation Xeon E5 2.6GHz CPU
and a 128GB RAM.

We evaluate our proposed Binary Multidimensional Scal-
ing (BMDS) method on several benchmark datasets for
approximate nearest neighbor search:

• SUN-397 [37] contains 60K images with a large vari-
ety of scenes. A 512 dimensional GIST [6] feature is
employed to represent each image.

• CIFAR-10 [16] consists of 60K tiny images in 10 classes,
each represented by a 512 dimensional GIST feature
vector.

• GIST-1M [14] is a standard evaluation set to judge
the quality of approximate nearest neighbor search. The
database contains 1M images, mostly combined from
Holidays dataset and Flickr1M dataset. Each image is
represented by a 960-dim GIST descriptor.

• TINY-1M [32] is a subset of Tiny Images Dataset, which
presents a visualization of all the nouns in English.
TINY-1M contains one million images. Each image is
represented by a 384-dim GIST descriptor.

Example images from each dataset are shown in Figure 1.

A. Comparison With Batch Based Methods

In this section, we compare our results with representative
batch based unsupervised hashing methods, i.e. LSH, SH, ITQ,
AIBC, BBE, CBE, BRE, DGH,2 SGH, and AGH, respectively.
For DGH and AIBC, we implement the algorithm according
to their paper. For other methods, we use the source code
provided by their authors. We tune the parameters as suggested
by their authors.

Figure 2 shows the precision-recall curves of different
algorithms on various datasets, with 32, 64, and 96 bits,
respectively. Figure 3 shows the precision and recall3 curves
of different algorithms on different datasets, with 96-bit hash
codes. These results suggest that BMDS consistently outper-
forms the state-of-the-art methods in terms of the accuracy
in approximate nearest neighbor search. It also suggests that
we will not suffer from much loss by random sampling.
By directly generating the hash codes without predefining
the form of hash map, we reduce the loss brought by the

2With different initialization, there are two versions of DGH, namely DGH-I
and DGH-R. See [21] for details.

3The number of retrieved examples is set to be 1 to 10 times of the ground-
truth nearest neighbor examples when evaluating recall rates so that the score
could be maintained in a proper scale.



412 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 3. Precision curves and recall curves (from top to bottom) with 96-bit hash codes on CIFAR-10, SUN-397, TINY-1M, and GIST-1M (from left
to right), respectively. “BMDSsam” is BMDS with sampling. Best viewed in color.

TABLE I

HAMMING RANKING PERFORMANCE ON GIST-IM AND TINY-1M. d DENOTES THE NUMBER OF HASH BITS USED IN THE HASHING METHODS.
“BMDS SAMPL.” IS BMDS WITH SAMPLING. ALL TRAINING AND AVERAGE TEST TIMES ARE IN SECONDS

error-prone hypothesis on hash functions, thus we preserve
the pairwise distances better.

As suggested above, our algorithm is also scalable to large
scale datasets. To further verify this claim, we report the
experimental results on two large datasets, namely GIST-1M
and TINY-1M, in Table I. One should be reminded that
in real-world applications, people care more about the

average test time for out-of-sample query, and our method
is among the fastest in this aspect. As for the training time,
although some methods are more efficient in training, they
suffer from over-simplified models that prevent them from
achieving high accuracy results. For example, LSH is based on
data-independent random projection, so the pairwise distances
cannot be preserved well. SH relies on learning eigenfunctions,



HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 413

Fig. 4. Example image retrieval results on CIFAR-10 (Top@20). Each method uses 96 bits codes. The false positive results are remarked with red rectangles.
The query images are shown at the first row. Best viewed in color.

whose valid information concentrates on particular hash bits.
ITQ, CBE, BBE, and AIBC use linear perceptrons as the
hash map, which may lead to high quantization error. The
efficiency of AGH, SGH, DGH, and BRE rely on the choice
of anchor points. On the other hand, although our methods are
not the fastest in the training stage, they are not the slowest
either. Our algorithm could be further accelerated with proper
parallel implementation. Besides, the sampling technique4 can
significantly reduce the training time without losing much
accuracy. As shown in Table I, the training time of BMDS

4Note that those kernel-based methods have already employed the sampling
technique, namely choosing the anchor points.

with sampling is competitive to most methods, while its mAP
still exceeds others.

Finally, we provide two example queries on CIFAR-10,
namely airplane and frog, to qualitatively evaluate the perfor-
mance. Each hash method uses 96-bit codes, and the top 20
returned results based on Hamming ranking are displayed
in Figure 4. For airplane, examples from other class like
bird or ship may interfere with the results due to the sim-
ilar appearance. For frog, the noisy background might be a
challenge. It could be observed that most compared methods
fail in either of two ways: 1) They falsely map the examples
that are far away in original space to similar hash codes.
2) They fail to further recognize the top nearest-neighbors.



414 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

Fig. 5. Retrieval performance of online methods on GIST-1M with 64-bit
hash codes.

TABLE II

AVERAGE TRAINING TIME (SECONDS/CHUNK) OF DIFFERENT
ONLINE LEARNING METHODS ON GIST-1M

For example, they may not be able to further pick up the
top 1‰ nearest-neighbors from top hundredth. By utilizing
the proposed scheme, our algorithm could best preserve the
pairwise distance and reduce the failure in both scenarios. We
could easily see that in both queries, our algorithm achieves
the highest accuracy with almost no false-positives.

B. Comparison With Online Hashing Methods

In this experiment, we focus on learning hash codes online
for GIST-1M. We divide the training set into 50 chunks with
nearly 20K examples per chunk. The data become available
as a stream to simulate the real-world scenario. We compare
the proposed method with the state-of-the-art online hashing
approaches, OKH, OSH, and AdaHash. We use the source
code from their authors and tune the parameters according
to their guidance. We use mAP, based on the Hamming
ranking, as the evaluation metric. Experimental results are
shown in Figure 5 and Table II, respectively.

As we can see, the precision-recall curve in Figure 5(a)
suggests that our approach outperforms the state-of-the-art
methods in terms of accuracy. The results of online BMDS
are even competitive to those of batch BMDS. Figure 5(b)
shows that our algorithm rapidly converges to a good solution
after a few iterations. It turns out that we will benefit a lot if
we associate the learning of current data chunk with chunks
that we have already learned. In addition, since updating hash
map only involves several matrix-vector multiplications when
a new example comes, it is efficient as illustrated in Table II,
hence it is a good alternative for processing massive data.

VI. CONCLUSION

We propose an integrated framework for unsupervised hash
codes learning that could work in both batch and online
settings. In the batch mode, our algorithm tries to learn the
binary codes directly based on the �2 distances in the original
feature space without predefining the form of hash function.

In the online mode, we take the holistic distance relationship
between current query example and the database into account,
rather than considering only the current data chunk. Both
theoretical and experimental results demonstrate the advantage
of our approach in distance preservation and potential usage
for real-world big data problems.

APPENDIX A
PROOF OF LEMMA 1

First of all, we discuss the property of Gram matrix GY .
Proposition 1: Based on Assumption 1,

∣
∣
∣GY

ij

∣
∣
∣ < nε holds

for every i 
= j with probability at least 1 − d(d − 1)

exp
(
− nε2

2

)
.

Proof: Since
∣
∣
∣GY

ij

∣
∣
∣ =

∣
∣
∣Y·i Y T· j

∣
∣
∣, namely the inner product

of the i -th row and the j -th row of Y . With the assumption
that all the entries of Y are independent Bernoulli variables,
we could deduce from the Chernoff-Hoeffding inequality that

P
(∣
∣
∣GY

ij

∣
∣
∣ > nε

)
≤ 2 exp

(

−nε2

2

)

. (24)

Since there are in total d(d−1)
2 different off-diagonal entries

in GY , we can conclude that with probability at least
1 − d(d − 1) exp

(
− nε2

2

)
,
∣
∣
∣GY

ij

∣
∣
∣ < nε (∀i 
= j). �

We now give the proof to Lemma 1. Proof: Suppose∣
∣
∣GY

ij

∣
∣
∣ < nε holds for every i 
= j . Consider the

eigenvalue decomposition of GY : GY = U�UT , where
� = diag(λ1, · · · , λn). Then from GY

ii = n and
∣
∣
∣GY

ij

∣
∣
∣ ≤ nε

(∀i 
= j), we have
∑

k

λkU2
ik = n, (25)

∣
∣
∣
∣
∣

∑

k

λkUikU jk

∣
∣
∣
∣
∣

≤ nε, (∀i 
= j). (26)

Furthermore, by the orthogonality of U , we have
∑

k

U2
ik = 1, (27)

∑

k

UikU jk = 0, (∀i 
= j). (28)

Finally, by the Gershgorin discs theorem all eigenvalues of GY

lie in an interval centered at n:

|δi | ≤ (d − 1)nε, (29)

where δi = λi − n. By (25) and (27), we have
∑

k

δkU2
ik =

∑

k

(λk − n)U2
ik =

∑

k

λkU2
ik − n

∑

k

U2
ik = 0.

(30)

By (26) and (28), we have
∣
∣
∣
∣
∣

∑

k

δkUikU jk

∣
∣
∣
∣
∣
=
∣
∣
∣
∣
∣

∑

k

(λk − n)UikU jk

∣
∣
∣
∣
∣
≤ nε, ∀i 
= j.

(31)



HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 415

From (27), (30), and the fact that
∣
∣√1 + γ − 1 − 1

2γ
∣
∣ ≤ cγ 2,

we have

∣
∣Sii − √

n
∣
∣ =

∣
∣
∣
∣
∣

∑

k

√
λkU2

ik − √
n

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∑

k

(√
n + δk − √

n − 1

2
n− 1

2 δk

)

U2
ik

∣
∣
∣
∣
∣

≤
∑

k

∣
∣
∣
∣

√
n + δk − √

n − 1

2
n− 1

2 δk

∣
∣
∣
∣U

2
ik

≤
∑

k

cn− 3
2 δ2

k U2
ik

≤ c
√

n(d − 1)2ε2. (32)

Similarly, ∀i 
= j ,

∣
∣Si j
∣
∣ =

∣
∣
∣
∣
∣

∑

k

√
n + δkUikU jk

∣
∣
∣
∣
∣

=
∣
∣
∣
∣
∣

∑

k

(
√

n + δk − √
n − 1

2
n− 1

2 δk)UikU jk

+ 1

2
n− 1

2
∑

k

δkUikU jk

∣
∣
∣
∣
∣

≤
∑

k

∣
∣
∣
∣

√
n + δk − √

n − 1

2

√
nδk

∣
∣
∣
∣ |Uik ||U jk|

+ 1

2

√
n

∣
∣
∣
∣
∣

∑

k

δkUikU jk

∣
∣
∣
∣
∣

≤
∑

k

cn− 3
2 δ2

k |Uik ||U jk| + 1

2

√
nε

≤ c
√

n(d − 1)2ε2 + 1

2

√
nε. (33)

Since
∣
∣
∣GY

ij

∣
∣
∣ < nε holds for every i 
= j with probability at

least 1 − d(d − 1) exp
(
− nε2

2

)
, (32) and (33) hold with at

least the same probability.
�

It is easy to see that we have similar properties of � = S−1.
Proposition 2: Based on Assumption 1,

∣
∣
∣	ii − 1√

n

∣
∣
∣ ≤ C̃1ε√

n

and
∣
∣	i j

∣
∣ ≤ C̃2ε√

n
hold with probability at least 1 − d(d −

1) exp
(
− nε2

2

)
, where C̃1ε = c̃(d −1)2ε2, C̃2ε = c̃(d −1)2ε2+

1
2ε, and c̃ is a constant that makes

∣
∣
∣ 1√

1+γ
− 1 + 1

2γ
∣
∣
∣ ≤ c̃γ 2

true when |γ | ≤ (d − 1)ε.

APPENDIX B
PROOF OF LEMMA 2

Proof: If the i -th bit of y∗ is − sgn(b̃i ), we define a new
vector ỹ whose bits are identical to those of y∗ except the i -th.
We will show that the objective function value with ỹ is lower
than that of y∗, making a contradiction on the optimality of y∗.
Actually, the difference between the two objective function

values is:

∑

j 
=i

⎛

⎝
∑

k 
= j,i

S jk y∗
k + Sj j y∗

j + Sj i sgn(b̃i ) − b̃ j

⎞

⎠

2

+
⎛

⎝
∑

k 
=i

Sik y∗
k + Sii sgn(b̃i ) − b̃i

⎞

⎠

2

−
∑

j 
=i

⎛

⎝
∑

k 
= j,i

S jk y∗
k + Sj j y∗

j − Sj i sgn(b̃i ) − b̃ j

⎞

⎠

2

−
⎛

⎝
∑

k 
=i

Sik y∗
k − Sii sgn(b̃i ) − b̃i

⎞

⎠

2

= 4
∑

j 
=i

⎛

⎝
∑

k 
= j,i

S jk y∗
k + Sj j y∗

j − b̃ j

⎞

⎠ Sj i sgn(b̃i )

+ 4

⎛

⎝
∑

k 
=i

Sik x∗
k − b̃i

⎞

⎠ Sii sgn(b̃i )

= 4
∑

j 
=i

⎛

⎝
∑

k 
= j,i

S jk y∗
k + Sj j y∗

j − b̃ j

⎞

⎠ Sj i sgn(b̃i )

+ 4

⎛

⎝
∑

k 
=i

Sik x∗
k

⎞

⎠ Sii sgn(b̃i ) − 4b̃i Sii sgn(b̃i )

= 4

⎡

⎣
∑

j 
=i

⎛

⎝
∑

k 
= j,i

S jk y∗
k + Sj j y∗

j − b̃ j

⎞

⎠ Sj i

+
⎛

⎝
∑

k 
=i

Sik x∗
k

⎞

⎠ Sii

⎤

⎦ sgn(b̃i ) − 4Sii

∣
∣
∣b̃i

∣
∣
∣

≤ 4

⎡

⎣
∑

j 
=i

⎛

⎝
∑

k 
= j,i

∣
∣Sjk

∣
∣+ ∣∣Sj j

∣
∣+
∣
∣
∣b̃ j

∣
∣
∣

⎞

⎠
∣
∣Sj i

∣
∣

+
⎛

⎝
∑

k 
=i

|Sik |
⎞

⎠ Sii

⎤

⎦− 4Sii

∣
∣
∣b̃i

∣
∣
∣

= 4

⎡

⎣
∑

j 
=i

⎛

⎝
∑

k 
=i

∣
∣Sjk

∣
∣+
∣
∣
∣b̃ j

∣
∣
∣

⎞

⎠
∣
∣Sj i

∣
∣

+
⎛

⎝
∑

k 
=i

|Sik |
⎞

⎠ Sii

⎤

⎦− 4Sii

∣
∣
∣b̃i

∣
∣
∣ . (34)

So if
∣
∣
∣b̃i

∣
∣
∣ > C0i , the right hand side will be negative, hence

the objective function value is reduced, which contradicts the
optimality of y∗. �

APPENDIX C
PROOF OF LEMMA 3

Let b̄i = d(Y b)i and C̃3ε =
[
(1 + C̃1ε) + (d − 1)C̃2ε

]
d .

One should be reminded that in our analysis, we treat each
entry of Y as a random variable, and b is regarded as a



416 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

constant vector so the following expectations and probabilities
are on Y only. We define the following events:

Fε :
∣
∣
∣
∣	ii − 1√

n

∣
∣
∣
∣ ≤

C̃1ε√
n

,
∣
∣	i j

∣
∣ ≤ C̃2ε√

n
, ∀ j 
= i, (35)

Gα : max
i

|b̄i | < dαn, (36)

and

Hε,α : max
i

∣
∣
∣b̃i

∣
∣
∣ < C̃3εα

√
n. (37)

We first show that Hε,α holds almost surely, which implies
that each entry of b̃ is very unlikely to be larger than the
magnitude of O(α

√
n) when n is large.

Proposition 3: Based on assumption 1, P(Hε,α) ≥ 1 −
d(d − 1) exp(− nε2

2 ) − 2d exp(− nα2

2 ).
Proof: Note that b̄i = d

∑n
j=1 Yi j b j is a function of the

independent variables Yi j , j = 1, 2, · · · , n with a bounded
difference when any of Yi j flips its sign. Besides, EY

[
Yi j b j

] =
b j EY

[
Yi j
] = 0 according to our assumption, so EY

[
b̄i
] = 0.

By McDiarmid’s Inequality, we have

P(
∣
∣b̄i
∣
∣ > dαn) ≤ 2 exp(−nα2

2
), (38)

from which we conclude that

P(Gα) ≥ 1 − 2d exp(−nα2

2
). (39)

Whenever both Fε and Gα occur, we have

∣
∣
∣b̃i

∣
∣
∣ =

∣
∣
∣
∣
∣

∑

k

	ik b̄k

∣
∣
∣
∣
∣
≤ dαn

∑

k

|	ik |

≤ dαn

⎛

⎝|	ii | +
∑

k 
=i

|	ik |
⎞

⎠

≤ d(1 + C̃1ε + (d − 1)C̃2ε)αn√
n

= C̃3εα
√

n. (40)

This suggests that Hε,α holds. Thus

P(Hε,α) ≥ P(Fε ∧ Gα) ≥ 1 − P(¬Fε) − P(¬Gα)

≥ 1 − d(d − 1) exp(−nε2

2
) − 2d exp(−nα2

2
). (41)

�
To prove Lemma 3, we will show that if

∣
∣
∣b̃i

∣
∣
∣ ≥ C0i and

sgn
(

b̃i

)

= sgn

(
(�b̃)i

)
, there exists j 
= i such that

∣
∣
∣b̃ j

∣
∣
∣ ≥

O(α
√

n), which rarely happens.
Proof: According to Proposition 2 and Proposition 3,

Fε ∧ Hε,α holds with probability at least 1 − 2d(d − 1)

exp(− nε2

2 ) − 2d exp

(

− C2
0i

2
[
(d−1)(2d−1)C̃3εε

]2

)

, where we set

α = C0i

(d−1)(2d−1)C̃3ε
√

nε
. Next we are going to show that the

sign of b̃i and (�b̃)i are always the same whenever Fε ∧Hε,α

holds. If sgn
(

b̃i

)

= sgn

(
(�b̃)i

)
, then as the signs of (�b̃)i

and −	ii b̃i are the same, we have

∑

k 
=i

|	ik |
∣
∣
∣b̃k

∣
∣
∣ ≥

∣
∣
∣
∣
∣
∣

∑

k 
=i

	ik b̃k

∣
∣
∣
∣
∣
∣
=
∣
∣
∣(�b̃)i − 	ii b̃i

∣
∣
∣ ≥

∣
∣
∣	ii b̃i

∣
∣
∣ .

(42)

This implies that there exists j ( j 
= i), such that
∣
∣
∣b̃ j

∣
∣
∣ ≥ 1

d − 1

|	ii |∣
∣	i j

∣
∣

∣
∣
∣b̃i

∣
∣
∣ . (43)

As Fε occurs,
∣
∣
∣b̃ j

∣
∣
∣ ≥ 1

d − 1

1 − C̃1ε

C̃2ε

C0i . (44)

Since ε ≤ 1
2(d−1) , we have (d − 1)ε ≤ 1

2 . Thus we may set

c̃ = 2 in Proposition 2 since
∣
∣
∣ 1√

1+γ
− 1 + 1

2γ
∣
∣
∣ ≤ c̃γ 2 holds

when |γ | < (d − 1)ε ≤ 1
2 . In this case, C̃3ε = d(1 + 2d

(d − 1)2ε2 + (d−1)ε
2 ). Then

C̃1ε = c̃(d − 1)2ε2 ≤ 1

2
, (45)

C̃2ε = c̃(d − 1)2ε2 + ε

2
≤ [2(d − 1) + 1]ε

2
= (2d − 1)ε

2
.

(46)

These facts imply that

∣
∣
∣b̃ j

∣
∣
∣ ≥ C0i

(d − 1)(2d − 1)ε
= C0i C̃3ε

√
n

(d − 1)(2d − 1)C̃3ε
√

nε
. (47)

It contradicts with the occurrence of Hε,α with
α = C0i

(d−1)(2d−1)C̃3ε
√

nε
. Thus

P
(

sgn(b̃i) = sgn((�b̃)i )
)

≥ P(Fε ∧ Hε,α)

≥ 1 − P(¬Fε) − P(¬Hε,α)

≥ 1 − 2d(d − 1) exp(−nε2

2
) − 2d exp(−nα2

2
)

= 1 − 2d(d − 1) exp(−nε2

2
)

− 2d exp

⎛

⎜
⎝− C2

0i

2
[
(d − 1)(2d − 1)C̃3εε

]2

⎞

⎟
⎠ . (48)

�

APPENDIX D
PROOF OF THEOREM 1

Proof: According to Lemma 3, we have
ỹi = sgn

(
(�b̃)i

)
= sgn(b̃i ) with probability at least

1 − 2d(d − 1) exp(− nε2

2 ) − 2d exp

(

− C2
0i

2
[
(d−1)(2d−1)C̃3εε

]2

)

.

So with probability at least 1 − 2d(d − 1)r exp(− nε2

2 ) −
2d
∑r

i=1 exp

(

− C2
0i

2
[
(d−1)(2d−1)C̃3εε

]2

)

, the sign of first r



HUANG AND LIN: BINARY MULTIDIMENSIONAL SCALING FOR HASHING 417

bits of b̃ and �b̃ are the same. If this holds, the
difference between the objective function values with
y∗ and ỹ is:

∑

1≤i≤r

⎛

⎝
∑

1≤k≤r,k 
=i

Sik sgn(b̃k)+Sii sgn
(
b̃i

)
+
∑

k>r

Sik ỹk −b̃i

⎞

⎠

2

+
∑

i>r

⎛

⎝
∑

1≤k≤r

Sik sgn
(

b̃k

)
+ Sii ỹi +

∑

k>r,k 
=i

Sik ỹk − b̃i

⎞

⎠

2

−
∑

1≤i≤r

⎛

⎝
∑

1≤k≤r,k 
=i

Sik sgn
(

b̃k

)
+Sii sgn

(
b̃i

)

+
∑

k>r

Sik y∗
k −b̃i

)2

−
∑

i>r

⎛

⎝
∑

1≤k≤r

Sik sgn
(

b̃k

)
+Sii y∗

i +
∑

k>r,k 
=i

Sik y∗
k −b̃i

⎞

⎠

2

=
∑

1≤i≤r

⎡

⎣2

⎛

⎝
∑

1≤k≤r,k 
=i

Sik sgn(b̃k) + Sii sgn(b̃i ) − b̃i

⎞

⎠

+
∑

k>r

Sik (ỹk + y∗
k )

⎤

⎦×
(
∑

k>r

Sik(ỹk − y∗
k )

)

+
∑

i>r

⎡

⎣2

⎛

⎝
∑

1≤k≤r

Sik sgn(b̃k) − b̃i

⎞

⎠

+ Sii
(
ỹi + y∗

i

)+
∑

k>r,k 
=i

Sik (ỹk + y∗
k )

⎤

⎦

×
⎡

⎣Sii
(
ỹi − y∗

i

)+
∑

k>r,k 
=i

Sik (ỹk − y∗
k )

⎤

⎦

=
∑

1≤i≤r

⎡

⎣2

⎛

⎝
∑

1≤k≤r,k 
=i

Sik sgn(b̃k) + Sii sgn(b̃i ) − b̃i

⎞

⎠

+
∑

k>r

Sik (ỹk + y∗
k )

⎤

⎦×
(
∑

k>r

Sik(ỹk − y∗
k )

)

+
∑

i>r

⎧
⎨

⎩

⎡

⎣2

⎛

⎝
∑

1≤k≤r

Sik sgn(b̃k) − b̃i

⎞

⎠

+
∑

k>r,k 
=i

Sik(ỹk + y∗
k )

⎤

⎦
[
Sii
(
ỹi − y∗

i

)]

+
⎡

⎣2

⎛

⎝
∑

1≤k≤r

Sik sgn(b̃k)−b̃i

⎞

⎠+Sii (ỹi +y∗
i )

+
∑

k>r,k 
=i

Sik (ỹk +y∗
k )

⎤

⎦×
⎛

⎝
∑

k>r,k 
=i

Sik (ỹk −y∗
k )

⎞

⎠

⎫
⎬

⎭
,

(49)

where we have used the fact that ỹ2
i = (

y∗
i

)2 = 1. Then the
above equation

≤
∑

1≤i≤r

⎡

⎣2

⎛

⎝
∑

1≤k≤r,k 
=i

|Sik | + Sii + |b̃i |
⎞

⎠+ 2
∑

k>r

|Sik |
⎤

⎦

×
(
∑

k>r

2|Sik |
)

+
∑

i>r

⎡

⎣

⎛

⎝2(
∑

1≤k≤r

|Sik | + |b̃i |) + 2
∑

k>r,k 
=i

|Sik |
⎞

⎠ (2Sii )

+
⎛

⎝2(
∑

1≤k≤r

|Sik |+|b̃i |)+2Sii +2
∑

k>r,k 
=i

|Sik |
⎞

⎠

×
⎛

⎝
∑

k>r,k 
=i

2|Sik |
⎞

⎠

⎤

⎦

= 4
∑

1≤i≤r

(
∑

k

|Sik | + |b̃i |
)(
∑

k>r

|Sik |
)

+ 4
∑

i>r

⎡

⎣

(
∑

k

|Sik | − Sii + |b̃i |
)

Sii

+
(
∑

k

|Sik | + |b̃i |
)⎛

⎝
∑

k>r,k 
=i

|Sik |
⎞

⎠

⎤

⎦

= 4
∑

1≤i≤r

(
∑

k

|Sik | + |b̃i |
)(
∑

k>r

|Sik |
)

+ 4
∑

i>r

[(
∑

k

|Sik | + |b̃i |
)(
∑

k>r

|Sik |
)

− S2
ii

]

= 4
∑

i

(
∑

k

|Sik | + |b̃i |
)(
∑

k>r

|Sik |
)

− 4
∑

i>r

S2
ii . (50)

Thus we prove the theorem. �

REFERENCES

[1] D. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[2] I. Borg and P. Groenen, “Modern multidimensional scaling: Theory and
applications,” J. Edu. Meas., vol. 40, pp. 277–280, 2003.

[3] F. Cakir and S. Sclaroff, “Adaptive hashing for fast similarity search,”
in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2015, pp. 1044–1052.

[4] T. Dean, M. A. Ruzon, M. Segal, J. Shlens, S. Vijayanarasimhan, and
J. Yagnik, “Fast, accurate detection of 100,000 object classes on a
single machine,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1814–1821.

[5] V. E. Liong, J. Lu, G. Wang, P. Moulin, and J. Zhou, “Deep hashing
for compact binary codes learning,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2015, pp. 2475–2483.

[6] A. Friedman, “Framing pictures: The role of knowledge in automatized
encoding and memory for gist,” J. Experim. Psychol., Gen., vol. 108,
no. 3, pp. 316–355, 1979.

[7] J. H. Friedman, J. L. Bentley, and R. A. Finkel, “An algorithm for finding
best matches in logarithmic expected time,” ACM Trans. Math. Softw.,
vol. 3, no. 3, pp. 209–226, 1977.

[8] T. Ge, K. He, Q. Ke, and J. Sun, “Optimized product quantization for
approximate nearest neighbor search,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2013, pp. 2946–2953.



418 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 27, NO. 1, JANUARY 2018

[9] A. Gionis, P. Indyk, and R. Motwani, “Similarity search in high
dimensions via hashing,” in Proc. Int. Conf. Very Large Data Bases,
vol. 99. 1999, pp. 518–529.

[10] Y. Gong, S. Kumar, H. A. Rowley, and S. Lazebnik, “Learning binary
codes for high-dimensional data using bilinear projections,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2013, pp. 484–491.

[11] Y. Gong, S. Kumar, V. Verma, and S. Lazebnik, “Angular quantization-
based binary codes for fast similarity search,” in Proc. Adv. Neural Inf.
Process. Syst., 2012, pp. 1196–1204.

[12] Y. Gong, S. Lazebnik, A. Gordo, and F. Perronnin, “Iterative quanti-
zation: A procrustean approach to learning binary codes for large-scale
image retrieval,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 35, no. 12,
pp. 2916–2929, Dec. 2013.

[13] L.-K. Huang, Q. Yang, and W.-S. Zheng, “Online hashing,” in Proc.
23th Int. Joint Conf. Artif. Intell., 2013, pp. 1422–1428.

[14] H. Jegou, M. Douze, and C. Schmid, “Product quantization for nearest
neighbor search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 33, no. 1,
pp. 117–128, Jan. 2011.

[15] Q.-Y. Jiang and W.-J. Li, “Scalable graph hashing with feature transfor-
mation,” in Proc. 24th Int. Joint Conf. Artif. Intell., 2015, pp. 2248–2254.

[16] A. Krizhevsky and G. Hinton, “Learning multiple layers of features from
tiny images,” M.S. thesis, Univ. of Toronto, Toronto, ON, Canada, 2009.

[17] B. Kulis and T. Darrell, “Learning to hash with binary reconstruc-
tive embeddings,” in Proc. Adv. Neural Inf. Process. Syst., 2009,
pp. 1042–1050.

[18] C. Leng, J. Wu, J. Cheng, X. Bai, and H. Lu, “Online sketching
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 2503–2511.

[19] P. Li, A. Shrivastava, J. L. Moore, and A. C. König, “Hashing algorithms
for large-scale learning,” in Proc. Adv. Neural Inf. Process. Syst., 2011,
pp. 2672–2680.

[20] G. Lin, C. Shen, and A. van den Hengel, “Supervised hashing using
graph cuts and boosted decision trees,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 37, no. 11, pp. 2317–2331, Nov. 2015.

[21] W. Liu, C. Mu, S. Kumar, and S.-F. Chang, “Discrete graph hashing,”
in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 3419–3427.

[22] W. Liu, J. Wang, R. Ji, Y.-G. Jiang, and S.-F. Chang, “Supervised hash-
ing with kernels,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 2074–2081.

[23] W. Liu, J. Wang, S. Kumar, and S.-F. Chang, “Hashing with graphs,” in
Proc. 28th Int. Conf. Mach. Learn., 2011, pp. 1–8.

[24] X. Liu, C. Deng, B. Lang, D. Tao, and X. Li, “Query-adaptive reciprocal
hash tables for nearest neighbor search,” IEEE Trans. Image Process.,
vol. 25, no. 2, pp. 907–919, Feb. 2016.

[25] K. B. Petersen and M. S. Pedersen, “The matrix cookbook,” Tech. Univ.
Denmark, Lyngby, Denmark, Tech. Rep., 2008, p. 15, vol. 7.

[26] F. Shen, W. Liu, S. Zhang, Y. Yang, and H. T. Shen, “Learning binary
codes for maximum inner product search,” in Proc. IEEE Int. Conf.
Comput. Vis., Dec. 2015, pp. 4148–4156.

[27] F. Shen, C. Shen, W. Liu, and H. T. Shen, “Supervised discrete
hashing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2015,
pp. 37–45.

[28] F. Shen, C. Shen, Q. Shi, A. van den Hengel, Z. Tang, and H. T. Shen,
“Hashing on nonlinear manifolds,” IEEE Trans. Image Process., vol. 24,
no. 6, pp. 1839–1851, Jun. 2015.

[29] A. Shrivastava and P. Li, “Asymmetric LSH (ALSH) for sublinear
time maximum inner product search (MIPS),” in Proc. Adv. Neural Inf.
Process. Syst., 2014, pp. 2321–2329.

[30] C. Strecha, A. Bronstein, M. Bronstein, and P. Fua, “LDAHash:
Improved matching with smaller descriptors,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 34, no. 1, pp. 66–78, Jan. 2012.

[31] J. Tang, Z. Li, M. Wang, and R. Zhao, “Neighborhood discriminant
hashing for large-scale image retrieval,” IEEE Trans. Image Process.,
vol. 24, no. 9, pp. 2827–2840, Sep. 2015.

[32] A. Torralba, R. Fergus, and W. T. Freeman, “80 million tiny images:
A large data set for nonparametric object and scene recognition,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 30, no. 11, pp. 1958–1970,
Nov. 2008.

[33] J. Wang, S. Kumar, and S.-F. Chang, “Semi-supervised hashing for large-
scale search,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 34, no. 12,
pp. 2393–2406, Dec. 2012.

[34] J. Wang, W. Liu, S. Kumar, and S.-F. Chang, “Learning to hash for
indexing big data–A survey,” Proc. IEEE, vol. 104, no. 1, pp. 34–57,
Jan. 2016.

[35] Y. Weiss, R. Fergus, and A. Torralba, “Multidimensional spectral hash-
ing,” in Proc. Eur. Conf. Comput. Vis., 2012, pp. 340–353.

[36] Y. Weiss, A. Torralba, and R. Fergus, “Spectral hashing,” in Proc. Adv.
Neural Inf. Process. Syst., 2009, pp. 1753–1760.

[37] J. Xiao, J. Hays, K. A. Ehinger, A. Oliva, and A. Torralba, “Sun
database: Large-scale scene recognition from abbey to zoo,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2010, pp. 3485–3492.

[38] F. Yu, S. Kumar, Y. Gong, and S.-F. Chang, “Circulant binary embed-
ding,” in Proc. 31st Int. Conf. Mach. Learn., 2014, pp. 946–954.

[39] D. Zhang, J. Wang, D. Cai, and J. Lu, “Self-taught hashing for fast
similarity search,” in Proc. 33rd Int. ACM SIGIR Conf. Res. Develop.
Inf. Retr., 2010, pp. 18–25.

Yameng Huang received the B.E. degree in com-
puter science and technology from the School
of Electronics Engineering and Computer Science,
Peking University, Beijing, China, in 2015, where he
is currently pursuing the M.S. degree. His research
interests include computer vision, image processing,
and machine learning.

Zhouchen Lin (M’00–SM’08) received the Ph.D.
degree in applied mathematics from Peking Univer-
sity in 2000. He is currently a Professor with the Key
Laboratory of Machine Perception, School of Elec-
tronics Engineering and Computer Science, Peking
University. His research areas include computer
vision, image processing, machine learning, pattern
recognition, and numerical optimization. He is an
area chair of CVPR 2014/2016, ICCV 2015, and
NIPS 2015, and a senior program committee mem-
ber of AAAI 2016/2017/2018 and IJCAI 2016/2018.

He is an associate editor of the IEEE Transactions on Pattern Analysis and
Machine Intelligence and the International Journal of Computer Vision. He
is an IAPR Fellow.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


