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Abstract—We propose a method for estimating 3D human poses from single images or video sequences. The task is challenging

because: (a) many 3D poses can have similar 2D pose projections which makes the lifting ambiguous, and (b) current 2D joint detectors

are not accurate which can cause big errors in 3D estimates. We represent 3D poses by a sparse combination of bases which encode

structural pose priors to reduce the lifting ambiguity. This prior is strengthened by adding limb length constraints. We estimate the 3D

pose by minimizing an L1 norm measurement error between the 2D pose and the 3D pose because it is less sensitive to inaccurate 2D

poses. We modify our algorithm to outputK 3D pose candidates for an image, and for videos, we impose a temporal smoothness

constraint to select the best sequence of 3D poses from the candidates. We demonstrate good results on 3D pose estimation from

static images and improved performance by selecting the best 3D pose from theK proposals. Our results on video sequences also

show improvements (over static images) of roughly 15%.

Index Terms—3D human pose estimation, sparse basis, anthropometric constraints, L1-norm penalty function

Ç

1 INTRODUCTION

HUMAN pose estimation is an important problem in
computer vision which has received much attention

because many applications require human poses as inputs
for further processing [1], [2], [3], [4]. Representing human
motion by poses is arguably better than using low-level fea-
tures [5] because it is more interpretable and compact [3].

In recent years there has been much progress in estimat-
ing 2D poses from images [6], [7], [8], [9] and videos [3], [10],
[11]. A 2D pose is typically represented by a set of body joints
[6], [12] or body parts [7], [8]. Then a graphical model is for-
mulated where the graph node corresponds to a joint (or
body part) and the edges between the nodes encode spatial
relations. This can be extended to video sequences [3], [10],
[11] to explore the temporal cues for improving performance.
Nevertheless, it seems more natural to represent humans in
terms of their 3D poses because this is invariant to viewpoint
and the spatial relations between joints are simpler.

But estimating 3D poses from a single image is difficult for
many reasons. First, it is an under-constrained problem
because we are missing depth information and many 3D
poses can give rise to similar 2D poses after projection into
the image plane. In short, there are severe ambiguities when
“lifting” 2D poses to 3D. Second, estimating 3D poses
requires first estimating the 2D joint locations in images
which can make mistakes and can result in bad estimates for
some joints. All these issues can degrade 3D pose estimation
if not dealt with carefully. Third, the situation becomes even
worse if the camera parameters are unknown which is typi-
cally the case in real applications. Hence we must estimate
the 3D pose and camera parameters jointly [13] which leads
to non-convex formulations which is difficult.

1.1 Method Overview

We present an overview of our approach illustrating our
main contributions. This builds on, and gives amore detailed
description of, our preliminary work [14] which estimated
3Dposes from a single image. Our new contributions include
extending the work to output K candidate 3D poses, to
improve our 3D pose estimates by post-processing, and to
estimate 3D poses from videos exploiting temporal cues.

We break our approach down into five components
described below. These are: (i) the 3D pose prior, (ii) the
measurement error between the 2D pose and the 3D projec-
tion, (iii) the inference algorithm for estimating 3D pose and
camera parameters using the alternate direction method
(ADM), (iv) our method for outputting K candidate 3D
poses, and (v) the extension to video sequences.

1.1.1 The Prior for 3D Poses

We represent 3D poses by a linear combination of basis func-
tions. This is partly motivated by earlier work [13] which
used PCA to estimate the bases from a 3D dataset. By con-
trast, we learn the bases by imposing a sparsity constraint.
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This implies that for a typical 3D pose only a small number of
the basis coefficients will be non-zero. We argue that sparse
bases are more natural than PCA for representing 3D poses
because the space of 3D poses is highly non-linear. The spar-
sity requirement puts a strong prior on the space of 3D poses.
But this prior needs to be strengthened because unrealistic
3D poses can still have sparse representations.

To strengthen the sparsity prior we build on previous
work on anthropometric constraints [15], [16] which shows
that the limb length ratios of people are similar and can be
exploited to estimate 3D poses (but when used by themselves
anthropometric constraints have ambiguities).Weweremoti-
vated to use anthropometric constraints by observing that
many of the unrealistic 3D poses often violate them. Hence
we supplement the sparse basis representation with hard
limb length ratio constraints to discourage incorrect poses.

1.1.2 Robust Measurement Error: L1-Norm

The difficulty of 3D pose estimation is that we frequently get
large errors, or outliers, in the positions of some 2D joints.
We use an L1 norm to compute the measurement error
between the detected 2D poses and the projections of the 3D
poses. We argue that this is better than using the standard L2

norm because the L1 is much more robust to large errors, or
“outliers”, in the 2D pose estimates. The greater robustness
of theL1 norm is well-known in the statistics literature [17].

1.1.3 Algorithm to Minimize the Objective Function

We formulate an objective function by combining the mea-
surement error with the sparsity penalty and the anthropo-
metric constraints. Our inference algorithm minimizes this
objective function to jointly estimate the 3D pose and the
camera parameters. We first initialize the 3D pose and then
estimate the camera parameter and the 3D pose alternately
(with the other fixed). See Fig. 1. The estimations (for 3D
pose and camera separately) are done using the alternating
direction method which yields a fast algorithm capable of
dealing with the constraints.

1.1.4 Multiple Candidate Proposals and Selection

For a single image, our best estimate of the 3D pose is usu-
ally good [14] but not perfect. There are two main reasons
for this. First, the problem is highly non-convex so our esti-
mation algorithm can get trapped in a local minimum. Sec-
ond, our basis functions are learnt from 3D pose datasets of
limited size, which may cause some errors.

To address this issue, we modify our approach to output
a set of K 3D poses, where K takes a default value of eight.
Our experiment shows that one of our top eight candidates
is typically very close to the groundtruth, but the best candi-
date may not be the one that minimizes our objective func-
tion, see Fig. 4. We show that we can improve performance
by a second stage where we select the candidate that best
satisfies the anthropometric constraints.

1.1.5 Selecting the Best Pose: Temporal Smoothness

If we have a video then we can obtain candidate 3D pro-
posals for each frame and select them by imposing temporal
smoothness. This assumes that the 3D pose does not change
much between adjacent frames. We select the 3D pose by
minimizing an objective function which imposes temporal
consistency and agreement with the 3D pose priors.

In summary, the main novel contributions of this paper
are the use of sparsity to obtain a prior for 3D poses which
can effectively reduce the 3D pose lifting ambiguities. Our
method for supplementing this with anthropometric con-
straints is also novel (but different forms of limb length con-
straints have been explored in history [16]). The use of the
L1 norm to penalize measurement errors is new for this
application (but well-known in the statistics literature [17]).
Our use of the ADM algorithm to impose non-linear con-
straints is novel for this application. Our work on estimating
the K best poses builds on prior work, e.g., [18], but they do
not extend this to 3D poses and video sequences. The first
part of this work (single 3D pose estimation) was first pre-
sented in our preliminary work [14] but in less detail.

The paper is organized as follows: We first review related
work in Section 2. Sections 3 and 4 describe the details of
image/video based pose estimation, respectively. The basis
learning method is discussed in Section 5. Sections 6
give the experiment results. We conclude in Section 7.
Appendix A presents the optimization method.

2 RELATED WORK

2.1 Related Work on 3D Pose Estimation

Existing work on 3D pose estimation can be classified into
four categories by their inputs. The first class takes images
and camera parameters as inputs. We only list a few of
them here due to space limitations. Please see [19] for a
more comprehensive overview. Lee et al. [20] first parame-
terize the body parts by truncated cones. Then they opti-
mize the rotations of body parts to minimize the silhouette
discrepancy between the model projections and the image
by a sampling algorithm. The most challenging factor for
3D pose estimation from a single camera is the twofold
‘forwards/backwards flipping’ ambiguity for each body
part which leads to an exponential number of local minima.
Rehg, Morris and Kanade [21] comprehensively analyze the
ambiguities and propose a two-dimensional scaled pris-
matic model for figure registration which has fewer ambi-
guity problems. Sminchisescu and Triggs [22] propose to
apply inverse kinematics to systematically explore the com-
plete set of configurations which shows improved perfor-
mance over the baselines. Then in a later work, they [23]
propose to reduce the number of local minima by building
‘roadmaps’ of nearby minima linked by transition pathways

Fig. 1. Method overview. (1) On a test image, we first estimate the 2D
joint locations and obtain an initial 3D pose by the mean pose in the train-
ing data. This initializes an alternating direction method which recur-
sively alternates the two steps (i.e., steps 2 and 3). (2) Estimate the the
camera parameters from the 2D pose and current estimate of the 3D
pose. (3) Re-estimate the 3D pose using the 2D pose and the current
estimates of the camera parameters. The algorithm converges when the
difference of the estimates is small.
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which are found by searching for the codimension-1 saddle
points. Simo-Serra et al. [24] first estimate the 2D joint loca-
tions and model each joint by a Gaussian distribution. Then
they propagate the uncertainty to the 3D pose space and
sample a set of 3D skeletons there. They learn a SVM to
resolve the ambiguity by selecting the most feasible skele-
ton. In a later work [25], they propose to detect the 2D and
3D poses simultaneously by first sampling the 3D poses
from a generative model then reweighting the samplers by
a discriminative 2D part detector model. They repeat the
process until convergence.

The second class uses manually labelled body joints in
multiple images as inputs. The use of multiple images elimi-
nates much of the ambiguity of lifting 2D to 3D. Valmadre
et al. [26] first apply rigid structure from motion to estimate
the camera parameters and the 3D poses of the torsos (which
are assumed to be rigid), and then requires human input to
resolve the depth ambiguities for non-torso joints. Similarly,
Wei et al. [27] propose “rigid body” constraints to remove the
ambiguity. They assume that the pelvis and the left and right
hip joints form a rigid structure, and require that the distance
between any two joints on the rigid structure remain
unchanged. They estimate the 3D poses by minimizing the
discrepancy between the 3D pose projections and the 2D joint
detectionswithout violating the “rigid body” constraints.

The third class takes the joints in a single image as inputs.
For example, Taylor [15] assumes the limb lengths are known
and calculates the relative depths of the limbs. Barron and
Kakadiaris [28] extend this idea by estimating the limb length
parameters. Both approaches [15], [28] suffer from sign ambi-
guities. Pons-Moll, Fleet and Rosenhahn [29] propose to
tackle the ambiguities by semantic pose attributes. These
attributes represent Boolean geometric relationships between
body parts which can be directly inferred from image data
using a structured SVM model. They sample multiple poses
from the distribution and select the best one by the attributes.
Ramakrishna et al. [13] represent a 3D pose by a linear combi-
nation of PCA bases. They greedily add the most correlated
basis into the model and estimate the basis coefficients by
minimizing an L2-norm error between the projection of the
3D pose and the 2D pose. They also enforce a constraint on
the sum of the limb lengths of the 3D poses. This constraint is
weak because the individual limb lengths are not necessarily
correct, even if the sum is. Akhter and Black [30] propose to
learn an even more strict prior, i.e., pose-conditioned joint angle
limits from a large motion capture dataset. They also use
sparse bases to represent poses. But different from ours, they
do not use the robust reconstruction loss term neither the
limb lengths constraints.

The fourth class [31], [32], [33], [34], [35], [36], [37] requires
only a single image or image features. Mori et al. [31] match a
test image to the stored exemplars, and transfer the matched
2D pose to the test image. They lift the 2D pose to 3D by [15].
Gregory et al. [33] propose to learn a set of hashing functions
that efficiently index the training 3D poses. Bo et al. [38] use
twin Gaussian Process to model the correlations between
images and 3Dposes. Elgammal et al. [32] learn a view-based
silhouette manifold by Locally Linear Embedding (LLE)
and the mapping function from the manifold to 3D poses.
Agarwal et al. [34] present a method to recover 3D poses
from silhouettes by direct nonlinear regression of the

joint angles from the silhouette shape descriptors. These
approaches do not explicitly estimate camera parameters
and require a lot of training data from different viewpoints
in order to generalize to other datasets. Ionescu, Carreira and
Sminchisescu [9] propose to simulate the Kinect systems to
first label the image pixels and then regress the 3D joint loca-
tions from the derived features. In [39], the authors apply
deep networks to regress 3D human poses and 2D joint
detections in images together under a multi-task framework.
In [36], the authors propose a univeral network to regress the
pixelwise segmentations, 2D poses and the 3D poses. The
authors in [37] propose an dual-source approach to combine
the 2D and 3D pose estimation datasets which improves the
results when using only one data source. In a recent work
[35], the authors propose to first detect the 2D poses in an
image and then fit a 3D human shape model by minimizing
the projection errors.

Ourmethod only requires a single image as inputs. Unlike
[31], [32], [33], [34], we explicitly estimate the camera param-
eters which reduces dependence on training data. Our
method is similar to [13] but there are five differences: (i) we
do not require human intervention. We obtain the 2D joint
locations by applying a 2D pose detector [6] instead of by
manual labeling; (ii) we use the L1-norm penalty instead of
the L2-norm because it is more robust [17] to inaccurate 2D
poses; (iii) we enforce eight limb length constraints, which is
more effective than the sum of the limb lengths; (iv) we add
an explicit L1-norm regularization term on the basis coeffi-
cients in our formulation to encourage sparsity; while they
greedily add a limited number of bases into the model. They
need to re-estimate the basis coefficients every time a new
basis is added; (v) We learn the bases on training data which
combines all the actions while their approach splits the train-
ing data into classes, applies PCA to each class and finally
combines the principal components as bases. Our approach
is easier to generalize to other datasets because it does not
require people tomanually split the training data.

2.2 Related Work on M-Best Models

Meltzer et al. [40] observe that maximum a posteriori (MAP)
estimates often do not agree with the groundtruth. There
are several reasons accounting for this phenomenon. First,
the algorithm computing the MAP estimate may get stuck
in a local minimum. Second, the model itself is only an
approximation and may depend on parameters which are
learnt inaccurately from a small training dataset.

To address the problem, several work [3], [41], [42], [43],
[44] propose to compute multiple 3D human poses for post-
processing. For example, Sminchisescu and Jepson [41] pres-
ent a mixture smoother for non-linear dynamical systems
which can accurately locate multiple trajectories. They use
dynamic programming or maximum a posteriori for picking
the final solutions. This is similar to ours except that our
work focuses on how to generate multiple solutions for a sin-
gle static image. Kazemi et al. [44] first generate a set of high
scoring 2D poses and then reorder them by training a rank-
svm using a more complicated scoring function. Batra et al.
[43] generate a diverse set of proposal solutions progressively
by augmenting the energy function with a term measuring
the similarity to previous solutions. Similarly, Park and
Ramanan [42] propose an iterative method for computing
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M-best 2D pose solutions from a part model that do not over-
lap, by iteratively partitioning the solution space into M sets
and selecting the best solution from each set. But it doesn’t
deal with 3D poses neither the videos as ourmethod.

Our work for producing multiple solutions has two mod-
ules: candidates generation and candidate selection. In terms
of computing multiple solutions, our work is related to [43]
which also generates diverse solutions under the framework
of Markov Random Fields. However, our work differs from
[43] in terms of that we propose a novel diversity term which
can be naturally integrated into our 3D pose estimation
model. It is also related to [42]. But in [42], generatingmultiple
solutions is natural because of the tree structure based infer-
ence (each root node location results in a solution). So the
focus of [42]lies in how to selectM-best from them. In contrast,
our work focuses on obtaining multiple solutions by adding
a diversity term. In terms of selecting the best candidate, our
use of the limb length constraints is novel. However, the use
of temporal coherence cues and dynamic programming has
been explored extensively in previouswork [3], [41].

3 POSE ESTIMATION FROM A SINGLE IMAGE

This section describes how our algorithm can estimate can-
didate solutions for the 3D pose and camera parameters
from a single image. The input is the estimates of the 2D
pose produced by a state-of-the-art detection algorithm [45].

The first two sections describe the material that was first
presented in our preliminary work which outputs a single
3D pose estimate [14] while including additional details.
The third section describes an extension which outputs mul-
tiple 3D poses and selects the best of these candidates.

3.1 The 3D Pose Representation

We describe the 2D and 3D pose representations and the
camera model in Section 3.1.1, the measurement error in
Section 3.1.2, the sparse linear combinations of bases in
Section 3.1.3, the anthropometric constraint in Section 3.1.4
and the camera parameter estimation in Section 3.1.5.

3.1.1 The Representation and Camera Projection

We represent 2D and 3D poses by n joint locations x 2 R2n

and y 2 R3n, respectively. These can be expressed in matric
forms by X 2 R2�n and Y 2 R3�n respectively, where the
ith column are the 2D and 3D locations of the ith joint. We
assume that the 2D and 3D poses have already been mean-
centered, i.e., the mean value of each row ofX and Y is zero.

We assume that people are not close to the camera which
enables us to use a weak perspective camera model. The

camera projection matrix is denoted by M0 ¼ mT
1

mT
2

� �
2

R2�3 where mT
1m2 ¼ 0. The scale parameters have been

implicitly considered in the m1 and m2. In other words,
km1k is not necessarily to be one. Then the 2D projection x
of a 3D pose y is given by: x ¼ My, where M ¼ In �M0, in
which In is an identity matrix and � is the Kronecker prod-
uct operator.

3.1.2 The Measurement Error: L1 or L2 Norm

The measurement error quantifies the difference between
the 2D pose and the projection of the 3D pose. In this paper
we consider two different measurement errors, specified by
the L1 and L2 norms respectively

jjx�Myjj1; L1 norm and jjx�Myjj2; L2 norm: (1)

The L2-norm is the most widely used measurement error in
the computer vision literature. But, as discussed earlier, there
can be large errors, or outliers, in the 2D pose estimation due
to occlusion and other factors. Fig. 2 gives an example of an
“outlier” measurement. The right foot location (estimated by
[6]) is very inaccurate and biases the 3D estimate to the
wrong solution if the L2 norm is used, while the L1 norm
gives a better estimate. Hence we prefer to use the L1 norm
because it is more robust to outliers [17]. In the experimental
section we show that theL1 norm gives better results.

3.1.3 Sparse Linear Combination of Bases

We represent a 3D pose y as a linear combination of a set of
bases B ¼ fb1; . . . ; bkg, i.e., y ¼Pk

i¼1 aibi þ m (or y ¼ Baþ
m), where the a are the basis coefficients and m is the mean
pose. The bases and the mean pose are learned from a data-
set of 3D poses as described in Section 5.

Combining this with the measurement error gives a
penalty

x�M Baþ mð Þk k1: (2)

In addition, we apply an L1 sparsity penalty u ak k1 on the
coefficients a so that typically only a few bases are activated
for each 3D pose. This is aimed to reduce the effective
dimension of the 3D pose space. Although human poses are
highly variable geometrically it is clear that they do not
form a linear space so not all linear combination of bases
should be allowed. In fact researchers have shown that 3D
poses can be modelled by a low dimensional non-linear
space [46]. This leads to an objective penalty, which com-
bines the measurement error with the sparsity prior

min
a

x�M Baþ mð Þk k1þu ak k1; (3)

where u > 0 is a parameter which balances the projection
error and the sparsity penalty. The sparsity penalty can be
thought of as a sparsity prior on the set of 3D poses when
combined with the requirement that each pose is a linear
sum of bases. In our experiments, we set the parameter u by
cross-validation. More specifically, it is set to be 0.01 in all
experiments.

Fig. 2. (a) The estimated 2D joint locations where the right foot location is
inaccurate. (b-c) are the estimated 3D poses using the L1-norm and
L2-norm projection error, respectively. Using L2-norm biases the estima-
tion to a completely wrong pose. In contrast, using L1-norm returns a
reasonable pose which does not have obvious errors despite the right
foot joint. See Section 3.1.2
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There is, however, a problem with using Eq. (3) by itself.
We have observed that there are 3D configurations y for
which the objective function takes small values, but which
are unlike human poses. Hence the sparsity prior is not suffi-
cient and needs to be strengthened.

3.1.4 Anthropomorphic Constraints

It is known that the limb length ratios of different people are
similar in spite of the differences in their heights. This is
sometimes called an anthropometric, or structural, prior and
has been explored to decrease the ambiguities for human
pose estimation [13], [15], [16]. By itself it is not sufficient
because it allows sign ambiguities and cannot distinguish,
for example, between an arm pointing forward or backward.

We use the anthropometric prior to strengthen our spar-
sity prior. This requires formulating it as a anthropometric
constraint which we can incorporate into our objective
function. More specifically, we require that the lengths of
the eight limbs of a 3D pose should comply with certain
proportions. The eight limbs are the Left Upper Arm
(LUA), Right Upper Arm (RUA), Left Lower Arm (LLA),
Right Lower Arm (RLA), Left Upper Leg (LUL), Right
Upper Leg (RUL), Left Lower Leg (LLL), and Right Lower
Leg (RLL), respectively. These limb proportions are com-
puted from the statistics of the poses in the training dataset
(they are independent of individual subjects). We now pro-
ceed with the formulation.

We define a joint selection matrix Ej ¼ ½0; . . . ; I; . . . ; 0� 2
R3�3n, where the jth block is an identity matrix of dimen-
sion 3� 3 and the other blocks are zeros. We can verify that
the product of Ej and y returns the 3D location of the jth
joint in pose y. Let Ci ¼ Ei1 � Ei2 . Then Ciyk k22 is the
squared length of the ith limb whose ends are the i1th and
i2th joints.

We normalize the squared limb length of right lower leg
to one and compute the average squared lengths of the other
seven limbs (say Li) correspondingly from the training data.
We propose the following constraints Ci Baþ mð Þk k22¼ Li.

3.1.5 Robust Camera Estimation

Another component of the approach is to estimate the cam-
era parametersM0 given the estimated 3Dpose y and the cor-
responding 2D pose x byminimizing the L1-norm projection
error. Ideally the equality relationship between the 2D and

3D poses: X ¼ M0Y should hold, where M0 ¼ mT
1

mT
2

� �
is the

projection matrix of a weak perspective camera. Note that
the scale parameters have been implicitly considered in the
m1 andm2. So we propose to estimate the camera parameters
m1 andm2 by solving the following problem:

min
m1;m2

X � mT
1

mT
2

� �
Y

����
����
1

; s.t. mT
1m2 ¼ 0: (4)

3.2 The Inference Algorithm: Estimating the 3D
Pose and the Camera Parameters

Given the discussions above, we obtain the complete objec-
tive function which depends on both the basis coefficients
and the camera parameters

min
a;M

x�M Baþ mð Þk k1þu ak k1
s.t. Ci Baþ mð Þk k22¼ Li; i ¼ 1; . . . ; 8

mT
1m2 ¼ 0;

(5)

where M ¼ In �M0 and M0 ¼ mT
1

mT
2

� �
. We minimize the

objective function by alternating between M (with a fixed)

and a (withM fixed). We first initialize the 3D pose to be the
mean pose of the training dataset and optimize M. Then

with the estimated M we optimize the basis coefficients a.

Both the basis coefficient estimation and camera parameter

estimation problems are not convex because of the quadratic

equality constraints. We solve the problem by using an alter-

nating direction method [47]. Briefly, we define an augment

Lagrangian functionwhich contains primal variables (the 3D

pose coefficients and the camera parameters) and dual varia-
bles (Lagrange multipliers which enforce the equality con-

straints). The ADM updates the variables by extremizing an

augmented Lagrangian function with respect to the primal

and dual variables alternately. Although there is no guaran-

tee of global optimum, we almost always obtain reasonably

good solutions (see Section 3.3 for how we address this non-

convexity issue by producingmultiple solutions).

3.3 Producing Several Candidate Poses

The objective function in Eq. (5) is non-convex inM and a so
we cannot guarantee that our algorithm has found the
global minimum. This motivates us to extend our approach
to output a diverse set ofK solutions. After that we describe
how to select the best 3D pose from these candidates.

We require that the K 3D poses Y returned by the model
are dissimilar to each other to avoid redundancy. We use
the squared euclidean distance between two poses yi and yj

as the dissimilarity measure, i.e., ~ðyi; yjÞ ¼ yi � yj
�� ��2.

Note that we use L2-norm rather than the L1-norm here
because two poses are dissimilar even when only one joint
of the two poses are dissimilar. To estimate the Kth candi-
date pose yK given the 2D pose x and the first K � 1 poses
fyi j i ¼ 1; . . . ; K � 1g, we solve an augmented minimiza-
tion problem which minimizes a linear combination of the
original objective function and the yK ’s similarity to the
existing poses

min
a

x�M Baþ mð Þk k1þu1 ak k1þu2
XK�1

i¼1

Baþ m� yik k2

s.t. Ci Baþ mð Þk k22¼ Li; i ¼ 1; . . . ; 8;

(6)

where u2 � 0 is a parameter which balances the loss term
and the similarity term. The problem can be solved by a
small modification of our original ADM based optimization
algorithm. We set the parameter u1 the same as the u in the
previous model. The parameter u2 is set by cross-validation.
In particular, it is set to be �0:1 in all experiments.

We now select the best 3D pose from the set of K candi-
dates. We observe that the 3D pose estimate that minimizes
the objective function in Eq. (5) is sometimes not the best
solution. Fig. 3 shows an example where the fifth candidate
rather than the first one is the best among the six candidates.
Fig. 4 (left) shows the rank distributions of the best pose
among the candidates. We can see from the left most green
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bar that, for only about 30 percent of testing samples, the
first estimate is the best estimate (closest to the ground-
truth). In other words, the best one is not in the first position
(rank one) for nearly 70 percent of the cases. The right figure
shows the estimation error distributions of selecting the first
pose versus selecting the best pose (using oracle) from the
candidates. We can see that the performance can be signifi-
cantly improved if we can select the “correct” estimate from
the candidates.

Why is the best solution (as evaluated by groundtruth)
not always the 3D pose that minimizes the objective func-
tion? This may occur because of the limitations of the objec-
tive function. But it can also happen that because of the
nature of our ADM algorithm the anthropometric con-
straints have not fully been enforced. Hence the 3D pose
candidates may partially violate the anthropometric con-
straints. Fig. 7 (blue bars) shows that the limb length errors
for the eight limbs are not zero although they are small.
This motivates selecting the candidate 3D pose which best
satisfies the anthropometric constraints. We show, in the
experimental section, that this improves our results.

4 POSE ESTIMATION FROM A VIDEO

Now suppose we have a video sequence as input. This gives
another way to improve 3D pose estimation using our K
best candidates. For each image frame, we estimate K can-
didates and use temporal information to select the best
sequence.

We define an objective functionwhich encourages similar-
ity among the 3D poses in adjacent frames [3], [48] and uses
unary terms similar to those defined for static images. We
compute the euclidean distance between two neighboring
poses as the pairwise term ~ðyi; yjÞ. This term discourages
sharp pose changes which can be helpful for difficult images
especiallywhen their neighbouring estimations are accurate.

Suppose a video sequence consists of T frames. For each
frame It; t ¼ 1; . . . ; T , we first obtain the K-best estimations
ytj; j ¼ 1; . . . ; K using the proposed method. Then we infer

the best pose ytjt ; 1 � jt � K for each frame by minimizing
an objective function

j� ¼ min
ðj1;...;jT Þ

XT
t¼1

fðytjtÞ þ u3
XT�1

t¼1

~ ytjt ; y
tþ1
jtþ1

� �
: (7)

Here fð:Þmeasures how well a 3D pose obeys the anthropo-
metric constraints (unary term) while the ~ð; Þ function
measures the differences between adjacent poses (the pair-
wise term), u3 	 0 specifies the trade off between the unary
term and the pairwise term, which is set by cross validation.

We use dynamic programming to estimate j� by mini-
mizing the objective function in Eq. (7). This exploits the
one-dimensional nature of the problem and is efficient since
we only enforce temporal smoothness between adjacent
time frames. Experiments show that this simple extension
can yield improvements in the 3D pose estimation results.

4.1 The Unary Term

We investigated two candidate unary terms in this work.
The first is the measurement error between the projected 3D
pose and the estimated 2D pose. We found this was not
effective because the measurement errors of the top K can-
didates are very similar. The reason is that incorrect 3D
poses can have small measurement errors because the cam-
era parameters compensate (i.e., bad 3D poses with bad
camera parameters can still give small projection/measure-
ment errors). Second, we measured how well the 3D pose
satisfies the anthropometric constraints. More precisely, we
computed the absolute difference between the estimated
limb length and the mean limb length L obtained during
training. This was effective and we used the second method
in our experiment. Note that we also use anthropometric
constraints when selecting the best solution for a single
image from a set of K proposals, i.e., we use these con-
straints for both static images and video sequences to select
from a set of candidates.

5 BASIS LEARNING

We now describe how we learn the bases using sparse cod-
ing in experiments. We compare with two most popular
basis learning methods including PCA and classwise PCA.

5.1 Our Basis Learning Method

We learn the bases from a set of of 3D skeletons Y ¼
½y1; . . . ; yl� by optimizing the empirical cost function

flðBÞ , 1

l

Xl
i¼1

cðyi; BÞ: (8)

B ¼ ½b1; . . . ; bk� 2 R3n�k is the basis dictionary to be learned
with each column representing a pose basis, and cð:; :Þ is a
loss function such that cðy;BÞ is small if B represents the
pose y well. Also cð:; :Þ imposes sparsity so that each pose is
typically represented by only a small number of bases. Note
that over-complete dictionaries with k 	 3n are allowed. As

Fig. 3. Top-six 3D pose estimations of a sample image. The plots in blue
and red are the ground-truth and estimated 3D poses, respectively. The
fifth estimation is the best among the candidates. See Section 3.3.

Fig. 4. All results are based on the HumanEva dataset for three subjects.
Left figure: The rank distribution of the best poses among the eight can-
didates. Right figure: The error distribution when choosing the first candi-
date versus choosing the best candidate (by oracle). X-axis is the
average joint error of the three subjects and the y-axis represents the
percentage of cases whose errors are smaller than X. The estimation
error units are millimetres (mms). See Section 3.3.
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previous work, e.g., see [49], and consistent with our objec-
tive function (Eq. (3)) the loss function cðy;BÞ is given by

cðy;BÞ ¼ 1

2
y�Bak k2þu ak k1: (9)

To prevent B from being arbitrarily large we constrain its
columns, i.e., the norms of each basis, to have an L2-norm
less than or equal to one

min
B;a

1

l

Xl
i¼1

1

2
yi �Baik k2þ� aik k1

s.t. bTj 
 bj � 1; 8j ¼ 1; . . . ; k:

(10)

This problem is not convex with respect to B and a but
convex with respect to each of the two variables when the
other is fixed. We use [49] to solve this optimization prob-
lem which alternates between the two variables.

5.2 Other Basis Learning Methods

We compare our approach with two classic basis learning
methods proposed in the literature. The first method [46]
applies PCA to the trainingmotion capture data and uses the
principal eigenvectors as the bases. Note that the maximum
number of bases is limited by the dimension of the poses (3n
in our case) because the eigenvectors are orthogonal to each
other. As discussed in [13], it is problematic to directly apply
PCA to the poses for all 3D actions because PCA is most suit-
able to data which comes from a single-mode Gaussian dis-
tribution. Usually this is a very strong assumption. Hence
Ramakrishna et al. [13] split the training dataset into differ-
ent classes using the action labels and assume that the data
of each action class follows the Gaussian distribution. They
apply PCA on each class, and combine the principal compo-
nents in each class as the bases. We name this approach class-
wise PCA. Since the bases learned for different classes are
learned separately, there may be redundancy when com-
paredwith those jointly learned bases.

We evaluate the three different basis learning methods
(i.e., PCA, classwise PCA and sparse coding) in a 3D pose
reconstruction setting. We reconstruct each 3D pose y by
solving an L1-norm regularized least square problem

min
a

1

2
y�Bak k2þ� ak k1: (11)

We compute the reconstruction error y�Bak k2 as the
evaluation metric. The average reconstruction errors using
different number of bases are shown in Fig. 5a. Note that
the maximum number of bases for PCA and classwise PCA
methods is 36 (which is the dimension of a 3D pose) and
144 (36 � 4 classes), respectively. The reconstruction error of
PCA bases is the largest (slightly above 0.5) because the
poses do not follow Gaussian distribution and the number
of PCA bases is small. Although the reconstruction errors of
classwise PCA bases gradually decrease as more bases are
introduced, they are still larger than those of the sparse
bases. One of the main reasons might be that the classwise
PCA method does not encourage basis sharing between
action classes. Hence the bases might contain redundancy.
In contrast, the sparse bases are shared between classes as
they are learned from the training data of different action
classes together. In addition, Fig. 5b shows that fewer bases
are activated using sparse bases. This also justifies their rep-
resentative power.

6 EVALUATION ON SINGLE IMAGES

We conduct two types of experiments to evaluate our
approach. The first type is synthetic where we assume the
groundtruth 2D joint locations are known and recover the
3D poses. We systematically evaluate: (i) the influence of
the three factors in the model, i.e., the L1-norm measure-
ment error, the anthropometric constraints and the L1-norm
sparsity regularization on the basis coefficients; (ii) the
influence of the 2D pose accuracy; (iii) the influence of the
relative human-camera angles; (iv) the generalization capa-
bilities of the learned bases. The second type of experiments
is real: we estimate the 2D joint locations by running a state-
of-the-art 2D pose detector [45] and then estimate the 3D
poses. We compare our method with the state-of-the-art
ones [13], [24], [50]. We also observe that our approach can
refine the original 2D pose estimations by projecting the
inferred 3D pose back to the images.

We use 12 body joints, i.e., the left and right shoulders,
elbows, hands, hips, knees and feet, for quantitative evalua-
tion, which is consistent with the 2D pose detector [45]. We
learn 200 bases for all experiments and approximately 14
bases are activated for representing a 3D pose.

6.1 The Datasets

We evaluate our approach on two benchmark datasets: the
HumanEva [51] and the H3.6M [52] datasets. Following the
previous work, e.g., [24], we use the walking and jogging
actions of three subjects for evaluation (the fourth subject is
withheld by the authors) and learn the bases on the training
subset of the poses independently for each action. We report
results on the validation sequences. The H3.6M dataset [52]
includes 11 subjects performing 15 actions, such as eating,
posing and walking. We use the data of subjects S1, S5, S6,
S7 and S8 for training and the data of S9 and S11 for testing.

6.2 Synthetic Experiments: Known 2D Poses

We assume the 2D poses x are known and recover the 3D
poses y from x. We use mean 3D joint error [51] as evalua-
tion metric which is the average error over all joints. The

Fig. 5. Comparison of the three basis learning methods. (a) 3D pose
reconstruction errors using different number of bases. In this experi-
ment, the 3D poses are normalized so that the length of the right lower
leg is one. (b) Distribution of the number of activated bases for repre-
senting a 3D pose. The y-axis is the percentage of the cases whose
number of activated bases is less than x. See Section 5.2.
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results are reported using unit of millimetres (mms). All
synthetic experiments are on the HumanEva dataset.

6.2.1 Necessity of Basis Representation

We first discuss the necessity of the basis representation. We
design a baseline which represents a 3D pose by the nearest
neighbor. Intuitively, we treat all training poses as bases and
represent a pose by its nearest neighbor. Since the training
poses should approximately satisfy the limb length con-
straints, we remove those constraints. We also remove the
sparsity term because only one basis will be activated. The 3D
pose which can minimize the L1-norm projection error is the
final estimate. Themean square error on theHumanEva data-
set for this method is about 72 mms while the result for our
proposedmethod is about 40 mms.We think the main reason
for the degraded performance is because the training poses
differ from the testing poses and the nearest neighbormethod
does not have the capability to represent the unseen poses.

6.2.2 Influence of the Three Factors

We evaluate the influence of the three factors in the pro-
posed method: the robust L1-norm measurement error, the
anthropometric constraints and the sparsity regularization
term.

We compare our approach with seven baselines. The first
is symbolized as L2S which uses the L2-norm error function
and Sparsity term on the basis coefficients. The second base-
line is L1Awhich uses the L1-normmeasurement error func-
tion and Anthropomorphic constraints. The remaining

baselines are symbolized as L2, L2A, L2AS, L1 and L1S
whosemeanings can be similarly understood by their names.
We solve the non-convex optimization problems in L2A and
L2AS by the ADMmethod used to solve our method (L1AS).
To solve the optimization problems in the other baselines,
we use CVX, a package for solving convex programs [53].

Fig. 6 shows the results on the HumanEva dataset. First,
the four baselines without the sparsity term (i.e., L1, L1A, L2
and L2A) achieve much larger estimation errors than those
with the sparsity term (i.e., L1S, L1AS, L2S and L2AS). The
results demonstrate that the bases encode the priors in human
poses and can prevent overfitting to 2D poses—given enough
bases, the 2D projection error could always be decreased to
zero but the resulting 3D pose might still have large errors.
Using sparse bases helps prevent it from happening.

Second, enforcing the eight limb length constraints fur-
ther improves the performance, e.g., L2AS outperforms L2S
and our approach outperforms L1S. Fig. 7 shows that the
limb lengths of the estimated poses are more accurate by
enforcing the anthropometric constraints. Third, using the
L1-norm reconstruction error outperforms L2-norm, e.g.,
L1AS is better than L2AS and our approach is slightly better
than L2AS. However, the difference is small because the
poses in this experiment are accurate which does not reveal
the potential influences of the L1-norm penalty function. It
is interesting to see that L1 is worse than L2. The reason is
that ignoring the anthropometric constraints and the spar-
sity term will result in implausible 3D poses. In this case,
using the robust term will tolerate inconsistent matches
between the 3D pose projections and the 2D poses (which
are accurate in this experiment).

6.2.3 Influence of Inaccurate 2D Poses

We evaluate the robustness of our approach to inaccurate
2D pose estimations. We generate outlier 2D poses by add-
ing seven levels (magnitudes) of noises to the accurate 2D
poses to simulate 2D pose estimation errors. In particular,
for each 2D pose, we randomly select a body joint, generate
a random 2D spatial shift orientation, and add the corre-
sponding transformation (of a certain magnitude) to the
selected joint. The magnitude of the ithð1 � i � 7) level of
noises is 8i pixels.

Fig. 8 demonstrates the results for L1AS, L2AS and L1S on
the HumanEva dataset. We do not report the results for the

Fig. 6. 3D pose estimation errors of the baselines and our method
(L1AS). The units for estimation errors are mms.

Fig. 7. Average limb length error of the L1AS and L1S.

Fig. 8. Results when different levels of noises are added to 2D poses.
The x-axis is the estimation error and the y-axis is the percentage of
cases where the estimation error is less than the corresponding x value.
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other five baselines because the estimation errors are very
large compared to these three. We can see that L1AS per-
forms much better than the other two. For example, the esti-
mation errors are smaller than 100 for 60 percent of data for
L1AS even when the largest (7th) level of noises are added.
In contrast, this number is decreased to only 40 percent for
L2AS. The results verify that L1-norm is more robust to inac-
curate 2D poses than L2-norm. L1S performs worst among
the three which also shows the importance of anthropomet-
ric constraints especially when the 2D joint locations are
inaccurate.

6.2.4 Influence of Human-Camera Angles

The degree of ambiguities in 3D pose estimation depends on
the relative angle between human and camera. Generally
speaking, ambiguity is largest when people face the cameras
and is the smallest when people turn sideways. We quantita-
tively evaluate the approach’s disambiguation ability on var-
ious human-camera angles. We synthesize ten virtual
cameras of different panning angles and project the 3D poses
to 2D using the virtual cameras. Then we estimate the 3D
poses from the 2D projections in each camera and compare
the estimation results. More specifically, we first transform
the 3D poses into a local coordinate system, where the x-axis
is defined by the line passing the two hips, the y-axis is
defined by the line of spine and the z-axis is the cross product
of the x-axis and y-axis. Then we rotate the 3D poses around
y-axis by a particular angle, ranging from 0 to 180, and proj-
ect them to 2D by a weak perspective camera. Note that the
y-axis is the axis where most viewpoint variations happen in
real world images. Hence we only report the performance
for the y-axis rotations for space limitations.

Fig. 9 shows that the average estimation errors of the
method proposed in [13] increase quickly as human moves
from profile (90 degrees) towards frontal pose (0 degree).
However, our approach is more robust against viewpoint
changes due to the structural prior imposed by the sparse
bases and the strong limb length constraints.

6.2.5 Influence of Camera Parameter Estimation

Fig. 10 (left) shows the estimation errors of the camera rota-
tion angles (i.e., yaw, pitch and roll). We can see that the
errors are small for most cases. Fig. 10 (right) shows the 3D
pose estimation errors using the estimated cameras and

ground truth cameras, respectively. Note that when using
ground truth camera parameters, we do not update them in
each iteration. We can see that camera estimation results
can affect the 3D pose estimation to some extent.

The initialization of the 3D pose influences the 3D pose
estimation accuracy—more accurate 3D pose initializations
can improve the final result. So we cluster the training poses
into 30 finer clusters and initialize the 3D pose with each of
the centers respectively. We optimize the 3D poses for the
30 initializations in parallel and keep the one which is clos-
est to ground truth. The performance can be further
improved using finer initializations as shown in Fig. 10.

6.2.6 Generalization Capabilities of the Bases

We conduct three types of experiments to validate the gen-
eralization capabilities of our approach: (1) cross-subject, (2)
cross-action and (3) cross-datasets experiments.

For the cross-subject experiment (on the HumanEva
dataset including all the six actions), we use the leave-one-
subject-out criteria, i.e., training on the two subjects and
testing on the remaining one. The average error is about
43.2 mms. This is comparable with the previous experiment
setup (the result is 40 mm) when training and testing on all
subjects.

Similarly for the cross-action experiment (on theHumanEva
dataset), we use the leave-one-action-out criteria. In this experi-
ment,weuse the sequences of all the six actions provided in the
dataset in addition to the walking and jogging sequences. In
particular, we train on the poses of the five actions and test on
the remaining one. We repeat the above process for all the six
configurations and report the average estimation error. In this
experiment, The average estimation error is about 48.4 mms
which is slightly higher than training/testing on the same
actions. This slight performance degradation is reasonable as
the bases are learned from different actions which might have
different sets of poses.

For the cross-datasets experiment, we train on the H3.6M
dataset (including all actions) and test on the HumanEva
dataset. The average estimation error is about 57.3 mms. The
estimation error is larger than the previous one and the rea-
son might be because the two datasets have slightly different
annotations. For example, the hip joints might correspond to
slightly different parts of the human body. Another reason
might be because the two datasets have different sets of
actions. But overall, this is still a reasonable performance.

Fig. 9. 3D pose estimation errors when the human-camera angle varies
from 0 to 180 degrees. We compare with Ramakrishna’s method [13].
See Section 6.2.4.

Fig. 10. Left figure: Error distribution of the estimated Camera rotation
angles. The units are degrees. Right figure: 3D pose estimation errors
when camera parameters are (1) set by ground truth, (2) estimated by ini-
tializing the 3D pose with mean pose, or (3) estimated by initializing the
3D pose with 30 cluster centers for parallel optimization (but only the best
result is reported). The y-axis is the percentage of the cases whose esti-
mation error is less than x. The units for x aremms. See Section 6.2.5.
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6.3 Real Experiments: Unknown 2D Poses

We first estimate the 2D joint locations in the test images by
running a 2D pose detector [45]. Then we estimate the 3D
poses from the 2D joint locations. We compare our method
with the state-of-the-arts in Section 6.3.1. We also observe
that by projecting the estimated 3D poses and camera
parameters to 2D, we can actually improve the 2D pose esti-
mation results. This is stated in Section 6.3.2.

6.3.1 Comparison to the State-of-the-Arts

We compare our approachwith the state-of-the-art ones [24],
[25], [50] on the HumanEva and the H3.6M datasets. Table 1

shows the mean squared errors and the standard deviations.
Note that the results are not directly comparable because of
different experiment setups. First, it is fair to compare the
results of ours (using 2D detector [6]) with the methods [24],
[25] as they use the same 2D pose detectors. Second, our
method using the state-of-the-art 2D pose detector outper-
forms our method using [6] which is mainly due to the
improvement from the 2D joint location estimation. Method
[38] achieves similar performance as our method by assum-
ing that the silhouettes are known. Table 2 shows the results
on the H3.6M dataset. We can see that our method achieve
comparable performance as the state-of-the-arts.

6.3.2 Evaluation on 2D Pose Estimation

Weobserve that projecting the estimated 3D pose by the cam-
era parameters can improve the original 2D pose estimations.
The reason is that the sparse bases and the anthropometric
constraints could bias the estimated 3D pose to a correct con-
figuration in spite of the errors in 2D joint locations. In experi-
ments, we project the estimated 3D poses to 2D and compare
it with the original 2D pose estimation [6] and [13]. For [13],
we project its estimated 3Dpose to 2D image.

We report the results using two criteria. The first is the
probability of correct pose (PCP)—an estimated body part
is considered correct if its segment endpoints lie within
50 percent of the length of the ground-truth segment from
their annotated location as in [6]. The second criterion is the
euclidean distance between the estimated 2D pose and the
groundtruth in pixels as in [24]. Table 3 shows the estima-
tion accuracy on each of the eight body parts and the overall
accuracy. We can see that our approach performs the best
on six body parts. In particular, we improve over the

TABLE 1
Real Experiment on the HumanEva Dataset: Comparison

with the State-of-the-Art Methods [24], [50]

Walking S1 S2 S3 Average

Ours (2D[6]) 54.3 (16.2) 43.5 (14.9) 67.4 (10.3) 55.06
Ours (2D[45]) 40.3 (17.4) 37.6 (14.5) 37.4 (18.3) 38.43
[25] 65.1 (17.4) 48.6 (29.0) 73.5 (21.4) 62.4
[24] 99.6 (42.6) 108.3 (42.3) 127.4 (24.0) 111.76
[50] 89.3 108.7 113.5 103.83
[38] 38.2 (21.4) 32.8 (23.1) 40.2 (23.2) 37.06

Jogging S1 S2 S3 Average
Ours (2D[6]) 54.6 (10.7) 43.3 (12.1) 34.4 (10.2) 44.1
Ours (2D[45]) 39.7 (9.7) 36.2 (7.8) 38.4 (27.8) 38.1
[25] 74.2 (22.3) 46.6 (24.7) 32.2 (17.5) 51.0
[24] 109.2 (41.5) 93.1 (41.1) 115.8 (40.6) 106.03
[38] 42.0 (12.9) 34.7 (16.6) 46.4 (28.9) 41.03

We present results for both walking and jogging actions of all three subjects
and camera C1. The numbers in each cell are the mean 3D joint errors and
standard deviation, respectively. We use the unit of millimeter as in [24] and
[50]. The length of the right lower leg is about 380 mm. See Section 6.3.1.

TABLE 2
Real Experiment on the H3.6M Dataset: Comparison with the State-of-the-Art Methods

Directions Discussion Eating Greeting Phoning Photo Posing Purchases

LinKDE [52] * 115.79 113.27 99.52 128.80 113.44 183.09 131.01 144.89
Li et al. [54] - 136.88 96.94 124.74 - 168.68 - -
Tekin et al. [55] 102.39 158.52 87.95 126.83 118.37 185.02 114.69 107.61
Zhou et al. [56] 87.36 109.31 87.05 103.16 116.18 143.32 106.88 99.78
SMPLify [35] 62.0 60.2 67.8 76.5 92.1 77.0 73.0 75.3
Ours (2D detector [45]) 90.34 117.56 86.02 110.98 123.48 154.90 100.49 97.34

Sitting SittingDown Smoking Waiting WalkDog Walking WalkTogether Average
LinKDE [52] * 160.92 172.98 114.00 138.95 180.56 131.15 146.14 138.30
Li et al. [54] - - - - 132.17 69.97 - -
Tekin et al. [55] 136.15 205.65 118.21 146.66 128.11 65.86 77.21 125.28
Zhou et al. [56] 124.52 199.23 107.42 118.09 114.23 79.39 97.70 113.01
SMPLify [35] 100.3 137.3 83.4 77.3 79.7 86.8 81.7 82.3
Ours (2D detector [45]) 130.58 200.67 130.56 110.29 123.98 64.89 87.98 115.34

* The results are obtained on the testing dataset making the method not directly comparable to ours.

TABLE 3
2D Pose Estimation Results

PCP
Pixel Diff.

LUA LLA RUA RLA LUL LLL RUL RLL Overall

Yang et al. [6] 0.751 0.416 0.771 0.286 0.857 0.825 0.910 0.894 0.714 109
Ramakrishna et al. [13] 0.792 0.383 0.722 0.241 0.906 0.829 0.890 0.849 0.702 62
Ours 0.829 0.376 0.800 0.245 0.955 0.861 0.963 0.902 0.741 55

We report: (1) the Probability of Correct Pose (PCP) for the eight body parts and the whole pose, (3) and the euclidean distance between the estimated 2D pose and
the groundtruth in pixels.
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original 2D pose estimators by about 0.03 (0.741 versus
0.714) using the first PCP criteria. Our approach also per-
forms best using the second criterion.

6.4 Evaluation on the Videos

We now evaluate the influence of integrating the temporal
consistency into our model. In particular, we quantitatively
investigate the influence of the two factors (i.e., the unary
term and pairwise term) in the Video-Based Pose Estimation
(VBPE) method on the HumanEva dataset. We divide the
long videos into short snippets with each snippet having
five frames. We also experiment with other length choices
but it does not make much difference unless it has fewer
than three frames or more than ten frames which will
degrade the performance. The balancing parameter between
the unary and pairwise terms is set by cross-validation. In
particular, in our experiment, this is set to be �0:01 on the
HumanEva dataset.

Fig. 11 shows the advantages of VBPE (green line) over
the single Image-Based-Pose-Estimation (IBPE, red line)
method. First, the VBPE outperforms the IBPE which veri-
fies that estimating poses on videos by considering both the
new unary term and the pairwise term can improve the
performance. The average estimation error of VBPE is
decreased by about 15 percent compared with IBPE. Second,
relying on the pairwise term alone defined on the temporal
consistency (magenta line) offers some benefits over IBPE. It
improves the estimation results for images having large esti-
mation errors (between 40 and 60 mm). Third, using only
the unary term defined on limb length (blue) provides
larger gains. This observation shows the importance of the
anthropometric constraints. It also suggests that the opti-
mizer for IBPE could possibly get trapped in local optimum
and return a 3D pose that does not well satisfy the anthro-
pometric measurements.

7 CONCLUSION

We address the problem of estimating 3D human poses
from a single image or a video sequence. We first tackle the
ambiguity of “lifting” a 2D pose to 3D by proposing a sparse
basis based representation of 3D poses and anthropometric
constraints. Second, we use an L1-norm measurement error

which makes the approach robust to inaccurate 2D pose
estimates. Third, the problem of local optimum is alleviated
by generating several probable but diverse solutions and
selecting the correct one using temporal consistency cues.

APPENDIX A
OPTIMIZATION

We sketch the major steps of ADM for solving our pose esti-
mation (Eq. (6)) and camera parameter estimation (Eq. (4))
problems. The k and l are the number of iterations.

A.1 3D Pose Estimation

Given the currently estimated camera parameters M and
the detected 2D pose x, we estimate the 3D pose by solving
the following L1 minimization problem using ADM

min
a

x�M Baþ mð Þk k1þu1 ak k1þu2
XK�1

i¼1

Baþ m� yik k2

s.t. Ci Baþ mð Þk k22¼ Li; i ¼ 1; . . . ;m:

(12)
We introduce two auxiliary variables b and g and rewrite

Eq. (12) as

min
a;b;g

gk k1þu1 bk k1þu2
XK�1

i¼1

Baþ m� yik k2

s.t. g ¼ x�M Baþ mð Þ; a ¼ b;

Ci Baþ mð Þk k22¼ Li; i ¼ 1; . . . ;m:

(13)

The augmented Lagrangian function of Eq. (13) is

L1ða;b; g; �1; �2; hÞ ¼ gk k1þu1 bk k1

þ u2
XK�1

i¼1

Baþ m� yik k2

þ �T
1 ½g � xþMðBaþ mÞ� þ �T

2 ða� bÞ
þ h

2
g � xþMðBaþ mÞk k2þ a� bk k2

h i
;

where �1 and �2 are the Lagrange multipliers and h > 0 is
the penalty parameter. ADM is to update the variables by
minimizing the augmented Lagrangian function w.r.t. the
variables a;b and g alternately.

A.1.1 Update g

We discard the terms in L1 which are independent of g and
update g by

gkþ1 ¼ argmin
g

gk k1þ
hk
2

g � x�MðBak þ mÞ � �k
1

hk

� �����
����
2

;

which has a closed form solution [57].

A.1.2 Update b

We drop the terms in L1 which are independent of b and
update b by

bkþ1 ¼ argmin
b

bk k1þ
hk
2u

b� �k
2

hk
þ ak

� �����
����
2

;

Fig. 11. The 3D pose estimation results on videos. The results using
unary term, pairwise term and both of the two terms are reported. The
red line shows the result on static images. The error units are mms. See
Section 6.4.
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which also has a closed form solution [57].

A.1.3 Update a

We dismiss the terms in L1 which are independent of a and
update a by

akþ1 ¼ argmin
a

zTWz

s.t. zTViz ¼ 0; i ¼ 1; . . . ;m;
(14)

where z ¼ ½aT 1�T ,

W ¼
BTMTMBþ I þ 2u2ðK�1Þ

hk
BBT 0

2 gkþ1 � xþMmþ �k
1

hk

� �T

MB� bkþ1 þ �k
2

hk
þD

" #
0

0
BB@

1
CCA

and

Vi ¼ BTCT
i CiB BTCT

i Cim

mTCT
i CiB mTCT

i Cim� Li

� �
:

D ¼ 2u2
h

PK�1
i¼1 ðm� yiÞB.

LetQ ¼ zzT . Then the objective function becomes zTWz ¼
trðWQÞ and Eq. (14) is transformed to

min
Q

trðWQÞ
s.t. trðViQÞ ¼ 0; i ¼ 1; . . . ;m;

Q � 0; rankðQÞ � 1:

(15)

We still solve problem (15) by the alternating direction
method [57]. We introduce an auxiliary variable P and
rewrite the problem as

min
Q;P

trðWQÞ
s.t. trðViQÞ ¼ 0; i ¼ 1; . . . ;m;

P ¼ Q; rankðP Þ � 1; P � 0:

(16)

Its augmented Lagrangian function is

L2ðQ;P;G; dÞ ¼ trðWQÞ þ trðGT ðQ� P ÞÞ þ d

2
Q� Pk k2F ;

where G is the Lagrange Multiplier and d > 0 is the pen-
alty parameter. We update Q and P alternately.

� Update Q:

Qlþ1 ¼ argmin
trðViQÞ¼0;
i¼1;...;m

L2ðQ;P l;Gl; dlÞ: (17)

This is a constrained least square problem and has a
closed form solution.

� Update P : We discard the terms in L2 which are indepen-
dent of P and update P by

Plþ1 ¼ argmin
P�0;

rankðP Þ�1

P � ~Q
�� ��2

F
(18)

where ~Q ¼ Qlþ1 þ 2
dl
Gl. Note that P � ~Q

�� ��2
F
is equal to

P � ~QTþ ~Q
2

��� ���2
F
. Then (18) has a closed form solution by

the Lemma A.1.

� Update G: We update the Lagrangian multiplier G by

Glþ1 ¼ Gl þ dlðQlþ1 � Plþ1Þ: (19)

� Update d: We update the penaly parameter by

dlþ1 ¼ minðdl 
 r; dmaxÞ; (20)

where r 	 1 and dmax are constant parameters.

Lemma A.1. The solution to

min
P

P � Sk k2F s.t. P � 0; rankðP Þ � 1; (21)

is P ¼ maxð�1; 0Þn1nT1 , where S is a symmetric matrix and �1
and n1 are the largest eigenvalue and eigenvector of S,
respectively.

Proof. Since P is a symmetric semi-positive definite matrix
and its rank is one, we can write P as: P ¼ �nnT , where
� 	 0. Let the largest eigenvalue of S be �1, then we have
nTSn � �1, 8n. Then we have

P � Sk k2F ¼ Pk k2Fþ Sk k2F�2trðPTSÞ

	 �2 þ
Xn
i¼1

�2i � 2��1

¼ ð� � �1Þ2 þ
Xn
i¼2

�2i

	
Xn
i¼2

�2i þminð�1; 0Þ2:

(22)

tu
The minimum value can be achieved when � ¼ maxð�1; 0Þ

and n ¼ n1.

A.1.4 Update �1

We update the Lagrangian multiplier �1 by

�kþ1
1 ¼ �k

1 þ hk gkþ1 � xþM Bakþ1 þ m
	 
	 


: (23)

A.1.5 Update �2

We update the Lagrangian multiplier �2 by

�kþ1
2 ¼ �k

2 þ hk akþ1 � bkþ1
	 


: (24)

A.1.6 Update h

We update the penalty parameter h by

hkþ1 ¼ minðhk 
 r; hmaxÞ; (25)

where r 	 1 and hmax are the constant parameters.

A.2 Camera Parameter Estimation

Given estimated 2D pose X and 3D pose Y , we estimate
camera parameters by solving the following optimization
problem:

min
m1;m2

X � mT
1

mT
2

� �
Y

����
����
1

; s.t. mT
1m2 ¼ 0: (26)
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We introduce an auxiliary variable R and rewrite Eq. (26)
as

min
R;m1;m2

Rk k1

s.t. R ¼ X � mT
1

mT
2

 !
Y; mT

1m2 ¼ 0:
(27)

We still use ADM to solve problem (27). Its augmented
Lagrangian function is

L3ðR;m1;m2; H; z; tÞ

¼ Rk k1þtr HT mT
1

mT
2

 !
Y þR�X

" # !
þ zðmT

1m2Þ

þ t

2

mT
1

mT
2

 !
Y þR�X

�����
�����
2

F

þ mT
1m2

	 
22
4

3
5;

where H and z are Lagrange multipliers and t > 0 is the
penalty parameter.

A.2.1 Update R

We discard the terms in L3 which are independent of R and
update R by

Rkþ1 ¼ argmin
R

Rk k1þ
tk

2
Rþ mk

1

	 
T
mk

2

	 
T
 !

Y �X þHk

tk

�����
�����
2

F

;

which has a closed form solution [57].

A.2.2 Updatem1

We discard the terms in L3 which are independent of m1

and updatem1 by

mkþ1
1 ¼ argmin

m1

mT
1

mk
2

	 
T
 !

Y þRkþ1 �X þHk

tk

�����
�����
2

F

þ mT
1m

k
2 þ

zk

tk

� �2

:

This is a least square problem and has a closed form
solution.

A.2.3 Updatem2

We discard the terms in L3 which are independent of m2

and updatem2 by

mkþ1
2 ¼ argmin

m2

mkþ1
1

	 
T
mT

2

 !
Y þRkþ1 �X þHk

tk

�����
�����
2

F

þ mkþ1
1

	 
T
m2 þ zk

tk

� �2

:

This is a least square problem and has a closed form
solution.

A.2.4 UpdateH

We update Lagrange multiplierH by

Hkþ1 ¼ Hk þ tk
mkþ1

1

	 
T
mkþ1

2

	 
T
 !

Y þRkþ1 �X

 !
: (28)

A.2.5 Update z

We update the Lagrange multiplier z by

zkþ1 ¼ zk þ tk 
 mkþ1
1

	 
T
mkþ1

2 : (29)
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