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Abstract—Fisher’s criterion is one of the most popular dis-
criminant criteria for feature extraction. It is defined as the gen-
eralized Rayleigh quotient of the between-class scatter distance to
the within-class scatter distance. Consequently, Fisher’s criterion
does not take advantage of the discriminant information in the
class covariance differences, and hence, its discriminant ability
largely depends on the class mean differences. If the class mean
distances are relatively large compared with the within-class
scatter distance, Fisher’s criterion-based discriminant analysis
methods may achieve a good discriminant performance. Other-
wise, it may not deliver good results. Moreover, we observe that
the between-class distance of Fisher’s criterion is based on the
£;-norm, which would be disadvantageous to separate the classes
with smaller class mean distances. To overcome the drawback of
Fisher’s criterion, in this paper, we first derive a new discriminant
criterion, expressed as a mixture of absolute generalized Rayleigh
quotients, based on a Bayes error upper bound estimation,
where mixture of Gaussians is adopted to approximate the
real distribution of data samples. Then, the criterion is further
modified by replacing £;-norm with £; one to better describe
the between-class scatter distance, such that it would be more
effective to separate the different classes. Moreover, we propose
a novel £1-norm heteroscedastic discriminant analysis method
based on the new discriminant analysis (L1-HDA/GM) for
heteroscedastic feature extraction, in which the optimization
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problem of L1-HDA/GM can be efficiently solved by using the
eigenvalue decomposition approach. Finally, we conduct extensive
experiments on four real data sets and demonstrate that the
proposed method achieves much competitive results compared
with the state-of-the-art methods.

Index Terms— Feature extraction, Fisher’s discriminant cri-
terion, heteroscedastic discriminant criterion, £{-norm het-
eroscedastic discriminant analysis (L1-HDA), Rayleigh quotient.

I. INTRODUCTION

INEAR feature extraction plays a crucial role in sta-

tistical pattern recognition [1]-[3]. The goal of linear
feature extraction can be regarded as seeking a transforma-
tion matrix that transforms the input data from the original
high-dimensional space to a low-dimensional space while
preserving some useful information. Fisher’s linear discrim-
inant analysis (FLDA) [4] is one of the most popular linear
feature extraction methods, which aims to find a set of optimal
discriminant vectors, such that the projections of the training
samples onto these vectors have maximal between-class scatter
distance and minimal within-class scatter distance. This is
realized by solving a series of discriminant vectors that maxi-
mize Fisher’s discriminant criterion, defined as the generalized
Rayleigh quotient of the between-class scatter distance to the
within-class scatter distance. Over the past several decades,
Fisher’s criterion-based discriminative feature extraction meth-
ods had been successfully applied to face recognition [5],
image retrieval [6], and speech recognition [7]. More recently,
Yang et al. [8] adopted the Fisher’s criterion to enhance the
discriminative ability of the sparse coefficient matrix in the
sparse representation model [9]. Although the Fisher’s crite-
rion had been shown to be very effective in practical applica-
tions, it should be noted that this criterion was developed under
the homoscedastic distributions of the class data samples.
Since the Fisher’s criterion is characterized by the ratio of
the between-class scatter distance to the within-class scatter
distance, it may not deliver a good discriminant performance
when the class mean distances are relatively small compared
with the within-class scatter distance. Considering the elec-
troencephalogram (EEG) feature extraction as an example,
we cannot determine what features are the most discriminative
ones according to Fisher’s criterion because the EEG signal
conditioned on each class is often assumed to have a zero
mean [10], and hence, Fisher’s ratio will always be zero.
In such a case, only the class covariance matrices can be
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utilized to extract the discriminant features [11]. Conse-
quently, how to define a good discriminant criterion for
extracting the useful discriminant features from the class
covariance matrices is the major goal of this paper.

In order to utilize the discriminant information from
both class means and class covariance matrices, many het-
eroscedastic discriminant criteria have been proposed during
the past several years [12]-[15], [17], [18], which result in
various heteroscedastic discriminant analysis (HDA) meth-
ods. Here, we divide them into the following three cate-
gories. The first one is derived under the maximum-likelihood
framework [12]-[14]. A representative method of this cat-
egory was proposed by Kumar and Andreou [12] for
speech recognition. The second category is derived based
on Chernoff distance or Bhattacharyya distance [1], [16],
where a representative method, denoted as HDA/Chernoff,
is based on the Chernoff criterion [15]. A similar method
to HDA/Chernoff is the approximate information discrimi-
nant analysis (AIDA) method [14], which uses the so-called
w-measure [17] as the discriminant criterion. The third cate-
gory investigates hybrid linear feature extraction scheme for
the HDA (HDA/HLFE) [18], [19], in which the discriminative
information are, respectively, extracted from the class means
and class covariance matrices. Since HDA/HLFE is derived
under the assumption of single Gaussian distribution of each
class data samples, it should be noted that HDA/HLFE may
not be well suitable for the cases where the class data samples
abide by Gaussian mixture distribution. In addition, it is
also notable that the discriminant vectors of HDA/HLFE are
learned in two separated subspaces, such that the learned
discriminant vectors may not be optimal in terms of Bayes
error since the Bayes error is characterized by both class means
and class covariance matrices simultaneously. For all of the
aforementioned HDA methods, a common limitation of these
methods is the suffering of the so-called small sample size
problem [20], i.e., all these methods require that the number
of samples in each class be larger than the dimension of the
data space in order to guarantee the nonsingularity of the class
covariance matrices.

In addition to the HDA methods, there are other discrim-
inant analysis approaches that have been proposed in recent
years to overcome the drawbacks of FLDA, e.g., multiview
learning (or multimodal learning) methods [49], [50], subclass
methods [21], [22], kernel-based methods [23], [24], or deep
neural network method [51]. The multiview learning (or mul-
timodal learning) methods are mainly related with the feature
extraction problems of learning from the data represented
by multiple distinct feature sets [52]. The subclass methods,
e.g., the subclass discriminant analysis (SDA) [21], deal with
the discriminative feature extraction by dividing each class
samples into several subclasses, which enables this method
more powerful than the FLDA method in extracting discrimi-
native features. The kernel-based discriminant analysis (KDA)
methods [23] are the nonlinear extension of FLDA via kernel
trick [25] to solve the drawbacks of FLDA. In KDA, the input
data samples are mapped by a nonlinear mapping from the
input data space to a high-dimensional reproducing kernel
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Hilbert space (RKHS), such that the nonseparable data samples
of the input data space become separable in RKHS. As a
consequence, performing feature extraction in RKHS using
FLDA results in the nonlinear feature extraction in the original
input data space. Similar to the kernel-based learning methods,
the deep neural network methods can also extract the nonlinear
features via nonlinear neural network learning.

Although the aforementioned methods are proposed to over-
come the drawbacks of FLDA, most of them are developed
under the Fisher’s criterion, i.e., minimizing the within-class
scatter distance and maximizing the between-class scatter
distance. Hence, some of the limitations of Fisher’s criterion,
such as the difficulty of extracting the discriminant information
lying in the class covariance differences, may still exist to
some extent for these methods.

In this paper, we develop a new discriminant criterion
under the distributions of Gaussian and mixture of Gaussians,
respectively, for heteroscedastic discriminant problems, which
can be expressed as a mixture of absolute generalized Rayleigh
quotients (MAGRQs). Preliminary applications of this paper to
nonfrontal facial expression recognition and EEG classification
had investigated in [26]—[28].

To show the physical meaning of our MAGRQ criterion,
let us first consider a special two-class heteroscedastic case
as shown in Fig. 1, in which the first row illustrates three
examples of two-class homoscedastic data sets (denoted by red
and green colors), whereas the second and third rows illustrate
another six examples of two-class data sets with the same class
means but different covariance matrices. From Fig. 1, we can
see that the separability of the two-class data sets is closely
related with both class means and class covariance matrices.
In particularly, it is notable that even the between-class dis-
tances are the same, e.g., Fig. 1 (d)—(i), the two-class data
sets associated with the largest covariance matrices difference
could be best separated. Especially, in Fig. 1 (g)—(i), the class
means are almost overlapped, and hence, the traditional FLDA
would not be applicable, whereas the HDA method could
largely separate the two-class data sets. Fig. 2 shows a special
case of two-class heteroscedastic discriminant problem, where
the class means are equal (zero) but the class covariance
matrices are different. It is obvious that Fisher’s criterion
cannot be used in this scenario because of the zero class
means. Now, let v denote a projection vector, such that the
projections of two data samples x and y onto this projection
vector are v/ x and v’y, where we suppose that x is from
class 1 and y is from class 2. Intuitively, to best distinguish
the data samples between the two classes, we should minimize
their overlapping parts as much as possible. To this end,
we may expect that one class has smaller scatter distances,
whereas the other one has larger scatter distances, which
means that we have to seek a projection vector v such that
the projection of one class has a smaller variance, whereas the
other one has a larger variance. This can be modeled as the
following maximization problem:

max |var(VTx) — var(va)| = vz — VTZyv|
viv=1
=B -Zyv D
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Fig. 1.

Separability between two classes of data sets depicted by red color and green color, respectively. (a)—(c) Examples that the separability of two classes

improves with the increases of the class mean distances. (d)—(i) Examples that the separability of two classes improves with the increase of the difference of

class covariance matrices.

V2?

Fig. 2. Example where the class means are equal but the class covariance
matrices are different. In this case, the FLDA method is not applicable because
the between-class scatter matrix becomes a zero matrix.

where Xy and Xy denote the covariance matrix of classes 1
and 2, respectively. According to (1), we can obtain that the
two most discriminative vectors for distinguishing between the
two classes in Fig. 2 should be v; and v,. This is because
the projections of the data samples onto these two projection
vectors will have the minimal overlapping parts (indicated by
thick lines).

Malina [29] proposed an extended Fisher’s criterion that
is expressed as the similar form of MAGRQ. Unfortunately,
Malina’s criterion is limited to two-class feature extraction
problems, and it is proposed empirically and hence lacks
a rigorous theoretical justification. In contrast to Malina’s
criterion, our MAGRQ criterion is obtained based on a rig-
orous theoretical derivation. More specifically, we develop an

upper bound of Bayes error under single Gaussian distribution
assumption of each class data set and then extend to the
case of mixture of Gaussian distributions. We also show that
minimizing the upper bounds of Bayes error in both cases will
result in the similar MAGRQ discriminant criterion, where
a larger value of the MAGRQ criterion would lead to a
smaller bound of the Bayes error. In addition, it seems that our
MAGRQ criterion is also related with the multiview or multi-
modal learning problems such as the works addressed in [49]
and [50], and there are significantly different between them.
Specifically, the multiview learning or multimodal learning is
mainly targeted at the problems of learning from the data of
multiple distinct feature sets. In contrast to these methods,
the proposed MAGRQ criterion is developed under a single
feature set. Moreover, the multiview learning or multimodal
learning methods of [49] and [50] are developed without
considering the discriminant information lying in the class
covariance differences, whereas the proposed MAGRQ crite-
rion aims to extract this kind of discriminant information.

In dealing with the discriminant analysis problem, it is
well known that both between-class scatter distance and
within-class scatter distance can be formulated as the £,-norm
operation [30]. Since the ¢{;-norm is more sensitive to the
influence of outliers, discriminant analysis-based ¢1-norm had
received increasing interests of researchers [30]-[34], [34] in
order to boost the robustness of the discriminant analy-
sis methods. Wang et al. [30] first introduced the ¢;-norm
distance metric for learning robust common spatial filters
from EEG data samples contaminated by noises. The basic
idea was further adopted to deal with the robust discrimina-
tive feature extraction of FLDA by Zhong and Zhang [31],
Zheng et al. [32], and Wang et al. [33], respectively, which
was referred to as the L1-FLDA method here.
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Fig. 3.  Example of a set of data set with three classes to illustrate the
scenarios that more attentions should be focused on, in which the distances
indicted by thicker lines imply that they are more important than those
indicated by thinner lines in order to separate the different classes.

Despite the success of L1-FLDA in robust discriminative
feature extraction, it is interesting to see that replacing {,-norm
with £;-norm in the between-class scatter distance would be
advantageous to increase the discrimination ability of FLDA,
whereas it would not be a good choice to replace the {;-norm
with ¢{-norm for the within-class scatter distance. This is
because the use of {1-norm tends to suppressing the contribu-
tion of the well-separated classes (with longer between-class
scatter distance) and hence can emphasize more on the classes
(with smaller between-class scatter distance) that are difficult
to be separated. For the within-class scatter distance, we expect
to minimize the within-scatter distance so as to achieve better
discrimination, which means that we should focus more on the
classes with longer within-scatter scatter distances rather than
on those classes with smaller within-class scatter distances.
In this sense, using the {-norm would be more advantageous
than the €1 one to describe the within-class scatter distance.
Fig. 3 shows an example of a set of data samples with three
classes to illustrate the scenarios that more attentions should be
focused on in order to achieve better discrimination, in which
the distances indicted by thicker lines imply that they are more
important than those indicated by thinner lines in order to sep-
arate the different classes. Consequently, to emphasize more
on the classes with smaller between-class scatter distance,
the ¢1-norm could be adopted to describe the between-class
scatter distance. On the contrary, to emphasize more on the
classes with larger within-class scatter distance, the {;-norm
could be adopted to describe the within-class scatter distance.
According to the above-mentioned analysis, we extend the
MAGRQ criterion by replacing the £>-norm with the €1 one
in the between-class scatter distance and hereafter propose the
{1-norm-based MAGRQ (L1-MAGRQ) criterion.

Based on the aforementioned L1-MAGRAQ criterion, in this
paper, we propose a novel HDA method under the mixture
of Gaussian distribution (L1-HDA/GM) of each class data
samples. Moreover, we also propose an efficient algorithm to
solve the optimal discriminant vector sets of L1-HDA/GM,
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in which only the principal eigenvalue decomposition prob-
lems are involved, which can be efficiently solved by using
the power iteration approach and the rank-one-update (ROU)
technique [35]. In addition, although L1-HDA/GM can be
seen as the extension of our preliminary works in [26]-[28],
it improves the previous works by using ¢j-norm to replace
the > one for describing the between-class scatter distance.
Specifically, under the ¢i-norm distance metric, the feature
extraction of L1-HDA/GM will pay more attention to the
nonseparated pairwise classes, which makes it more powerful
in extracting the discriminative features.

The remainder of this paper is organized as follows.
In Section II, we briefly introduce the Bayes error upper bound
under both Gaussian and mixture of Gaussian distributions.
In Section III, we develop the MAGRQ criterion based on
the Bayes error upper bound estimation and then propose
the simplified version of the L1-HDA/GM method as for the
case when the number of Gaussian components is fixed at 1.
In Section IV, we propose the complete L1-HDA/GM method.
The experiments are presented in Section V, and Section VI
concludes this paper.

II. BAYES ERROR UPPER BOUND UNDER GAUSSIAN AND
MIXTURE OF GAUSSIAN DISTRIBUTIONS

In this section, we briefly introduce an upper bound of the
Bayes error under the single Gaussian distribution assumption
and then extend it to the case of mixture of Gaussian distrib-
utions, which are the basis of deriving our MAGRQ criterion
in Sections III and IV, respectively.

A. Bayes Error Upper Bound Under Single
Gaussian Distribution

Suppose that we are given a set of d-dimensional vector set
X = {x{li =1,...,¢c;j=1,...,N;}, where x{ e R% be a
sample vector and ¢ and N; denote the number of classes and
the number of data samples in the ith class, respectively. Let
pi(x) and P; denote the distribution and the prior probability
of the ith class, respectively. Assume that the distribution of
the ith class is Gaussian, i.e., p;(x) = N (x|m;, X;), where
N(x|m;, X;) is expressed as
Nxm;, T;) = ——F—exp [ - l(X —m;)"
@)% %2 2

X Ei_l(X — m,)]

m; and X; denote the class mean and the class covari-
ance matrix, respectively. Then, the Bayes error between the
classes i and j can be expressed as [1]

o= [ min (PipiCe). Py ). @)
By applying the following inequality to (2):
min (a, b) < Vab Va,b >0, 3)

we obtain that the Bayes error can be bounded as the following
form [1]:

8E/,/PiPjpi(X)Pj(X)Cb‘Ké P Pje; 4)
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where

&j =/\/Pi(X)Pj(X)dX~ Q)

Substituting the expressions of p;(x) into (5), we obtain that
¢ij can be calculated by

1
Mvaz(Q

1 T e-1
eij = exp _gAmij):ij Am;; |iij|
where ;; = (1/2)(X; + ;) and Am;; = m; — m;.

B. Bayes Error Upper Bound Under Mixture
of Gaussian Distributions

The aforementioned Bayes error upper bound is obtained
under the assumption of single Gaussian distribution of p;(x).
Assume that the class probability density function p;(x) is a
mixture of Gaussians, i.e., p;(X) can be expressed as the form

K;
pi(®) =D 7w Nxmyr, Z)) @)

r=1

where 0 < 7;, < 1 (Zﬁl iy = 1) are called the mixing
coefficients and K; is the number of Gaussian mixture com-
ponents.

Let N (xjm;,, X;,) £ Nj,. Then, from (2), we obtain that
the Bayes error between the classes i and j can be bounded by

& = /min(Pipi(X), Pjp;j(x))dx

Ki Kj
=373 [ mintrim N PNty

r=11=1

K, K;
< ZZ\/Pi”ierﬂjlf'f,‘r; (8)

r=11=1

where

1

VIZirllX il

- ©)
=]

1 T arly—1
eir;:expi—gAmf; (E;j) Amf;]

where £/ = (1/2)(Si + 1) and Am(! = m;, —m;y.

In what follows, we will limit our attention to derive the
MAGRQ criterion based on the Bayes error bound in (4)
and (9), respectively. We first derive the MAGRQ criterion
under single Gaussian distribution and then extend to the case
of mixture of Gaussian distributions.

III. MAGRQ CRITERION FOR HDA UNDER
SINGLE GAUSSIAN DISTRIBUTION

In this section, we develop the MAGRQ criterion based on
the Bayes error upper bound estimation and then propose a
novel HDA method based on this criterion.

IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 30, NO. 10, OCTOBER 2019

A. MAGRQ Criterion Under Single Gaussian Distribution

Assume that the data samples of each class abide by
the single Gaussian distribution; then, we obtain that, when
projecting the samples to 1-D by a vector @ € R?, the distri-
bution of the projected samples in the ith class data set will
become p;(x) = N (x|w' m;, ® T;w), and the upper bound
&;j becomes

1
1 (@' Am;)? | (0" Ti00” T 0 )
gij(w) =expy—<

8 a)T)_:,-j(x) (a)Ti,-jw)z
2
1(wTAm,-j)2 | a)TAE,-ja)
= X — = = — — =
P 8 wTZijw wT):ijw

where Am,-j =m; —m; and A):,-j = (1/2)(2,‘ — Ej).

To minimize the Bayes error, we should minimize its
upper bound. Hence, based on (4) and (10), we should maxi-
mize both (07 Am;;)? /@’ Z;j®) and (|0’ AZ;j0|/0! Z;j0),
which results in the following two-class heteroscedastic dis-
criminant criterion:

e

(10)

(@ Am;j)? + 0T AZ ;0

Jij (@) = ol w
ij

(11)
We call the criterion of (11) as the pairwise MAGRQ criterion.
This criterion is the Malina’s discriminant criterion [29] for
two-class feature extraction. From the definition of J;;(w)
in (11), we can see that the two-class MAGRQ crite-
rion can be seen as the mixture of Fisher’s criterion and
Fukunaga—Koontz criterion [36], in which the first part corre-
sponds to Fisher’s criterion, whereas the later one corresponds
to the Fukunaga—Koontz criterion.

On the other hand, from the expression of (11), we obtain
that the physical meaning of the MAGRQ criterion can be
explained as the simultaneous optimization of the following
two parts:

_ 12)

max((x)TAm,-j)2 + |a)TAZ,-ja)|
mianEijw.

For multiclass cases, the maximization problem of (12) can
be extended by maximizing the pairwise summation of the two
parts of (12), that is

{maxzijj P;Pj[(@" Am;)? + |0 AZjj0l] (13)

min Zi,j P; ijTflijw = min20’ T
where £ = >%_| P, X;.
From (13), we define the multiclass MAGRQ criterion as
the following form:
J (@) = loBII3 + Zi<j_Pij|wTAEijw|
o' T
where P;; = P; Pj, and

B =[vP2Amy, ...,/ PilcAmy,
Xy Pr3Amys, ...,/ P Am_p)c].  (15)

(14)
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The between-class scatter distance of the multiclass MAGRQ
criterion in (14) is based on £>-norm, and hence, it is referred
to as the £>-norm-based MAGRQ (L2-MAGRQ) criterion.
On the other hand, as what we have pointed out in
Section II, using ¢j-norm would be more advantageous than
{>-norm in separating the different classes. Hence, we use
{1-norm to replace the £> one for describing the between-class
scatter distance of J(w), which means that we use ||wTB||% to
replace ||wTB||% in the nominator part of J (), resulting in the
following ¢1-norm-based MAGRQ (L1-MAGRQ) criterion:
loBIIT + 3, Pijlo” AZjjo|
0’ Tw '
Based on the L2-MAGRQ criterion defined in (14) and
L1-MAGRQ criterion defined in (16), we can develop two
HDA methods under the Gaussian distribution, which are,
respectively, denoted by L2-HDA/G and L1-HDA/G. In what
follows, we will first provide the detailed algorithm description
of the L1-HDA/G method in Section III-B and then address
the L2-HDA/G algorithm based on the L1-HDA/G algorithm
in Section III-C.

Ji(w) = (16)

B. LI-HDA/G Algorithm

Suppose that we want to obtain k discriminant vectors,
denoted as w1, .. ., g, of LI-HDA/G. Then, we subsequently
define the k discriminant vectors as follows.

Let w1, ..., ®, be the first r discriminant vectors. Then,
the (r 4+ 1)th discriminant vector is defined by

w41 = argmax Ji (@), s.t. a)TS,a)j =0 V,j<r {17
[0)

where S; is the covariance matrix of all data samples, such that
the discriminant vectors are statistically uncorrelated [37].
_ 5—/2)
Letw =X o and

AZ; = Pi:¥~
Y (18)
B=X ?B.

Then, we obtain that solving the optimization problem (17) is
equivalent to solving the following optimization problem:

0r41 = argmax Jy (), s.t.a’ U, =07 (19)
o
Where Ur = [Sl‘al’ ey SfarL Sf = 2-:7(1/2)Sf2_:7(1/2)’ and
. le"BIF + 3, la” AZijal
Ji(@) = ! Zf;f Eaa (20)
ol o

The absolute value signs in the expression of Ji(a) make
the optimization of (20) difficult. So we introduce two
¢ x ¢ skew symmetric sign matrices U = ((U);j)exc and
V = ((V)ij)cxc» where (U)ij, (V)ij S {+1, —1}, where
(U);; and (V);; denote the ith row and jth column element
of U and V, respectively. Let u denote the vector by concate-
nating entries of U according to the following form:

u=[Ui2,..., O, V)23, ..., O) -1l
Denote € as the set of all sign matrices and define

T(U,V) =Buu'B” + > (V); A%,

i<j

21
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Then, we obtain that
o' T(U, V)a = (@"Bu)* + D" (V);ja” AT
i<j
< Ja"Bl} + D la” AZjjel. (22)
i<j

From (22), we obtain that the optimization problem of (20)
can be formulated as the following one:

Ji@= max o« T(U, V)a. (23)
U, Ve, ||al=1
From (23), we obtain that
max J (@) = max max o T(U, V)a
a la|=1U,VeR
= max max a! T(U, V)a. (24)
U,VeQ [|af|=1

By observing (24), we can see that: if the sign matrices
U and V are fixed, then the optimal discriminant vector is
the normalized (we will not reemphasize this in the sequel)
eigenvector associated with the largest eigenvalue of the matrix
T(U, V). Solving the principal eigenvector of T(U, V) can be
easily realized via the power iteration method. So our problem
of maximizing Ji () is changed to finding the optimal sign
matrices U and V, such that the largest eigenvalue of T(U, V)
is maximized.

In what follows, we will propose a greedy algorithm to
find the suboptimal sign matrices U and V. To begin with,
we introduce the following theorem.

Theorem 1: Let a!) be the principal eigenvector of
T(Uy, Vy). Define U; and V; as

. T, .
(Up)ij = sign(a'V” Any;), 25)
V3)ii =si n(a(l)TA)A:,--a(l)
J g J
where
ian(a) 1, iifa=>0
sign(a) =
& —1, Others.

Suppose that a® is the principal eigenvector of T(Us, V»).
Then, we have

a@ ' T(Ws, v2)a® > « VT, vi)a.  (26)

Proof: See Appendix A. 0

Thanks to Theorem 1, we are able to improve the sign
matrices step by step.

To solve the discriminant vector &4, we introduce Propo-
sitions 1 and 2 in the following. Their proofs can be easily
obtained from [38].

Proposition 1: Let Q,R, be the QR decomposition of U,,
where R, is an r x r upper triangular matrix. Then, a, 1
defined in (19) is the principal eigenvector corresponding
to the largest eigenvalue of the following matrix (Iy —
Q.Q)T(U, V)1, — Q.Q).

Proposition 2: Suppose that Q,R, is the QR decom-
position of U,. Let U,y = (U, Starﬂ), q =

Siari1 — Q(QfSietr41), and Qr41 = (Q, (q/llqll)). Then,

re
Q41 (l;r Q ﬁ(’;ﬁ’“ ) is the QR decomposition of U, 1.
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The above-mentioned two propositions provide an efficient
approach for solving (19): Proposition 1 makes it possible to
use the power method to solve (19), while Proposition 2 makes
it possible to update Q,1 from Q, by adding a single column.
Moreover, it should be noted that

r+1

I —Q41Qf, = H (Is
i=1
(Id -Q,Q, )(Id - qr+1qr+1)

where q; is the ith column of Q,.. Equation (27) makes it possi-
ble to update (Id—Q,HQrTH)T(Ur, Vr)(Id—Qr+1QrT+1) from
Iz — Q-QNT(U,, V,)(Is — Q,Q) by the ROU technique.

Here, it should be noted that the initial setting of the sign
matrices U and V in T(U, V) may influence the optimality of
the solution. Consequently, to obtain a better solution, we may
initialize the sign matrices U and V based on the optimal
discriminant vectors solved by other discriminant analysis
algorithms. For example, suppose that a is the optimal dis-
criminant vector solved by the HDA/Chernoff algorithm [15],
then the initial sign matrix of U and V can be obtained as
follows:

- qiq})

27)

(28)
(29)

U)pg <~ sign(aTAﬁlpq)
V)pg < sign(aTAprqa).

We summarize the algorithm for solving the first k£ discrim-
inant vectors of LI-HDA/G in Algorithm 1.

C. L2-HDA/G Algorithm

In the aforementioned section, we had developed a set of
optimal discriminative vectors of L1-HDA/G based on the
L1-MAGRQ criterion. Similarly, if the L2-MAGRQ criterion
is adopted, then we can obtain an optimal set of L2-HDA/G
discriminative vectors. Specifically, the optimal discriminative
vectors of L2-HDA/G can be subsequently obtained: suppose
that we have obtained the first » optimal discriminant vectors
of L2-HDA/G, denoted as wy,...,w,, then the (r + 1)th
discriminant vector is defined by

w41 = argmax J (@), s.t. a)TS,a)j =0 Vj<r. (30
w

The optimization problem of (30) is equivalent of the follow-
ing one:

O +1 _arg max J(a) 3D
Ty=0T
where
. la”Bl2 + 3, la” AS;jal
J(a) = 2 Z“f;oi Y (32)

in which U, and B are defined in Section III-B.

Noting that the £2-norm metric can be easily computed with-
out the absolute value operation, the expression of T(U, V)
in (21) can be replaced by T(V) defined as follows:

T(V) =BB” + > (V);;AL;;.
i<j
As a result, the L2-HDA/G algorithm can be obtained with

a simple modification of the L1-HDA/G algorithm shown in
Algorithm 1, which can be summarized in Algorithm 2.

(33)
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Algorithm 1 Solving Optimal Vectors w; (i = 1,...,k)
of LI-HDA/G

Input:
o Input data set {x{|i =1,...,¢c;j=1,..., N;}, class
label vector L, where Ny +---+ N. = N.

Initialization:
» Compute %, %, X, B, s’ z = x-U2y; )':‘7
B=3%" zB S,_E_ZS, 2 m;, M = X 2m;
o Initialize the discriminant vectors «;;
Fori=1,2,...,k, Do

%, ):

1) Compute AS,, « » (P <q);
2) Set U, V <« zero matrlx and compute

U)pg < sign(a,-TArhpq);
(V1) pg < sign(a,-TA):pqa,-).

3) While U # U; and V # Vy, Do
a) Set U < Uy and V <« V, compute T(U, V)
and the principal eigenvector, 7(351', of T(U, V);
(U1) pg < sign(a;" Amp,);
b) Compute . ~
) P { (V)pg < s1gn(alTAquai).

4) Update Q;: Q; < (Qi—1 Tai ”2) where
qi < Stﬁll and Qp <« H(;lﬁ, if i=1;
Qi < S — Qi—l(QiT,ISzoti), otherwise.

5) Update flp and B :

2, <~ (I-q4q)E,I—-qq]),B < I—qq])B;

__1
6) Compute w; = ¥ 2, and set w; < w;/||w;|l;

Output: @1, ..., w.

D. Computational Analysis of L1-HDA/G and L2-HDA/G

According to the detailed algorithm description of
L1-HDA/G shown in Algorithm 1, we can obtain the com-
putational complexity of L1-HDA/G algorithm. Specifically,
in the initialization part, the computational complexity of
calculating the class covariance matrices is O(cd?N), and
the computational complexity of calculating the transformation
matrices (El, B, and S,) is O(cd?). In calculating each
discriminative vector w;, the computational complexity of
steps 1) and 2) are O(d?) and O(c*d?), respectively. The
computational complexity of calculating T(U, V) in step 3) is
0(c*d)+ 0(c?d?), and the complexity of solving the principal
eigenvector of T(U, V) is only O(d?) (e.g., using the power
method). The complexity of updating U and V in step 3) is
0(c*d)+0(c?d?). In addition, it is easy to check that the com-
putational complexity of steps 4)-6) are O(d?), O(d?), and
0(d?), respectively. According to the aforementioned analysis,
we summarize the computational complexity of Algorithm 1
in Table L.

In contrast to the L1-HDA/G algorithm, the major difference
of L2-HDA/G lies in the calculation of T(U, V) (replaced
by T(V) in L2-HDA/G). The computational complexity of
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TABLE I
COMPARISON OF COMPUTATIONAL COMPLEXITY BETWEEN THE L1-HDA/G AND L2-HDA/G ALGORITHMS

Algorithm Computational complexity of each step in the algorithm ‘
Initialization 1) 2) 3) 4) S5) 6)

Algorithm 1 O(cd?N)+O(cd?) O(c?) O(c2d?) O(c2d) + O(c?d?) 0(d?) O(d?) O(d?)

Algorithm 2 O(cd? N)+O(cd?) 0(c?) O(c%d?) O(d?)+0(c%d?) O(d?) O(d?) O(d?)

Algorithm 2 Solving Optimal Vectors @; (i = 1,...,k)
of L2-HDA/G

Input:
o Input data set {x{|i =1,...,¢c;j=1,..., N;}, class
label vector L, where Ny +---+ N, = N.
Initialization:
- Compute %;, £, Z. B, sf ): _s-iwEr

B=3%" 2B § =32728% 2, my, 1y = £ 2my;

o Initialize the discriminant vectors «;;
Fori=1,2,...,k, Do

1) Compute AEM <X (< g

2) Set V <« zero matrix, and compute

(V1)pg < sign(a;" Aipqai)-

3) While V # V{, Do
a) Set V <V and compute T(V) and the
principal eigenvector, a;, of T(V);
b) Compute (V1)pq < sign(a,-TAfJ pgQi).

4) Update Q;: Q; < (Q;—1 Hz) where
qi < Sy and Q; « Hq e ifi=l;
qi < Sia; — Qi—l(Qi,IS;a ), otherwise.

5) Update flp and B:
3, < @-qq)2,d-qq]),B < I-qq))B;

__1
6) Compute w; = ¥ 2, and set w; < w;/||w;|l;

Output: @1, ..., w.

calculating T(V) is O(d®) + 0(c?d?), which would be
a bit more than calculating the value of T(U,V) in the
L1-HDA/G algorithm. The detailed computational complexity
of L2-HDA/G is also summarized in Table I.

IV. L1-MAGRQ CRITERION UNDER MIXTURE OF
GAUSSIAN DISTRIBUTIONS AND L1-HDA/GM

In this section, we generalize the L2-MAGRQ criterion and
the L1-MAGRQ criterion from the single Gaussian distribution
to the mixture of Gaussian distributions. Then, we propose the
L2-HDA/GM method and the L1-HDA/GM method. If the
data samples of each class abide by the mixture of Gaussian
distributions, then we have the following theorem with respect
to the projected samples.

Theorem 2: Suppose that the distribution function of the
ith class is a mixture of Gaussians, that is

K;
z i N (XM, Xir).

r=1

pi(x) =

Then, the class distribution function p;(w” x) of the projected

samples wTx is also a mixture of Gaussians, that is
K;
pi@'x) = mir N @ x| mir, 0" Tipw).  (34)
r=1
Proof: See Appendix B. 0

Thanks to Theorem 2, we obtain that the two-class Bayes
error bound expressed in (8) can be replaced by

Ky K;
e < ZZ\/P,-ni,Pjnﬂeir;(w)

(35)
r=1I=1
where ei’; (w) is formulated as
i
T 12 T /
g 1 (@ Amfj) o' AZ
&; (@) = exp T8 gerl N
0% o 'Y 0
(36)

Similar to the derivation in Section III, from the Bayes error
upper bound shown in (35) and (36), we obtain the following
two-class MAGRQ criterion under the mixture of Gaussian
distributions:

(! Am{})z +|o” A%!o|

T—r
0 Yo

Jij(@) = mirmj 37)
r,l

Note that, in real applications, the number of samples is
often insufficient for estimating a mixture of Gaussians with
different X;. values. To remedy this issue, we may assume
that the matrices {X;,} are identical, say equal to X;. In this
case, the two-class MAGRQ criterion in (37) can be expressed
as the following form as for the case of the mixture of
Gaussian distribution:

2
2 ”ir”jl(“’TAmf;)
walijw

ol AZ ;o
wTEijw

Jij (w) = (38)

where AX;; and 3, ; are the same as those defined in
Section III-A.

For multiclass case, we define the following L2-MAGRQ
criterion based on the two-class MAGRQ criterion of (38):

. l0"B|2 X Pijlo" ATl
J(@) =~ T
w! Tw LU NA)

(39)
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where

B = [‘/P12B12, eV P1eBiae,

VP3B, . /P 1)eBie—1ye] (40)
B = [mnajiAmj,
NiN;
,/ﬂilﬂjzAmiljz,..., /”iKi”jKjAmij j]. (41)

In this case, we can obtain the following L1-MAGRQ criterion
under the mixture of Gaussian distribution:

Ji(w) £ ”wT?”% + 2icj Pij'?TAzijwl.
ol T ol T

Finally, based on the L1-MAGRQ criterion and the

L2-MAGRAQ criterion defined in (42) and (39), we can define

the optimal discriminant vector set of L1-HDA/GM and

L2-HDA/GM, respectively, which are similar to those defined

in (17) and (30), respectively, and the solution methods are also
similar to those shown in Algorithms 1 and 2, respectively.

(42)

V. EXPERIMENTS

In this section, we will evaluate the discriminant per-
formance of the proposed methods on four real-data data-
bases, i.e., the Multi-PIE and the BU-3DFE facial expression
databases [41], [44], the EEG database in “BCI Competi-
tion 2005 (data set IIla) [46], and the UCI database [55].
Since L1-HDA/G is only a special case of L1-HDA/GM
as for the case when the number of Gaussian components
equals to 1, in the following experiments, we only adopt the
L1-HDA/GM method to conduct the experiments. Moreover,
we also use the L2-HDA/GM method to conduct the same
experiments. For comparison purpose, several state-of-the-art
discriminant analysis methods are adopted to conduct the same
experiments, which include the FLDA method [5], the AIDA
method [14], the HDA/Chernoff method [15], the HDA/HLFE
method [18], the SDA method [21], and the multi-view deep
network (MvDN) method [51]. In addition, we also conduct
the experiment without any feature extraction and refer it
as the baseline method. Noting that the experiments aim to
evaluate the discriminative feature extraction performance of
the various methods, in the following experiments, we only
adopt simple classifiers, such as K-nearest neighbor and the
linear classifier, to produce the classification results in order to
compare the discriminative power of the extracted features.! In
real applications, one may use more complex classifiers, such
as support vector machine [39] and Adaboost [40], to further
enhance the classification performance.

A. Experiment on Multi-PIE Facial Expression Database

In this experiment, we will use the famous Multi-PIE
database [41] to evaluate the performance of the various meth-
ods. This is a multiview facial expression database consisting
of 755370 facial images of 337 subjects. Similar to [42],
we choose 4200 facial images from 100 subjects as those pre-
viously used in [42] to conduct the experiment, in which each

10therwise, one may not be able to separate the contribution from feature
extraction and that from classifier.
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Fig. 4. Examples of the 42 facial images covering six facial expressions and
seven facial views of one subject in the Multi-PIE database.

subject contains 42 facial images that cover seven facial views
(0°, 15°, 30°, 45°, 60°, 75°, and 90°) and six facial expressions
(disgust, neutral, scream, smile, squint, and surprise). Fig. 4
shows 42 facial images covering the six facial expressions and
seven facial views of one subject in the Multi-PIE database.

We explore two kinds of facial feature extraction schemes

to evaluate the proposed methods. The first one is to adopt
local binary patterns (LBPs) [43] to extract 5015 features from
each facial image, and the second one is to extract deep
learning (DL) features learned via deep neural networks as
used in face recognition [54]. The details of extracting both
kinds of features are summarized as follows.

1) To extract the LBP facial features, we use the mul-
tiscale face region division scheme proposed in [42]
to obtain 85 facial regions and then extract a 59-D
LBP feature vectors from each region, which results
in 85 LBP feature vectors for each facial image. Finally,
we concatenate all the 85 LBP feature vectors into a
5015-D feature vector.

2) To extract the DL features, we focus our attentions
to the existing DL neural network model that had
been successfully used in extracting facial features. For
this purpose, we first utilize the real-world affective
faces (RAFs) database [53] to fine-tune the deep-face
VGG model (VGG-Face) [54]. Then, based on the
fine-tuned VGG-Face model, we further extract the deep
facial expression features by fitting the facial images
of Multi-PIE database into the model. In this way,
we finally obtain a set of facial features with dimen-
sionality of 4096 taken from fc7 layer of the VGG-Face
model.

In order to visualize the data distribution associated with

each facial expression, we project the LBP feature points
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-1.5

(d)

Fig. 5.

(e ®

Distributions of LBP facial features projected by the first two principal components of PCA with respect to all the six facial expression classes of

Multi-PIE database, where the distribution of the data points of each facial expression demonstrates a multimodal form. (a) Disgust. (b) Neutral. (c) Scream.

(d) Smile. (e) Squint. (f) Surprise.

associated with the same facial expression onto the first two
principal components obtained by the principal component
analysis (PCA) and then depict the distribution of the pro-
jection points. Fig. 5 shows the distributions of projection
points with respect to all the six facial expression classes.
From Fig. 5, we can see that, due to the multiview property of
the facial images, the distribution of the data points associated
with each facial expression demonstrates a multimodal form
with seven clusters. In this case, it would be very possible that
using single Gaussian function could not be enough to char-
acterize the distribution of the multiview facial feature points.
For this reason, for both the L1-HDA/GM and L2-HDA/GM
methods, we use the mixture of Gaussians to describe the
distribution of the facial feature points, in which the number
of Gaussian components is set to be the number of facial
views (=7) and each Gaussian component corresponds to the
data samples of one facial view.

To evaluate the recognition performance of the various
methods, we adopted the experimental protocol used in [42]
to carry out this experiment. According to this protocol,
the cross-validation strategy is used to design the experiment,
in which we randomly partition the 100 subjects into two
subsets, in which the first subset contains the facial images
of 80 subjects and the second subset contains the facial
images of 20 subjects. Then, we choose the first subset as
the training data set and the second subset as the testing
data set. Consequently, the training data set contains a total
of 3360 facial images, whereas the testing one contains
840 facial images. Then, we train the discriminant vectors of

the various discriminant algorithms on the training data set and
evaluate the performance using the testing data set. Moreover,
considering that the dimensionality of the feature space is
relatively larger than the number of each class samples, a PCA
operation on the training data set is used to reduce the
dimensionality of the feature vectors, such that the covariance
matrix of each class data samples is nonsingular. We conduct
10 trials of experiments in this database, and in each of the
10 trials, new training and testing data sets are chosen to
evaluate the recognition performance of the various methods.
Finally, we average the results of all the experimental trials to
obtain the final recognition rate. Table II shows the average
recognition rates with respect to each facial expression and
the overall recognition rates of the various methods on the
Multi-PIE facial expression database.

From Table II, we observe the following three major points.

1) The average recognition accuracies of using LBP fea-
tures are higher than those of using DL features. This is
most likely due to the fact that the VGG-face model is
fine-tuned using other facial expression database, i.e., the
RAF database, instead of the Multi-PIE database. Since
the RAF database is irrelevant to the facial expression
images to be tested, the extracted facial features may not
well capture the discriminative information of the facial
images of Multi-PIE database.
The L1-HDA/GM method and the L2-HDA/GM method
achieve much competitive recognition rates for most
of the linear discriminant analysis methods, where
the highest overall recognition accuracy (=81.65%) is

2)
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TABLE II

AVERAGE CLASSIFICATION RATES (%) OF VARIOUS METHODS WITH RESPECT TO EACH FACIAL EXPRESSION ON THE MULTI-PIE DATABASE

l Disgust Neutral Scream Smile Squint Surprise Overall
# samples 700 700 700 700 700 700 4200
# subjects 100 100 100 100 100 100 100
dimensionality of LBP feature 5015 5015 5015 5015 5015 5015 5015
dimensionality of deep learning feature 4096 4096 4096 4096 4096 4096 4096
Baseline 58.93 71.14 76.93 68.29 41.07 80.64 66.17
FLDA 73.57 74.21 90.71 79.29 66.21 89.86 78.98
AIDA [14] 63.43 74.43 85.64 76.14 65.86 91.36 76.14
LBP HDA/HLFE [18] 69.29 78.64 90.00 78.36 66.43 87.00 78.29
Feature HDA/Chernoft [15] 64.93 76.21 86.07 76.07 66.57 90.29 76.69
SDA [21] 73.14 77.79 90.79 79.79 73.86 91.71 81.18
MvDN [52] 66.00 77.50 91.00 75.00 80.50 95.50 80.92
L2-HDA/GM 74.00 78.50 90.64 80.57 73.07 92.07 81.48
L1-HDA/GM 73.86 78.64 89.93 80.86 73.86 92.79 81.65
Baseline 29.36 79.29 78.00 65.71 49.21 85.14 64.45
FLDA 68.07 68.00 92.14 72.29 60.29 88.14 74.82
AIDA [14] 32.29 58.21 71.00 48.14 35.79 69.64 52.51
Deep HDA/HLEFE [18] 63.43 66.71 91.50 73.86 59.93 88.50 73.99
Learning HDA/Chernoff [15] 55.86 62.43 87.57 67.00 48.36 82.14 67.23
Feature SDA [21] 66.5 70.14 91.86 71.00 64.64 89.50 75.61
MVDN [52] 62.00 68.00 91.50 79.00 76.50 91.50 78.42
L2-HDA/GM 67.43 70.79 92.07 73.29 65.29 90.07 76.49
L1-HDA/GM 68.79 70.00 92.14 73.93 64.50 89.57 76.49
TABLE III
COMPUTATIONAL EFFICIENCY OF THE VARIOUS METHODS IN TERMS OF THE CPU RUNNING
TIME (second) IN THE TRAINING STAGE ON THE MULTI-PIE DATABASE
Feature Baseline FLDA AIDA HDA/HLFE HDA/Chernoff SDA MvDN L2-HDA/GM L1-HDA/GM
LBP Feature 0.01 0.45 0.52 1.38 2.43 0.65 1209 11.16 9.62
DL Feature 0.02 3.71 14.29 61.95 132.90 5.19 2566 77.05 65.92

achieved by L1-HDA/GM. The better recognition accu-
racies may attribute to the use the mixture of Gaussians
to approximate the multimodal distribution of the feature
vectors.

3) The SDA method and the MvDN method also achieve
the competitive recognition performance compared with
the other methods. This is most likely due to the fact
that SDA is actually a special case of our L2-HDA/GM
method when the class covariance matrices of data
samples are equal. In addition, it is interesting to see
that from Fig. 5, the scatter of the data points is similar,
and hence, the corresponding class covariance matrices
would be similar. As a result, the difference between
our L2-HDA/GM method and SDA in this experiment is
trivial, and hence, they achieve similar better recognition
results. As for the MvDN method, we note that it is a
nonlinear feature extraction method and hence its better
recognition performance may largely attribute to the
nonlinear feature learning trick.

Moreover, to evaluate the computational efficiency of the

various methods in the training stage, we also compare the
CPU running time (second) among the various methods, where
the calculation of CPU time is based on the computation
platform of MATLAB2017B software with CPU 17-7700k and
16-GB memory. Table III summarizes the results of the various

methods under the two kinds of facial features, i.e., LBP
feature versus DL feature, where the parameter scale of the
MvDN method is as high as 6 x 10%. From Table III, we can
see that the computational complexity of the proposed methods
is very competitive to the state-of-the-art HDA methods, such
as HDA/HLFE and HDA/Chernoff, which are much less than
the MvDN method. In addition, from Table III, we can also
see that the CPU running time of L1-HDA/G is a bit less than
L2-HDA/G, which coincides with the computational analysis
in Section III-D.

B. Experiment on BU-3DFE Facial Expression Database

In this experiment, we will evaluate the discriminative
performance of the proposed methods on the BU-3DFE data-
base, which was developed by Yin et al. [44] at Binghamton
University. The BU-3DFE database contains 2400 3-D facial
expression models of 100 subjects, which cover six basic facial
expressions (anger, disgust, fear, happy, sad, and surprise) with
four levels of intensities. Based on the 3-D facial expression
model, a set of 12000 multiview 2-D facial images are
generated [26], which covers five yaw facial views (0°, 30°,
45°, 60°, and 90°). Fig. 6 shows the examples of 30 facial
images of one subject corresponding to six basic facial expres-
sions and five facial views in the BU-3DFE database.
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TABLE IV
AVERAGE CLASSIFICATION RATES (%) OF VARIOUS METHODS WITH RESPECT TO EACH FACIAL EXPRESSION ON THE BU-3DFE DATABASE

l Happy Sad Angry Fear Surprise Disgust Overall

# samples 2000 2000 2000 2000 2000 2000 12000

# subjects 100 100 100 100 100 100 100
dimensionality 10624 10624 10624 10624 10624 10624 10624
dimensionality of deep learning feature 4096 4096 4096 4096 4096 4096 4096
Baseline 88.25 62.28 75.78 30.75 82.53 54.83 65.73

FLDA 84.55 75.50 75.15 60.60 89.40 73.20 76.40

AIDA [14] 85.95 75.35 75.63 56.00 88.85 72.40 75.70

LBP HDA/HLEFE [18] 87.75 77.83 77.35 55.15 89.25 71.35 76.45
Feature HDA/Chernoff [15] 86.30 74.65 73.50 56.23 87.38 66.93 74.16
SDA [21] 86.70 78.28 77.68 62.28 90.83 74.23 78.33

MvDN [52] 84.00 73.75 77.00 66.25 88.13 71.88 77.10

L2-HDA/GM 86.53 78.38 77.63 62.55 90.78 74.53 78.40

L1-HDA/GM 85.88 78.23 77.88 62.98 90.98 74.25 78.36

Baseline 65.90 44.38 57.40 26.05 67.70 38.05 49.91

FLDA 71.25 52.55 58.23 4.88 78.83 56.65 60.73

AIDA [14] 67.83 38.60 50.43 34.25 68.45 35.50 49.18

Deep HDA/HLEFE [18] 65.33 51.80 50.73 44.68 74.88 54.75 57.03
Learning HDA/Chernoft [15] 71.83 40.78 53.40 31.30 73.25 43.05 52.27
Feature SDA [21] 76.95 56.78 61.40 49.93 83.15 63.25 65.24
MvDN [52] 60.87 67.00 58.50 71.75 55.125 78.00 66.21

L2-HDA/GM 77.13 56.58 62.53 49.50 82.95 62.50 65.20

L1-HDA/GM 76.63 56.65 61.88 50.05 82.33 62.48 65.00

Angry Disgust Fear Happy Neutral Sad Surprise

Multi-view face images generated from BU-3DFE database

Fig. 6. Examples of the 2-D facial images of one subject in the BU-3DFE
database with respect to the six facial expressions and five facial views.

In this database, we also explore two kinds of facial feature
extraction schemes to evaluate the proposed methods. One
is to extract the scale invariant feature transform (SIFT) [45]
feature, and the other one is to extract the DL feature, in which
the DL feature extraction procedure is similar to the one
used in the Multi-PIE database. To extract the SIFT features,
we utilized the 83 landmark points obtained by projecting
83 landmark 3-D points located on each 3-D facial expression
model onto a 2-D image and extract a set of 83 SIFT feature
vectors with 128 dimensionality from each facial image. Then,
we concatenate all 83 SIFT feature vectors into a 10624-D
feature vector to describe the facial image. In addition, to visu-
alize the distribution of the feature points associated with each

facial expression, we reduce the dimensionality of the facial
feature vectors of the same facial expression from the 10624-D
space to 2-D subspace using PCA and then depict the distri-
bution of the data points. Fig. 7 shows the distributions of
projection points with respect to all the six facial expressions.
From Fig. 7, we observe that the distribution of the data points
of each facial expression demonstrates a multimodal form
with five clusters. Consequently, for both the L1-HDA/GM
and L2-HDA/GM methods, the mixture of Gaussians with five
components is used to describe the distribution of the facial
feature points for the proposed methods, and each Gaussian
component also corresponds to the data samples of one facial
view.

In the experiments, we use the same cross-validation experi-
mental setting as what we have done in Section V-A, i.e., there
are 10 trials of experiments that are conducted, and in each
trial of experiments, we partition the whole data set into a
training set and a testing set, where the training set contains a
total of 9600 facial images of 80 subjects, whereas the testing
one contains 2400 facial images of 20 subjects. In addition,
PCA is also used to reduce the dimensionality of the feature
vectors such that the class covariance matrices become nonsin-
gular. Finally, the experimental results of all the 10 trials are
averaged as the overall recognition rate. Table IV shows the
recognition results of the various methods on the BU-3DFE
facial expression database.

From Table IV, we observe the similar experimental results
as those obtained on the Multi-PIE database. That is, the aver-
age recognition accuracies of using SIFT features are higher
than those of using DL features, and both the L1-HDA/GM
and L2-HDA/GM methods achieve higher recognition accu-
racies than most of the other discriminant analysis methods.
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Fig. 7. Distributions of SIFT facial features projected by the first two principal components of PCA with respect to all the six facial expression classes of

the BU-3DFE database. (a) Happy. (b) Sad. (c) Angry. (d) Fear. (e) Surprise. (f) Disgust.

Similar to the experiments on the Multi-PIE database,
the major reason of the better recognition results of the
proposed methods may attribute to the use the mixture of
Gaussians to approximate the multimodal distribution of the
feature vectors. Again, we see that the SDA method and
the MvDN method also achieve better recognition results
compared with the other state-of-the-art linear discriminant
analysis methods because of the similar reason of the
proposed methods.

C. Experiment on UCI Data Sets

In the above-mentioned two experiments, we note that the
L1-HDA/GM method does not achieve significant improve-
ment in contrast to the L2-HDA/GM method. This is probably
due to the fact that the separabilities between the pair-
wise classes in both BU-3DFE and Multi-PIE databases are
similar, such that the advantages of L1-HDA/GM cannot
be well reflected. To further compare the recognition per-
formances between L1-HDA/GM and L2-HDA/GM, in this
section, we will conduct more experiments on more databases,
in which the UCI database [55] previously used in [15] is
adopted for evaluating the discriminant performance. There
are totally nine data sets that are explored in the experiments
and are listed as follows:

1) Wisconsin breast cancer;

2) BUPA liver disorder;

3) Pima Indians diabetes;

4) Wisconsin diagnostic breast cancer;

5) Cleveland heart-disease;

6) thyroid gland,;

7) Landsat satellite;

8) multifeature digit (Zernike moments);

9) vowel context.

For each one of the nine data sets, we randomly divide it
into two subsets, with an approximately equal size of samples.
Then, we choose one subset for training the algorithms and
use the other one for testing the discriminant performance.
We swap the training subset and the testing subset, such that
each subset is used as the training data set once. For each
training data set, we utilize the nearest neighbor clustering to
divide the data samples belonging to the same class into K
subclasses. In this case, we can use the mixture of Gaussian
model with K components to describe the distribution of the
data samples of each class.

Similar to [15], before the experiments, a PCA is performed
on the training set to reduce the dimensionality of the data
samples, such that the covariance matrix of each data set is
nonsingular. Throughout the experiments, we use the quadratic
classifier for classifying the testing data. For each one of
the nine data sets, the average error rate is used to evaluate
the various discriminant methods. Table V summarizes the
main properties of the nine UCI data sets and the average
error rates of various feature extraction methods, where “#PC”
in the fourth row shows how many principal components
we use after the PCA processing. From Table V, we can
observe that L1-HDA/GM outperforms L2-HDA/GM in all
these nine data sets. Another observation from Table V is that,
for both L1-HDA/GM and L2-HDA/GM, using the mixture
of Gaussian model to describe the data samples of each
class could achieve better than using the single Gaussian
model.

D. Experiment on EEG Data Sets

In this experiment, we will evaluate the effectiveness of the
proposed HDA in dealing with the feature extraction problem
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TABLE V
UCI BENCHMARK DATA SETS AND THE AVERAGE ERROR RATES (%) OF SEVERAL METHODS

Data set WBC BUPA PID WDBC CHD TG LS MD vC

# samples 682 345 768 569 297 215 6435 2000 990
# subjects 2 2 2 2 2 3 6 10 11
dimensionality 9 6 8 30 13 5 36 47 10
# PC 9 6 8 7 13 5 36 33 10
baseline / 4.48 40.12 31.69 9.15 41.62 5.57 12.15 23.98 9.58
FLDA / 4.56 43.14 29.35 6.14 24.22 4.54 11.71 19.90 1.16
AIDA / 44 36.28 32.71 6.74 24.89 6.18 18.04 23.86 1.33
HDA/HLFE / 4.56 43.14 29.35 6.14 22.00 4.54 13.71 19.90 1.16
HDA/Chernoft / 4.42 39.28 31.13 5.88 23.05 3.63 13.22 23.03 1.38
MvDN / 3.89 35.00 29.01 6.01 21.13 4.15 8.99 16.24 1.44
K=1 3.77 39.71 28.31 7.19 24.33 3.63 13.51 20.30 1.52

K=2 4.20 36.57 29.61 6.49 24.67 4.55 13.12 19.85 1.52

SDA [21] K=3 4.49 43.14 31.82 6.84 24.67 4.55 13.18 19.50 1.52
K=14 478 37.43 33.38 6.84 26.00 4.55 13.51 18.70 1.52

K=5 478 37.43 32.08 6.84 27.00 4.55 14.24 18.70 1.52

K=1 5.21 36.57 41.10 6.32 27.00 6.59 13.65 19.40 1.11

K=2 4.35 36.57 34.68 6.32 23.00 5.45 11.74 18.35 1.11

L2-HDA/GM K=3 435 36.57 31.75 6.32 23.00 5.45 11.43 17.90 1.11
K=14 4.35 36.57 31.43 6.32 22.17 5.45 11.13 17.90 1.11

K=5 4.35 36.57 31.17 6.32 22.17 5.45 11.13 17.90 1.11

K=1 4.86 43.71 30.13 6.93 22.67 4.09 14.40 19.75 1.06

K=2 3.77 36.14 30.13 6.93 20.67 3.64 11.98 18.98 1.06

L1-HDA/GM K=3 3.77 34.14 29.74 5.79 20.67 3.64 10.83 17.80 1.06
K =4 3.77 34.14 29.22 5.79 20.67 3.64 10.43 17.55 1.06

K=5 3.77 34.14 28.44 5.79 20.67 3.64 10.43 17.55 1.06

as for the case when the class means are the same. To this
end, we focus on an EEG classification problem whose target
is to recognize the motor imagery tasks based on the EEG
signal, i.e., recognizing what kind of motor imagery task that
the EEG signal corresponds to.

The data set used in this experiment is from the “BCI
competition 2005 (data set Illa) [46]. This data set con-
sists of recordings from three subjects (k3b, k6b, and 11b),
which performed four different motor imagery tasks (left/right
hand, one foot, or tongue) according to a cue. During the
experiments, the EEG signal is recorded in 60 channels,
using the left mastoid as reference and the right mastoid as
ground. The EEG was sampled at 250 Hz and was filtered
between 1 and 50 Hz with the notch filter on. Each trial
lasted for 7 s, with the motor imagery performed during
the last 4 s of each trial. For subjects k6b and 11b, a total
of 60 trials per condition were recorded. For subject k3b,
a total of 90 trials per condition were recorded. In addition,
similar to the method in [10], we discard the four trials
of subject k6b with missing data. The EEG data samples
associated with the same class are preprocessed, such that
their class means equal to zero vector [27]. Fig. 8 shows
examples of the preprocessed EEG data samples of one trial
with respect to different EEG classes and subjects, in which
the four figures of each row show the data point distributions
corresponding to four EEG classes of one subject, while the
three figures of each column show the data point distribution
corresponding to the same class of three subjects, respec-
tively. From Fig. 8, we can see that the sample mean in

each class is a zero point, and hence, only the class covari-
ance differences can be utilized to extract the discriminative
features.

Similar to [27], for each trial of the EEG data, we only use
parts of the sample points, i.e., from Nos. 1001 to 1750, as the
experiment data. Consequently, each trial contains 750 data
points. In the experiment, we adopt a twofold cross-validation
strategy to perform the experiment, i.e., we divide all the
EEG trials into two groups and select one as the training
data set and the other one as the testing data set, and then
we swap the training and testing data set to repeat the
experiment. Since the class means of the EEG data samples
equal to the zero vector, the traditional Fisher’s criterion-based
approach, such as FLDA and SDA, cannot be applied in
this experiment. Consequently, in this experiment, we only
evaluate the discriminative feature extraction performance of
the following four HDA methods, i.e., the AIDA method,
the HDA/Chernoff method, the HDA/HLFE method, and the
proposed L1-HDA/GM method.

As for the EEG classification, we extract the same
log-transformation variance used in [11] to represent the final
EEG feature of each trial. Then, we use the linear classifier
to perform the EEG classification. Fig. 9 shows the average
recognition rates of the four methods on the three subjects,
from which we can clearly see that the proposed L1-HDA/GM
method achieves much competitive experimental results com-
pared with the best experimental results obtained by the other
state-of-the-art methods.
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Fig. 8. Examples of the EEG data samples of one trial with respect to four EEG classes and three subjects. The four figures of each row show the data point
distributions corresponding to the four EEG classes of one subject, whereas the three figures of each column show the data point distribution corresponding
to the same class of the three subjects (K3b, K6b, and L1b). (a) Class 1. (b) Class 2. (c) Class 3. (d) Class 4.
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Fig. 9. Average recognition rates of various methods on the EEG data sets
of three subjects.

VI. CONCLUSION AND DISCUSSION

In this paper, we have proposed a novel L2-MAGRQ
criterion based on the Bayes error upper bound estimation.
This criterion can be seen as a generalization of the tradi-
tional Fisher’s criterion aiming to overcome the limitations of
Fisher’s criterion in the case of heteroscedastic distribution
of the data samples in each class. The L2-MAGRQ criterion
is further modified by replacing the {>-norm operation in
the between-class scatter distance with £j-norm, resulting
in the LI-MAGRQ criterion. Two kinds of HDA methods,
L1-HDA/G (L2-HDA/G) and L1-HDA/GM (L2-HDA/GM),
based on the L1-MAGRQ (L2-MAGRQ) criterion are, respec-
tively, proposed for discriminative feature extraction, in which
L1-HDA/G (L2-HDA/G) corresponds to the case where the
distribution of each class data set is Gaussian, whereas

L1-HDA/GM (L2-HDA/GM) corresponds to the mixture
of Gaussian distributions [it is notable that L1-HDA/G
(L2-HDA/G) 1is actually a special case of L1-HDA/GM
(L2-HDA/GM) when the mixture of Gaussian distributions
reduces to the Gaussian distribution]. Moreover, we also
propose an efficient algorithm to solve the optimal discrim-
inant vectors of L1-HDA/GM (L2-HDA/GM). Although the
algorithm presented in this paper for solving the optimal
discriminant vectors of L1-HDA/GM (L2-HDA/GM) is a
greedy algorithm, it is easier to develop a nongreedy algorithm
for L1-HDA/GM (L2-HDA/GM) by referring the method pro-
posed in [47] and [48]. The experiments on four real databases
had been conducted to evaluate the discriminative perfor-
mance of the proposed methods. The experimental results
demonstrate that the proposed L1-HDA/GM method achieves
better recognition performance than most of the state-of-the-art
methods, which may attribute to the use of mixture of Gaussian
distributions and the Bayes error estimation. In addition,
in the multiview facial expression recognition experiments,
we see that the SDA method also achieves the similar better
experimental results as ours. This is most likely due to the fact
that SDA is a special case of L2-HDA/GM as for the case of
similar class covariance matrices.

In addition, the proposed L1-HDA/GM (L2-HDA/GM)
methods can also be used to improve the current graph-based
subspace learning performance. For example, Peng et al. [56]
constructed an {>-norm-based sparse similarity graph for
robust subspace learning under the sparse representation
framework, in which the sparse relationships among the data
points are preserved in the low-dimensional subspace. It is
notable that the feature extraction part of the method pro-
posed by Peng et al. [56] is actually an unsupervised subspace
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learning approach, which could not fully utilize the class label
information of the data points to improve the discriminative
ability of the extracted features. By adopting the proposed
HDA methods, however, we may be able to learn a more
discriminative subspace for the feature extraction purpose.

In addition, in our experiments, we can see that the MvDN
method proposed in [51] achieved very competitive results
with our L1-HDA/GM (L2-HDA/GM) methods. This is very
likely due to the fact that MVDN is actually a nonlinear feature
extraction method implemented by using the deep neural
networks approach (hence, the computational complexity of
MvDN would be larger than the other methods, see Table III
for more details). In contrast to MvDN, both the proposed
L1-HDA/GM and L2-HDA/GM methods are linear feature
extraction methods. Nevertheless, it is notable that we are
able to adopt the similar nonlinear learning trick of using
deep neural network to realize the proposed L1-HDA/GM
(L2-HDA/GM) algorithm to further improve the discriminative
feature extraction performance, which would be our future
work.

APPENDIX A
PROOF OF THEOREM 1

Proof: Suppose that a® is the principal eigenvector of
T(U,, V3), that is

a® = arg ”m”axl aTT(Us, Va)a. (43)
oll=
Then, by the definition of a(z), we have
a@'T(Uy, V2)a® > aO ' T(Uy, Va)a V. (44)
On the other hand, we have
2
T T, .
aD T(Us, V2)a D = [ D (02);aV" Ay
i<j
+> (V2)yaM AT ;0. 45)

i<j
From (25) and (45), we have
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2
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Combine (44) and (46), we have
a@ ' T(Ws, v2)a® > V' TU, Vi)aD.  @7)
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APPENDIX B
PROOF OF THEOREM 2

For simplicity of the derivation, we denote the class dis-
tribution function of x € X; by p,(x) and the distribution
function of y = w’x by py(y), ie., px(x) = pix[x € X;)
and p,(y = o’x) = pi(w'x|x € X;). Then, the characteristic
function of x is

Ki
$e(t) = E@ = m; / XN (i, Biy)dx
r=1 X

K; 1
= Tir €Xp (jtTmir - EtT):irt)

r=1

(48)

where j2 = —1.
Then, the characteristic function of y is

$(&) = E(e) = E(e”"%) = ¢ (Co)
K;
= iy €Xp (jfa)Tm,-r — %fszEi,w). (49)
r=1

So the density distribution function of y is

Py(’?)
1 .
=5 /é by I

K.

d 1 . 1
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(50)

This completes the proof of Theorem 2.
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