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Low-Rank Matrix Recovery Via
Robust Outlier Estimation

Xiaojie Guo , Member, IEEE, and Zhouchen Lin , Fellow, IEEE

Abstract— In practice, high-dimensional data are typically
sampled from low-dimensional subspaces, but with an intrusion
of outliers and/or noises. Recovering the underlying structure and
the pollution from the observations is of utmost importance to
understanding the data. Besides properly modeling the subspace
structure, how to handle the pollution is a core question regarding
the recovery quality, the main origins of which include small
dense noises and gross sparse outliers. Compared with the
small noises, the outliers more likely ruin the recovery, as their
arbitrary magnitudes can dominate the fidelity, and thus lead to
misleading/erroneous results. Concerning the above, this paper
concentrates on robust outlier estimate for low-rank matrix
recovery, termed ROUTE. The principle is to classify each entry
as an outlier or an inlier (with confidence). We formulate the out-
lier screening and the recovery into a unified framework. To seek
the optimal solution to the problem, we first introduce a block
coordinate descent-based optimizer (ROUTE-BCD) and then cus-
tomize an alternating direction method of multipliers based one
(ROUTE-ADMM). Through analyzing theoretical properties and
practical behaviors, ROUTE-ADMM shows its superiority over
ROUTE-BCD in terms of computational complexity, initialization
insensitivity, and recovery accuracy. Extensive experiments on
both synthetic and real data are conducted to show the efficacy
of our strategy and reveal its significant improvement over other
state-of-the-art alternatives. Our code is publicly available at
https://sites.google.com/view/xjguo/route.

Index Terms— Outlier estimation, low-dimensional structure
recovery, low rank matrix recovery, principal component pursuit.

I. INTRODUCTION

LOW rank matrix recovery is a process of discovering the
underlying structure from given measurements, the inspi-

ration and motivation of which are both that, in real cases, even
very high-dimensional observations should be from a low-
dimensional subspace but unfortunately with interference of
outliers and/or noises. As a theoretic foundation in computer
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vision, pattern recognition and machine learning, the effective-
ness of low rank matrix recovery (LRMR) has been witnessed
by numerous fundamental tasks, such as principal component
analysis [1], [2], collaborative filtering [3], [4] and subspace
clustering [5], [6], as well as a wide spectrum of appli-
cations, like image denoising [7], reflection separation [8],
rigid [9] and nonrigid [10] structure from motion, photometric
stereo [11], [12], anomaly detection [13], [14] and super-
resolution [15], to name just a few.

Suppose we are given an observation matrix Y ∈ R
m×n , and

know that it can be posed as a superposition of a low rank
component L ∈ R

m×n and a residue component E ∈ R
m×n .

In this context, the LRMR problem can be directly or indirectly
written in the following shape:

min
L,E

rank(L)+ α�(E) s. t. P�(Y) = P�(L+ E), (1)

where the function �(·) is the penalty on the residual between
the observed and recovered signals, rank(·) stands for the low-
rank constraint, and α is a non-negative parameter balancing
the recovery fidelity and the low-rank promoting regularizer.
Furthermore, P�(·) is the orthogonal projection operator on
the support � ∈ {0, 1}m×n . The binary-valued �i j being 0
indicates that the corresponding entry is missing, and 1 other-
wise. From Eq. (1), we can find that the quality of recovery
depends on both the models of rank(L) and �(E).

As one of the two pivotal factors in LRMR, a proper low-
rank promoting constraint on L is required to advocate the
expected structure. It is computationally intractable (NP-hard)
to directly minimize the rank function, say rank(L), due
to its discreteness. A widely used scheme is employing its
tightest convex proxy, i.e. the nuclear norm �L�∗ (the sum
of all the singular values) [2], [16], [17]. Nuclear norm
minimization (NNM) based approaches can perform stably
without knowing the target rank of recovery in advance. But,
their applicability is often limited by the necessity of executing
expensive singular value decomposition (SVD) for multiple
times. At less expense, bilinear factorization (BF) [18]–[22]
is an alternative by replacing L with UV, where the product
of U ∈ R

m×r and V ∈ R
r×n implicitly guarantees that the

rank of UV is never over r , typically r � min(m, n). This
factorization strategy, via getting rid of SVDs, can greatly
relieve the pressure of computation and provide accurate
results when the target rank is given. However, in some tasks,
the target rank is unknown beforehand. In such a situation,
the performance of BF would sharply degrade because of its
sensitivity to the guess of target rank, especially when the data
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are severely contaminated. For connecting NNM and BF, and
inheriting their respective merits, some bridges are recently
built [23], [24]. One representative is adding �U�2F + �V�2F
into the objective of the BF [25]. Although the techniques
above have made great progresses, the tolerance to dirty data
is expected to be further improved.

In practical scenarios, acquiring perfect data is never the
case. Furthermore, “a little gall spoils a great deal of honey” is
quite a common issue. This indicates that, without an effective
strategy to reduce the negative effect from outliers and/or
noises, the low rank matrix recovery is very likely prevented
from reasonable solutions. Hence, besides properly modeling
the low-rank structure, how to handle the pollution, espe-
cially gross outliers, is core to the performance of recovery.
Arguably, the square loss (a.k.a. �2 loss) is the most commonly
used penalty, which is optimal to Gaussian noises, like in
principal component analysis (PCA) [1]. But, the square loss
is brittle to outliers that are not unusual to find in real data.
To be robust against gross corruptions, the �1 loss as the
tightest convex surrogate of the �0 one becomes popular, e.g. in
robust PCA (RPCA) [2]. In parallel, there are a few works
carried out from probabilistic standpoints. Probabilistic matrix
factorization (PMF) [21] and probabilistic robust matrix fac-
torization (PRMF) [24] are two representatives, the resid-
ual penalties of which are equivalent to the �2 (PCA) and
�1 (principal component pursuit, PCP) losses, respectively. For
better fitting the residual, combining the �1 loss for the outlier
component and the �2 for the small noise one is considered
in [26]. Zhao et al. [27] proposed two loss functions to
promote robustness against outliers. One is derived from Stu-
dent’s t distribution, while the other one is a smoothed �1 loss.
Although the �1 loss can perform better than the �2 in dealing
with the outliers, it still suffers from the scale issue. Moreover,
the outliers may have a physical meaning in a specific task,
e.g. foreground objects in surveillance videos. In this situation,
the residuals cannot act as the “outliers” per se. Among others,
the ideal option to model outliers is the �0 loss, due to its
scale invariance. The non-convexity and discontinuity of the
�0 penalty make it not so preferred by the community, although
many works have proven its improvement on different tasks,
like [28] for image deblurring, [17] for foreground detection
and [29] for video editing.

Aside from the above entry-wise pollution modelings,
a number of sample-wise outlier detection models have been
proposed over the past years. A popular scheme is to employ
the group sparsity to identify outlier samples. This kind of
methods is typically specified to the task of subspace segmen-
tation such as [6] and [14]. The samples with large recon-
struction errors are viewed as the outlier samples, which are
then excluded from the reconstruction basis set. The mentioned
methods are different from our task, i.e. LRMR, that needs to
identify outliers entry-wise. Further, some deep learning works
recognized the low-dimensional structure can improve the
performance. They introduced low-rank layers/filters to regu-
larize intermediate results/extract desired features. Specifically,
PCANet adopts PCA to learn multistage filter banks [30],
while LRRNet first extracts the low rank part from polluted
input using an off-the-shell method, and then uses the extracted

low rank components as filters [31]. These designs are finally
applied to classification/recognition tasks, which do not require
precise matrix recoveries. Similar ideas go to [32] and [33].

Back to the general formulation (1), if the support of
both outliers and missing elements is given, the problem
turns out to be a simpler version, i.e. the low rank matrix
completion (LRMC). Comparing with LRMR, the difficulty of
LRMC, because of the known support, significantly decreases,
which corroborates the intuition and theoretical fact that
knowing the corruption location is beneficial. Therefore, it is
natural to ask that if we can connect the LRMR to the LRMC
via robustly estimating outliers, since by doing so the LRMR
will be conquered more easily.

Contribution: To answer the above question, this paper pro-
poses a Robust OUTlier Estimation method, called ROUTE.
Concretely, the contributions can be summarized as follows:

1) We design a method to jointly estimate outliers and
recover the low rank matrix, which connects the
LRMR and LRMC by assigning the estimated outliers
with small weights;

2) Compared with the hard binary support, our weighting
scheme assigns real-valued weights [0, 1], which can be
viewed as classification with confidence/probability;

3) Our design employs a maximum entropy regularization
term to minimize the prediction bias, which behaves like
a sigmoid function;

4) To seek the optimal solution for ROUTE, we provide
a block coordinate descent based optimizer and an
alternating direction method of multipliers based one,
together with analysis on their theoretical properties and
practical behaviors;

5) Extensive experimental results on both synthetic and real
data are provided to show the efficacy of our ROUTE
and reveal its superiority over other state-of-the-arts.

A preliminary version of this manuscript appeared in [34].
Compared with [34], this journal version presents the model
design and the solver in more theoretical details. More exper-
iments are conducted to verify the advances of our ROUTE
over other state-of-the-art alternatives on LRMR.

II. METHODOLOGY

A. Problem Statement and Formulation
In the simplest case, the support of observed elements is at

hand, the intrinsic rank r is given, and the data are clean or just
with slight noises. The optimal recovery can be obtained via
conquering the following BF problem:

min
U,V
��� (Y− UV)�2F , (2)

where U ∈ R
m×r and V ∈ R

r×n , and � is the Hadamard prod-
uct operator. However, in many real-world cases, the intrinsic
rank is not available. In such a situation, an option for
recovering the low rank component (LRMC) is to optimize
the following NNM problem:

min
L
�L�∗ + α

2
��� (Y− L)�2F . (3)

As mentioned, the nuclear norm minimization requires to
execute expensive SVDs on the full size data. To mitigate the
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computational pressure, Theorem 1 builds a bridge between
the NNM and BF models.

Theorem 1: For any matrix L ∈ R
m×n, the following

relationship holds [35]:

�L�∗ = min
U,V

1

2
�U�2F +

1

2
�V�2F s. t. L = UV.

If rank(L) = r ≤ min(m, n), then the minimum solution above
is attained at a factor decomposition L = UV, where U ∈
R

m×r and V ∈ R
r×n .

As a result, applying Theorem 1 on (3) reads:

min
U,V

1

2
�U�2F +

1

2
�V�2F +

α

2
��� (Y− UV)�2F . (4)

Compared with directly minimizing �� � (Y − UV)�2F ,
the model (4) inherits the advantage of (3), which avoids over-
fitting when r is larger than the intrinsic rank.

From a Bayesian perspective, the model (4) corresponds to a
maximum a posteriori (MAP) problem. Consider the following
probabilistic models:

p(yi j |[UV]i j , λ) ∼ N (yi j |[UV]i j , λ
−1) ∀(i, j) ∈ �;

p(uik |λ̃) ∼ N (uik |0, λ̃−1);
p(vkj |λ̃) ∼ N (vkj |0, λ̃−1), (5)

where N (x |μ, σ 2) stands for the Gaussian distribution whose
probability density function (PDF) is 1√

2πσ
exp(− (x−μ)2

2σ 2 ).

Taking U and V as model parameters, as well as λ and λ̃ as
hyper-parameters with fixed values, we can seek the optimal
parameters, according to the Bayes’ rule, through maximizing
the posterior probability:

p(U, V|Y, λ, λ̃,�) ∝
( ∏

(i, j )∈�
N (yi j |[UV]i j , λ

−1)

︸ ︷︷ ︸
likelihood

×
∏
i,k

N (uik |0, λ̃−1)

︸ ︷︷ ︸
prior on U

∏
k, j

N (vkj |0, λ̃−1)

︸ ︷︷ ︸
prior on V

)
. (6)

Maximizing the above posterior is equivalent to minimizing
its negative log, that is

min
U,V
− ln p(U, V|Y, λ, λ̃,�)

= min
U,V

λ̃

2
�U�2F +

λ̃

2
�V�2F +

λ

2
��� (Y− UV)�2F , (7)

which is in the same form with (4) via setting α to λ/λ̃.
In real world tasks, unfortunately, the data are polluted by,

besides small noises, gross corruptions, which may prevent the
recovery from reasonable results. Hence, some steps should be
taken for reducing the negative effect of such pollution. Let us
simply distinguish that the elements are contaminated by either
small noises or gross outliers according to the magnitudes of
residual. To achieve the goal, an indicator is required to tell
which elements are polluted by small noises (W) and which
by gross corruptions (W). As for the outlier entries, due to
their arbitrary magnitudes, the �0 loss is ideal to host them.

While for the other entries, the �2 loss can take care of. Based
on the above, we have:

min
1

2
�U�2F +

1

2
�V�2F +

α

2
�W � (Y− UV)�2F + β�W�1

s. t. W+W = 1; W and W ∈ {0, 1}m×n, (8)

where β is a weight to the corresponding term and 1 represents
an all-one matrix with compatible size. We can see from
Eq. (8) that, the support � is replaced by a weight matrix
W containing both the given support and the estimated outlier
support. Please note that, under the binary weighting, �W �
(Y− UV)�2F =

∑
i, j wi j [Y − UV]2i j , and �W�1 = �W�0 for

imposing the sparsity on the outliers.
Consequently, the likelihood in (6) should be modified

accordingly as follows:

∏
(i, j )∈�

(
wi jN (yi j |[UV]i j , λ

−1)+ w̄i j (1/
)

)
, (9)

where the outliers are assumed to follow a uniform distri-
bution, due to its arbitrariness, with the PDF 1


 . We note
that, wi j and w̄i j are binary, satisfying wi j + w̄i j = 1,
which can be treated as the hard mixing coefficients of the
mixture of a Gaussian and a uniform distributions. Adopting
the likelihood (9) results in a “long tailed” distribution with the
PDF max(N (yi j |[UV]i j , λ

−1), 1/
). This is desired to better
fit the residual. Minimizing the negative log of the posterior by
replacing the likelihood in (6) with (9) shows the equivalence
with (8) by setting β to (ln 
√

2πλ−1
)/λ̃.

The hard weighting, for one thing, frequently leads the
optimization to be stuck into bad local minima. For another
thing, the pollution in data is often non-homogeneously dis-
tributed. To address the discreteness issue and reflect the
importance of elements more faithfully, we relax the value
range of W and W from binary {0, 1}m×n into real-valued
[0, 1]m×n , and employ an entropy term. The definition of
entropy is −∑k

c=1 pc log pc with
∑k

c=1 pc = 1. The principle
of maximum entropy tells that, the probability distribution
which best represents the current state of knowledge is the
one with largest entropy subject to accurately stated prior
data. In other words, it is able to minimize the prediction
bias. Return to our problem, the weighting variable wi j can
be equally viewed as the probability of the corresponding entry
being classified as an outlier. It is instructive to note that max-
imizing the entropy (concave) is equivalent to minimizing its
negative (convex). Consequently, we have the final formulation
of ROUTE-LRMR as follows:

min
U,V,W

1

2
�U�2F +

1

2
�V�2F +

α

2
�√W � (Y− UV)�2F

+ β�W�1 + γ
∑
i, j

(wi j log wi j + w̄i j log w̄i j )

s. t. W+W = 1; W and W ∈ [0, 1]m×n, (10)

where γ is a non-negative coefficient controlling the impor-
tance of the corresponding term. Further, due to the relaxation,√

W with entries
√

wi j is used to hold the equivalence:∑
i, j wi j [Y−UV]2i j = �

√
W� (Y−UV)�2F . For (8), �√W�

(Y−UV)�2F = �W� (Y− UV)�2F . As shown in (10), it has
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embraced all the aforementioned concerns for simultaneously
pursuing outliers and recovering the low rank matrix. In the
next two subsections, we will customize two algorithms for
solving (10).

B. A BCD Optimizer
Intuitively, the block coordinate descent (BCD) strategy [36]

seems to be a natural choice to conquer the problem (10),
which iteratively finds the optimal solution to one of involved
variables with other ones fixed until convergence. In the
following, we provide the procedure step by step, including
V, U and W-W sub-problems.

1) V Sub-Problem: With U(t), W(t) and W
(t)

fixed as the
estimation of the previous (t-th) iteration, the target problem
turns out to be:

min
V
�V�2F + α�

√
W(t) � (Y− U(t)V)�2F , (11)

which can be divided into a set of independent column-wise
problems. We resolve them one by one as below:

v(t+1)
j ← min

v j
�v j�22 + α�

√
w(t)

j � (y j − U(t)v j )�22
= α(I + αU(t)T � j U(t))−1(U(t)T � j y j ), (12)

where I means the identity matrix with proper size, and � j ∈
R

m×m denotes the diagonal matrix composed by w(t)
j .

2) U Sub-Problem: Similarly, U can be updated via opti-
mizing the following:

min
U
�U�2F + α�

√
W(t)T � (YT − V(t+1)T UT )�2F . (13)

Again, the (13) can be decomposed into a group of row-wise
problems with respect to U. Each row ui· has a closed form
solution like:

u(t+1)
i· ← [α(I + αV(t+1)i V(t+1)T )−1(V(t+1)i yT

i· )]T , (14)

where i ≡ Diag(w
(t)
i1 , ..., w

(t)
in ).

3) W-W Sub-Problem: Picking out the terms relevant to
W and W results in the following optimization problem:

min
W,W

α

2
�√W � (Y− U(t+1)V(t+1))�2F + β�W�1
+ γ

∑
i, j

(wi j log wi j + w̄i j log w̄i j )

s. t. W+W = 1; W and W ∈ [0, 1]m×n. (15)

From the objective of (15), we find that the problem is also
separable. Without any loss of generality, let us take the
(i, j)-th element for example. Casting the problem into the
Lagrange multiplier framework gives the following Lagrange
function:

Q(wi , wi , ηi ) ≡ α

2
wi j [Y− U(t+1)V(t+1)]2i j + βwi j

+ γ (wi j log wi j +wi j log wi j )

+ ηi (wi j +wi j − 1), (16)

where ηi is a Lagrange multiplier. Taking the derivative of
Q(wi , wi , ηi ) to wi , wi and ηi respectively and setting them

Algorithm 1 ROUTE-LRMR (BCD)

to zero lead to the following:

∂Qwi =
α

2
[Y− U(t+1)V(t+1)]2i j + γ log wi + ηi + γ = 0;

∂Qwi = β + γ log wi + ηi + γ = 0;
∂Qηi = wi +wi − 1 = 0. (17)

The optimal solutions to wi and wi can be obtained by solving
the equation system in (17) as:

w
(t+1)
i j ← exp(−α[Y− U(t+1)V(t+1)]2i j /2γ )

exp(−α[Y− U(t+1)V(t+1)]2i j /2γ )+ exp(−β/γ )

= 1

1+exp((α[Y−U(t+1)V(t+1)]2i j /2− β)/γ )
, (18)

which is in a sigmoid form. And its complementary is
w

(t+1)
i j ← 1−w

(t+1)
i j .

Remarks: (a) When wi j ∈ {0, 1} adopted and the entropy
term disabled (hard weighting), the solution to Eq. (15) is:
if α

2 [Y−UV]2i j < β, then wi j ← 1; if α
2 [Y−UV]2i j = β, then

wi j could be either of {0, 1}; otherwise wi j ← 0. (b) When
wi j ∈ [0, 1] adopted and the entropy term disabled (relaxed
version), the solution to Eq. (15) is: if α

2 [Y−UV]2i j < β, then
wi j ← 1; if α

2 [Y − UV]2i j = β, then wi j could be any value
in [0, 1]; otherwise wi j ← 0.

Algorithm 1 has summarized the proposed BCD optimizer.
The procedure stops when �W(t) −W(t−1)�2F < δ�W(0)�2F
(δ adopts 1e−7 in this paper) or the maximum iteration num-
ber is reached. The algorithm can theoretically ensure that the
energy of the objective (10) will monotonically decrease as the
iteration goes (Sec. III), but its performance is inferior to the
optimizer proposed in the next sub-section, in computational
complexity, initialization insensitivity and recovery accuracy.

C. An ADMM Optimizer
Alternatively, the alternating direction method of mul-

tiplers (ADMM) scheme [37] can be adopted to solve
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the problem (10). To apply ADMM on our problem, the objec-
tive is required to be separable. To this end, an auxiliary
variable L is introduced to replace UV in the third term.
Accordingly, L = UV acts as a constraint. Subsequently,
the associated problem becomes:

min
U,V,L,W

1

2
�U�2F +

1

2
�V�2F +

α

2
�√W � (Y− L)�2F

+ β�W�1 + γ
∑
i, j

(wi j log wi j + w̄i j log w̄i j )

s. t. L = UV, W +W = 1; W and W ∈ [0, 1]m×n. (19)

The augmented Lagrangian function of (19) is defined as:

Lμ

{W+W=1;W,W∈[0,1]m×n}(U, V, L, W, Z)

≡ 1

2
�U�2F +

1

2
�V�2F +

α

2
�√W� (Y− L)�2F

+ β�W�1 + γ
∑
i, j

(wi j log wi j + w̄i j log w̄i j )

+μ

2
�L− UV�2F + �Z, L − UV�, (20)

where �·, ·� designates the inner product, μ is a positive penalty
and Z is a Lagrangian multiplier. Notice that the constraints on
W and W are enforced as hard constraints. The solver updates
the variables in an iterative manner.

For U, V and L, their solutions in closed-form are calculated
via equating the derivatives of (20) with respect to U, V and L
to zero respectively with the other variables fixed:

V(t+1) ← (I + μ(t)U(t)T U(t))−1U(t)T
(μ(t)L(t) + Z(t));

U(t+1) ← (μ(t)L(t) + Z(t))V(t+1)T K(t+1)−1;
L(t+1) ← αW(t) � Y+ μ(t)U(t+1)V(t+1) − Z(t)

αW(t) + μ(t)1
, (21)

where K(t+1) denotes I+μ(t)V(t+1)V(t+1)T , and the division
in updating L is element-wise.

As regards the W−W sub-problem, it is similar with that
shown in (15), only replacing U(t+1)V(t+1) by L(t+1), as:

min
W,W

α

2
�√W� (Y− L(t+1))�2F + β�W�1
+ γ

∑
i, j

(wi j log wi j + w̄i j log w̄i j )

s. t. W+W = 1; W and W ∈ [0, 1]m×n . (22)

Accordingly, the closed form solution is

w
(t+1)
i j ← 1

1+ exp((α[Y− L(t+1)]2i j /2− β)/γ )
. (23)

Besides, the Lagrange multiplier Z and μ are updated via:

Z(t+1) ← Z(t) + μ(t)(L(t+1) − U(t+1)V(t+1));
μ(t+1) ← μ(t)ρ, ρ > 1. (24)

The parameter μ is monotonically increased by ρ during
iterations, gradually leading the solution to the feasible region.

For clarity and completeness, the customized ADMM solver
to the problem (10) is outlined in Algorithm 2. The procedure
should not be terminated until the equality constraint L = UV

Algorithm 2 ROUTE-LRMR (ADMM)

is satisfied up to a given tolerance, that is �L − UV�F ≤
ς�Y�F , or the maximal number of iterations is reached. In all
our experiments, the tolerance factor ς is chosen as 1e−7.
Please refer to the complete Algorithm 2 for other details.
We will compare the proposed BCD and ADMM optimizers
both theoretically and experimentally in Section III and V.

III. THEORETICAL ANALYSIS

We first provide some useful theoretical results, including
Lemma 1 and Proposition 1, for the W-W sub-problem.

Lemma 1: At stage t with U(t)V(t) fixed for the BCD opti-
mizer or with L(t) fixed for the ADMM optimizer, the solutions,
i.e. wi j given in Eqs. (18) and (23), are global optimal to the
corresponding intermediary problems, respectively.

Proof: Taking the problem (15) for example, having
U(t) and V(t) (thus U(t)V(t)) fixed, the objective function
in (15) is convex with respect to wi j ∈ [0, 1]. The solution
in Eq. (18) is computed by the Lagrange multiplier method,
which guarantees that the obtained solution is feasible and sat-
isfies the KKT conditions for (15). For the ADMM optimizer,
the conclusion can be reached analogously.

Proposition 1: The function defined in Eq. (15), containing
three parameters including β̃ ≡ β/α, γ̃ ≡ γ /α, and εi j ≡
[Y−UV]2i j /2 for the BCD optimizer or εi j ≡ [Y−L]2i j /2 for
the ADMM optimizer, has the following properties:

1) wi j (β̃, γ̃ , εi j ) is monotonically decreasing with
respect to εi j , which holds limεi j→0 wi j (β̃, γ̃ , εi j ) =

1
1+exp(−β̃/γ̃ )

and limεi j→+∞ wi j (β̃, γ̃ , εi j ) = 0;

2) wi j (β̃, γ̃ , εi j ) is monotonically increasing with respect
to β̃, which holds that limβ̃→0 wi j (β̃, γ̃ , εi j ) =

1
1+exp(εi j /γ̃ ) and limβ̃→+∞ wi j (β̃, γ̃ , εi j ) = 1;

3) wi j (β̃, γ̃ , εi j ) is an inverse-‘S’ shaped function, which
approaches a binary function when γ̃ → 0 and the
constant 1/2 when γ̃ →+∞.

Each statement takes care of one target parameter with the
others fixed to be constants.

Proof: It can be easily verified by the definition.
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Next, we concentrate on the convergence of the proposed
naive BCD algorithm.

Theorem 2: The sequence of {J (V(t), U(t), W(t))}, i.e. the
energy of the objective in (10), generated by the proposed
BCD optimizer (Algorithm 1) converges monotonically.

Proof: In terms of energy, the optimization nature of BCD
ensures that:

J (V(t), U(t), W(t)) ≥ J (V(t+1), U(t), W(t)) ≥
J (V(t), U(t+1), W(t)) ≥ J (V(t+1), U(t+1), W(t+1)).

In other words, the energy gradually decreases as the involved
three steps iterate. Further, the whole objective function (10)
has a lower bound. Therefore, Algorithm 1 is guaranteed to
converge monotonically.

We notice that Theorem 2 provides a convergence guarantee
for the energy of the objective function J (V(t), U(t), W(t)).
However, the convergence of {J (V(t), U(t), W(t))} cannot
ensure the convergence of the variables.

In what follows, we shall consider the lemmas required
by analysis on convergence and optimality of the designed
ADMM-based ROUTE-LRMR algorithm.

Lemma 2: Let {(U(t), V(t), L(t), W(t))} be a sequence gen-
erated by Algorithm 2. Then the sequence approaches to a
feasible solution.

Proof: First, we prove the boundedness of {Z(t)}. Accord-
ing to Theorem 1 and the optimality condition for (19) with
respect to L̂ ≡ UV, we have:

Z(t−1) + μ(t−1)(L(t) − U(t)V(t)) = Z(t) ∈ ∂�L̂(t)�∗.
Through applying Lemma 3 on the above:

Lemma 3 [38]: Let H be a real Hilbert space endowed
with an inner product �·, ·� and a corresponding norm � · �,
and any y ∈ ∂�x�, where ∂� · � denotes the subgradient. Then
�y�∗ = 1 if x �= 0, and �y�∗ ≤ 1 if x = 0, where � · �∗ is the
dual norm of the norm � · �.

we obtain that the sequence {Z(t)} is bounded via observ-
ing the fact that the dual norm of � · �∗ is the spec-
tral norm. Together with the boundedness of {Z(t)} and
limt→∞ μ(t) = ∞, the relationship L(t) − U(t)V(t) =
Z(t)−Z(t−1)

μ(t−1) gives limt→∞ L(t)−U(t)V(t) = 0. Further, the con-

straints of W+W = 1 and W, W ∈ [0, 1]m×n are immediately
satisfied at each update, please see Lemma 1. Thus the claim
holds.

Lemma 4: Let {(U(t), V(t), L(t), W(t))} be a sequence gen-
erated by Algorithm 2. Then, we have two claims:

1) All of the sequences {U(t)}, {V(t)}, {U(t)V(t)}, {L(t)}, and
{W(t)} are bounded.

2) The sequences {U(t)V(t)}, {L(t)}, and {W(t)} are Cauchy
sequences.

Proof: We here prove the first claim. By the nature of the
iterative procedure of Alg. 2, the following relationship holds:

Lμ(t)
(V(t+1), U(t+1), L(t+1), W(t+1), Z(t))

≤ Lμ(t)
(V(t+1), U(t+1), L(t+1), W(t), Z(t))

≤ ... ≤ Lμ(t)
(V(t), U(t), L(t), W(t), Z(t))

= Lμ(t−1)
(V(t), U(t), L(t), W(t), Z(t−1))

+μ(t−1) + μ(t)

2μ(t−1)2
�Z(t) − Z(t−1)�2F . (25)

Because of the boundedness of the sequence {Z(t)} and∑∞
t=1

μ(t−1)+μ(t)

2μ(t−1)2 = ρ(1+ρ)
2μ(0)(ρ−1)

< ∞, it is ready to draw that

the sequence {Lμ(t−1)
(V(t), U(t), L(t), W(t), Z(t−1))} is upper

bounded. Moreover, we have:

1

2
�U(t)�2F +

1

2
�V(t)�2F +

α

2
�
√

W(t) � (Y− L(t))�2F
+ β�W(t)�1 + γ

∑
i, j

(w
(t)
i j log w

(t)
i j + w̄

(t)
i j log w̄

(t)
i j )

= Lμ(t−1)
(V(t), U(t), L(t), W(t), Z(t−1))

+�Z
(t−1)�2F − �Z(t)�2F

2μ(t−1)
, (26)

is upper bounded. Due to the property of the weight
matrix {W(t)}, its boundedness is fulfilled naturally. As for
{V(t)}, {U(t)}, {L(t)} and {U(t)V(t)}, Eq. (26) tells that they
are all bounded. This establishes the proof of the first claim.

For proving the second claim, an auxiliary variables is
required, which is defined as

Z̄(t) ≡ Z(t−1) + μ(t−1)(L(t−1) − U(t)V(t)). (27)

The boundedness of Z̄(t) can be achieved in the same way with
that of Z(t) as given in the proof of Lemma 2. With �L(t) −
L(t−1)� = 1

μ(t−1) �Z(t) − Z̄(t)� = o( 1
μ(t−1) ) and

∑∞
t=1

1
μ(t−1) =

ρ
μ(0)(ρ−1)

< ∞, we have that {L(t)} is a Cauchy sequence.

Further by the feasibility of the solver as shown in Lemma 2,
{U(t)V(t)} is also a Cauchy sequence. Based on the closed-
form solution of W(t) (23), it is ready to conclude that {W(t)}
is a Cauchy sequence. This completes the proof of the second
claim.

Having the above theoretical results, we finally come to the
convergence and optimality of Algorithm 2.

Theorem 3: The proposed Algorithm 2 converges to a KKT
point to the optimization problem (10).

Proof: By Lemmas 1, 2 and 4, the KKT conditions for the
constraints and the solutions to the variables UV, L and W are
all satisfied. According to the Bolzano-Weierstrass Theorem,
the sequence has at least one accumulation point. Moreover,
we know from Eq. (21) that the closed-form solutions to
U and V are unique when one of them is fixed because
I+ μ(t)U(t)T U(t) and I+ μ(t)V(t+1)V(t+1)T are both positive
definite. Combining all the above together, it suffices to
guarantee that the ADMM-based ROUTE-LRMR algorithm
converges to a KKT point to the problem (10).

Further, based on Theorem 1, the problem (10) is equivalent
to the following one:

min
L,W
�L�∗ + α

2
�√W� (Y− L)�2F + β�W�1

+ γ
∑
i, j

(wi j log wi j + w̄i j log w̄i j )

s. t. W +W = 1; W and W ∈ [0, 1]m×n, (28)

which is biconvex in W and L. The convergence to a KKT
point holds for the problem (28) too. Our ROUTE-LRMR
is free to switch modes between NNM and BF. Concretely,
instead of separately refreshing U and V, the updating of
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L̂ ≡ UV in (21) can be done by minimizing the problem:

min
L̂
�L̂�∗ + μ(t)

2
�L(p) − L̂�2F + �Z(t), L(p) − L̂�, (29)

which can be solved in closed-form by the singular value
thresholding [39]. Except for this step, no other changes
happen in Algorithm 2.

Complexity Analysis: We first discuss the complexity of
Alg. 1 (the BCD optimizer). Updating each column v j at each
iteration spends O(r3 + r2 + r2m + rm). Thus, each update
of V costs O(n(r3+ r2+ r2m+ rm)) in total. Similarly, each
update of U takes O(m(r3 + r2 + r2n + rn)). Refreshing W
only needs O(rmn). Hence, the time complexity of the BCD
optimizer is O(tbcd (r3(m+n)+r2(m+n)+2r2mn+3rmn))),
where tbcd is the iteration number required to converge.
As for the ADMM optimizer, updating V and U both demand
O(r3 + r2 + r2(m + n) + rmn). While solving the W sub-
problem and updating the multiplier need O(mn) and O(rmn),
respectively. Thus, the whole procedure of Alg. 2 spends
O(tadmm(2r3 + 2r2 + 2r2(m + n)+ 3rmn+mn)) with tadmm

the total iteration number that Alg. 2 takes for convergence.
From the above analysis, we see that Alg. 2 is much more
efficient than Alg. 1 for each iteration. We will compare the
two algorithms in terms of convergence speed, elapsed time
and recovery accuracy in Sec. V.

IV. RELATED WORK

So far, a large body of research about LRMR has been
carried out. We briefly review classic and recent achieve-
ments closely related with ours, which are basically derived
from the NNM and BF models. PCA [1] follows the NNM
with the �2 loss by assuming the residual existing in the
observation satisfies a Gaussian distribution, while PCP [2]
takes care of arbitrary outliers by adopting the �1 penalty.
To accelerate PCP, Zhou and Tao [40] developed GoDec
by using bilateral random projections based approximation.
Recently, Oh et al. [41] proposed an approximate singular
value thresholding (SVT) method that exploits the property of
iterative NNM procedures by range propagation and adaptive
rank prediction. Since conventional NNM based approaches do
not fully utilize priori target rank information about the prob-
lems when the exact rank of clean data is given, PSSV [42]
attempts to minimize partial sum of singular values in PCP,
which behaves better than PCP when the number of samples
is deficient. Cabral et al. [25] proposed a method Unifying
that unifies nuclear norm and bilinear factorization as below:

min
U,V

1

2
(�U�2F + �V�2F )+ λ�W � (Y− UV)�1.

More recently, Lin et al. [43] proposed to solve the Unify-
ing model by majorization minimization for seeking better
solutions. To further improve the stability of Unifying when
highly corrupted data are presented, factEN [44] employs the
Elastic-Net regularization on the factor matrices as:

min
U,V

λ1

2
(�U�2F + �V�2F )+ λ2

2
�P�2F + �W� (Y− P)�1

with the definition P = UV. As a hybrid of NNM and BF,
RegL1 [23] solves the following optimization problem:

min
U,V
�V�∗ + λ�W � (Y− UV)�1 s. t. UT U = I,

which reduces the cost of PCP by calculating SVDs on a
small matrix V. Robust bilinear factorization (RBF) [45]
shares the same model with RegL1 with different solving
details. In parallel, there are a few works developed from
probabilistic standpoints. PMF [21] and PRMF [24] are two
representatives, corresponding to PCA and PCP, respectively.
Meng and De la Torre [20] improved the BF via modeling the
unknown noises as a mixture of Gaussian distributions (MoG).
More recently, Bahri et al. [46] proposed a Kronecker-
decomposable component analysis (KDRS), which combines
ideas from sparse dictionary learning and PCP.

V. EXPERIMENTAL VERIFICATION

In this section, we assess the performance of ROUTE-
LRMR in comparison with several state-of-the-art methods
including RegL1 [23], PCP [2], PRMF [24], MoG [20],
factEN [44], PSSV [42], Unifying [25] and KDRS [46],
the codes of which are either downloaded from the authors’
websites or provided by the authors. Their settings follow
the suggestions by the authors or the given parameters. All
the experiments are conducted on a PC running Windows 7
64bit operating system with Intel Core i7 2.5 GHz CPU and
64.0 GB RAM.

A. Synthetic Data
1) Data Preparation and Quantitative Metrics: Similar

to [2] and [25], we generate a matrix Y0 as a product Y0 =
U0V0. The U0 and V0 are of size m×r and r×n respectively,
both of which are randomly produced by sampling each
entry from the Gaussian distribution N (0, 1), leading to a
ground truth rank-r matrix. Then we corrupt the entries via
replacing a fraction s of Y0 with errors drawn from a uniform
distribution over [−20, 20] at random, and the rest entries
are polluted by Gaussian noise N (0, 0.12). To quantitatively
measure the recovery performance, we employ 1) root mean
square error (RMSE): 1√

mn
�Y0−ÛV̂�F and 2) mean absolute

error (MAE): 1
mn�Y0− ÛV̂�1 as our metrics. Lower values of

both the metrics indicate better performance.
2) Parameter Effect: There are three parameters, including

α, β and γ , involved in Eq. (10). This part experimentally
evaluates how these parameters influence the performance.
In this experiment, without loss of generality, square matrices
of dimension m = n = 100 and rank r = 4 are considered.
We note that, ROUTE-BCD and ROUTE-ADMM solve the
same problem (10). Thus, from the parameter perspective,
the effect should be similar for the two solvers. In this part,
we merely test the parameter effect on ROUTE-ADMM. Later
we will see the performance comparison between the two
solvers. We first test the parameters α and β with γ set
to 0.1. Figure 1 displays four α-β testings with respect to
different outlier ratios s ∈ {0.3, 0.4, 0.5, 0.6} in terms of
MAE (upper row) and RMSE (lower row). Each graph is
generated by averaging 10 independent runs. As can be seen
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Fig. 1. Parameter effect of α and β in terms of MAE (upper row) and RMSE (lower row). The pictures correspond to the cases with fixed γ = 0.1 and
different outlier ratios s ∈ {0.3, 0.4, 0.5, 0.6} from left to right.

Fig. 2. Parameter effect of γ .

from the pictures, as s decreases, the work range enlarges.
Even though, for all of the four cases, the top-left region
(small β, small α) is in trouble. This is because of the under-
penalization on the pollution. The bottom-left region (large β,
small α) also reflects poor performance. The reason is that,
as stated in the second claim in Proposition 1, when β/α is
large, each wi j approaches to 1. As a result, together with a
small α, the residual component, including both noises and
outliers, is less cared. Moreover, considering the top-right
region (small β, large α), especially for s ∈ {0.5, 0.6}, the val-
ues in MAE and RMSE are high. Similarly to the bottom-
left region, the pollution is under-penalized. But differently
the under-penalization comes from that most w̄i j approaching
to 1 (please see Eq. (23)) and a small β. As s increases,
the bottom-right region (large β, large α) turns red. This is
because the pollution is over-penalized, leading to inaccurate
recovery. Under this experimental setting, α ∈ [1, 20] and
β ∈ [0.01, 1] consistently provide reasonable results for all
the involved situations. We now focus on the parameter γ that
controls the entropy term, the other two parameters α and β
are fixed to 50 and 1, respectively. Figure 2 depicts RMSE
and MAE curves (averaged over 10 independent trials) with
respect to different outlier ratios. From the plots, we see
that when γ approaches to 0, the errors rapidly go up.
This is because, as analyzed in Sec. III, the smaller γ is,
the harder the weighting carries out, say the risk of being
stuck into bad minima gets higher. It is also the evidence

to prove the soft weighting is beneficial. In opposite, if γ
gets too large, the performance also drops. The reason is
that, in this situation, the weighting becomes almost constant
(0.5 for each entry), which degenerates ROUTE-LRMR to
PCA. Although the work range of γ shrinks as s grows,
γ in [0.005, 0.8] can perform stably and sufficiently well. For
the rest experiments unless stated otherwise, we set α = 50,
β = 1, and γ = 0.01. To better reveal the advantage of our
method over the competitors especially on heavily ruined data,
Table I reports the numerical comparison. As can be seen from
Tab. I, ROUTE-ADMM wins for all the cases, and the closest
performance to ours is from Unifying. The main reason for the
inferior performance of ROUTE-BCD is that it is sensitive
to the initialization and has high risk of being early stuck
into bad minimum, we will further confirm this in the coming
part. Please note that the method HW is ROUTE-ADMM with
γ = 0.001 for mimicking the hard weighting.

3) Convergence Behavior: As regards convergence speed,
for different cases, the left graph in Fig. 3 shows that the
stop criterion of ROUTE-ADMM quickly declines within 20
iterations, while the algorithm converges within 60 ∼ 80
iterations. The right picture in Fig. 3 corresponds to ROUTE-
BCD, which behaves similarly with ROUTE-ADMM in terms
of the iteration number required to converge, i.e. tadmm � tbcd .
But, for each iteration, ROUTE-ADMM needs much less
computational resource than ROUTE-BCD does, as analyzed
in Sec. III. Table II offers an empirical comparison in terms of
recovery accuracy and time cost, with the outlier ratio fixed to
0.5. The numbers are averaged over 10 independent runs. From
the table, we can see that ROUTE-ADMM is significantly
faster than ROUTE-BCD and Unifying, the gain of which
becomes conspicuous as the data size increases. It is worth
noting that Unifying requires inner loops to update U and V
(please refer to [25] for details, and we set the maximal inner
iteration number to 10), while our ROUTE-ADMM has no
such requirement. In terms of accuracy, ROUTE-ADMM wins
over the other two in most cases. We notice that the accuracy
margin is more obvious when the ratio of the data size versus
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TABLE I

PERFORMANCE COMPARISON IN RMSE AND MAE WITH DIFFERENT OUTLIER RATIOS s . THE NUMBERS ARE AVERAGED OVER 10 RUNS. THE BEST
RESULTS ARE HIGHLIGHTED IN BOLD. THE SECOND BEST RESULTS ARE IN ITALIC AND UNDERLINED. THE THIRD PLACES ARE UNDERLINED

TABLE II

PERFORMANCE COMPARISON IN TERMS OF RMSE, MAE AND TIME BETWEEN UNIFYING, ROUTE-BCD AND ROUTE-ADMM

Fig. 3. Convergence speed. The left and right graphs correspond to ROUTE-
ADMM and ROUTE-BCD, respectively.

the intrinsic rank is relatively small. The differences in RMSE
and MAE between Unifying and ROUTE-ADMM shrink
as the ratio increases. In addition, ROUTE-BCD loses the
competition, because, as mentioned, it may easily fall into bad
minimum during optimization and has a higher computational
complexity. Moreover, experimental findings here and follow-
up tell that our ROUTE-ADMM has very stable convergence
behavior even with respect to random initializations (please
see the next part).

4) Initialization Sensitivity: Directly applying BCD has a
higher probability of being stuck at bad optima than using
ADMM. Besides the theoretical analysis in Sec. III, we here
give an intuitive explanation. The main reason comes from
the W sub-problem. Suppose that the variables U and V
are randomly initialized. After updating U and V at early
iterations, if the initialization is unsatisfactory (typically not),
W can be wrongly determined because of large residuals
(Y − UV). Please see the solution in Eq. (18). This will
easily lead the solver to a bad optimum or even a trivial
solution. One possible strategy to mitigate the above issue
is putting the update of W out of the loop of iterating
U and V. However, in this way, the �2 loss on ||√W �
(Y − UV)||2F is no longer effective as it is short of ability
to handle outliers. So a more robust loss is required. If simply
adopting the �1 loss, as it is non-differentiable, BCD is not
appropriate. In contrary, ADMM can do the job in a more
faithful way. At early iterations, μ is relatively small and L
is close to Y. So the inaccuracy in W can be largely avoided.
As μ grows, the solver converges. Thus, ROUTE-ADMM can
perform stably to random initializations. Figure 4 provides the
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Fig. 4. Initialization sensitivity test. The two columns correspond to
ROUTE-ADMM and ROUTE-BCD, respectively.

Fig. 5. Outlier ratio s versus RMSE and MAE.

empirical evidence in RMSE versus outlier ratio (upper row)
and MAE versus outlier ratio (lower row). The left and right
columns correspond to ROUTE-ADMM and ROUTE-BCD,
respectively. The box-plots are formed by 10 runs on the
m = n = 100 and r = 4 case with random initializations.
From the plots, we can see that ROUTE-ADMM performs
accurately and stably even when the outlier ratio is up to
0.55, while ROUTE-BCD has large medians and wide 95%
confidences. Further, the median of ROUTE-ADMM increases
as the outlier ratio grows, which corroborates to the common
sense, while ROUTE-BCD does not show such a property due
to its initialization sensitivity. In the following experiments,
we will focus on ROUTE-ADMM.

5) Tolerance to Outliers: To more thoroughly show the
tolerance to outliers, we fix m = n = 400 and test the tendency
by varying outlier ratio s ∈ [0, 0.6] and rank r ∈ {20, 40, 60}.
According to the results in Tab. I, Unifying is the method
chosen to compare. From the left picture of Fig. 5, we see
that at the beginning, Unifying and our method are close in
terms of RMSE, but as s increases, the margin between them
enlarges. The second graph in Fig. 5 further confirms the first
one. In the case of r = 20, both the RMSE and MAE of
ROUTE-LRMF stay very low even when s reaches 0.6. The
tolerance to outliers becomes weaker when r gets larger, not
just for our method and Unifying but also for all the methods.
The reason is that a higher-dimensional space requires more
data to accomplish the recovery.

B. Real Data
1) Photometric Stereo: Images of a static Lambertian object

sensed by a fixed camera under a varying but distant point

lighting source lie in a rank-3 subspace [11]. This experiment
aims to evaluate the effectiveness of the LRMR techniques on
modeling the face under different illuminations. The cropped
Extended YaleB-10 sequence, containing 64 faces of one
subject with size 192 × 168, is adopted as the dataset. The
light imbalance including shadows and highlights on the face
significantly breaks the low-rank structure (please see the
1st column in Fig. 6 for example). In this part, we set the
guess rank r to 5 for all the competitors.

Comparison: Figure 6 gives several comparison. We can
observe that PRMF, factEN, MoG, KDRS and Unifying
perform reasonably well, which are superior to PSSV and
RegL1 but inferior to ours. As shown in the 2nd and 4th

rows of Fig. 6, PSSV and RegL1 fail to remove shadows. The
results by PRMF, factEN, MoG, KDRS and Unifying, although
recalling some details previously hidden in the dark, look
unreal in the 2nd and 3rd cases. Our ROUTE-LRMR1 provides
visually pleasant and real results for all the given cases,
the benefit of which mainly comes from the effective outlier
detection. The 2nd column in Fig. 6 displays the estimated
weights W (brighter regions indicate closer values to 1, while
darker ones stand for those to 0), from which we can find
our strategy successfully detects and thus eliminates outliers.
Figure 7 furthers provide several results by our method. One
may wonder if the weights can be formed by treating as
outliers the pixels with intensity greater (highlights) or lower
(shadows) than predefined thresholds like [23]. This way can
reduce the problem to LRMC, but is too heuristic, at high risk
of sacrificing much useful information for recovery. Taking
the bottom-right original for example, the thresholding may
determine all the pixels as outliers, while our strategy can
finish the job wisely and nicely. Moreover, in many real-
world applications, manually seeking appropriate thresholds
is, if not impossible, very difficult. Being able to adaptively
assign weights to data is definitely desired, which is the goal
and motivation of our design.

2) Background Modeling: The problem of background
modeling for surveillance videos can be viewed as a decom-
position of a video into the foreground component and the
background. This experiment is carried out on the WaterSur-
face sequence,2 which contains 633 frames with resolution
128×160. We assume that the background of the sequence is
rank-1 and use only 130 frames (frame #481-frame #610) to
accomplish the comparison. The foreground person occupies
a large portion of the frames and the water surface is flowing,
which ruins the rank-1 background. In addition, for making
the recovery more challenging, we further introduce Gaussian
white noises with variance σ 2 = 0.005 into the data and
randomly discard 25% pixels as missing elements. Figure 8
gives a sample frame. The first to the third pictures in the upper
row are the original frame, the noisy version and, the noisy &
incomplete input, respectively.

Comparison: Figure 8 (e)-(g) are the backgrounds obtained
by factEN, RegL1 and Unifying, respectively, from which we

1In image/video data, the outliers, such as shadows and foregrounds, often
appear coherently. Considering this, in this experiment, we employ a 2 × 2
median filter on W.

2http://perception.i2r.a-star.edu.sg/bk_model/bk_index.html
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Fig. 6. Visual comparison on the task of photometric stereo. ROUTE-ADMM adopts γ = 0.001 in this experiment.

Fig. 7. More results by ROUTE-ADMM.

Fig. 8. Visual comparison on the task of background modeling. (a) Original
frame. (b) Noisy frame. (c) Incomplete (b). (d) Our W. (e) Bgd. by factEN.
(f) Bgd. by RegL1. (g) Bgd. by Unifying. (h) Bgd. by ROUTE.

can clearly find the ghosts left in the background. That is
to say, all of factEN, RegL1 and Unifying are not capable
to handle the data sufficiently well, because of the limited
samples, the gross outliers, the noises and the missing pixels.
In comparison, our proposed ROUTE-ADMM can signifi-
cantly outperform the competitors, as shown in the last picture

of Fig. 8, which benefits from the outlier estimation. The
estimated weight W is given in Fig. 8 (d). Please notice that
the dark regions in (d) contain the missing elements weighted
by zero for unifying LRMR and LRMC.

VI. CONCLUSION

This paper has shown a method for jointly detecting out-
liers and recovering the underlying low-rank matrix, called
ROUTE-LRMR. Our weighting strategy employs an entropy
regularization term to minimize the prediction bias, which
behaves like a sigmoid function. To seek the optimal solution
for ROUTE-LRMR, we have developed a block coordinate
descent based algorithm (ROUTE-BCD) and an alternating
direction method of multipliers based one (ROUTE-ADMM).
The theoretical analysis and the experimental results compared
to the state-of-the-arts, have demonstrated the advantages of
the proposed ROUTE-LRMR, with the evidence on the superi-
ority of ROUTE-ADMM over ROUTE-BCD. Our strategy can
be applied to numerous tasks such as regression, clustering,
inpainting and foreground detection. It is also ready to embrace
specific domain knowledge, like graph regularizer on the
weight, for boosting the performance on different applications.
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