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Abstract—This paper studies the subspace clustering problem. Given some data points approximately drawn from a union of

subspaces, the goal is to group these data points into their underlying subspaces. Many subspace clustering methods have been

proposed and among which sparse subspace clustering and low-rank representation are two representative ones. Despite the different

motivations, we observe that many existing methods own the common block diagonal property, which possibly leads to correct

clustering, yet with their proofs given case by case. In this work, we consider a general formulation and provide a unified theoretical

guarantee of the block diagonal property. The block diagonal property of many existing methods falls into our special case. Second, we

observe that many existing methods approximate the block diagonal representation matrix by using different structure priors, e.g.,

sparsity and low-rankness, which are indirect. We propose the first block diagonal matrix induced regularizer for directly pursuing the

block diagonal matrix. With this regularizer, we solve the subspace clustering problem by Block Diagonal Representation (BDR), which

uses the block diagonal structure prior. The BDR model is nonconvex and we propose an alternating minimization solver and prove its

convergence. Experiments on real datasets demonstrate the effectiveness of BDR.

Index Terms—Subspace clustering, spectral clustering, block diagonal regularizer, block diagonal representation, nonconvex optimization,

convergence analysis
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1 INTRODUCTION

AS we embark on the big data era – in which the amount
of the generated and collected data increases quickly,

the data processing and understanding become impossible
in the raw form. Looking for the compact representation of
data by exploiting the structure of data is crucial in under-
standing the data with minimal storage. It is now widely
known that many high dimensional data can be modeled as
samples drawn from the union of multiple low-dimensional
linear subspaces. For example, motion trajectories in a video
[8], face images [2], hand-written digits [13] and movie rat-
ings [42] can be approximately represented by subspaces,
with each subspace corresponding to a class or category.
Such a subspace structure has been very widely used for the
data processing and understanding in supervised learning,
semi-supervised learning and many other tasks [27], [41],
[43]. In this work, we are interested in the task of subspace
clustering, whose goal is to group (or cluster) the data points

which approximately lie in linear subspaces into clusters
with each cluster corresponding to a subspace. Subspace
clustering has many applications in computer vision [16],
[30], e.g., motion segmentation, face clustering and image
segmentation, hybrid system identification in control [1],
community clustering in social networks [15], to name a
few. Note that subspace clustering is a data clustering task
but with the additional assumption that the sampled data
have the approximately linear subspace structure. Such
data points are not necessarily locally distributed. The tradi-
tional clustering methods, e.g., spectral clustering [32],
which use the spatial proximity of the data in each cluster
are not applicable to subspace clustering. We need some
more advanced methods for subspace clustering by utiliz-
ing the subspace structure as a prior.

Notations. We denote matrices by boldface capital letters,
e.g., A, vectors by boldface lowercase letters, e.g., a, and sca-
lars by lowercase letters, e.g., a. We denote aij or Aij as the
ði; jÞth entry of A. The matrix columns and rows are
denoted by using ½�� with subscripts, e.g., ½A�i;: is the ith
row, and ½A�:;j is the jth column. The absolute matrix of A,
denoted by jAj, is the absolute value of the elements of A.
We denote diagðAÞ as a vector with its ith element being the
ith diagonal element of A 2 Rn�n, and DiagðaÞ as a diagonal
matrix with its ith element on the diagonal being ai. The all
one vector is denoted as 11. The identity matrix is denoted as
I. If A is positive semi-definite, we denote A � 0. For sym-
metric matrices A;B 2 Rn�n, we denote A � B or B � A if
B�A � 0. If all the elements of A are nonnegative, we
denote A � 0. The trace of a square matrix A is denoted as
TrðAÞ. We define ½A�þ ¼ maxð0;AÞwhich gives the nonneg-
ative part of the matrix.
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Some norms will be used, e.g., ‘0-norm Ak k0 (number of
nonzero elements), ‘1-norm Ak k1¼

P
ij jaijj, Frobenius norm

(or ‘2-norm of a vector) Ak k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

ij a
2
ij

q
, ‘2;1-norm Ak k2;1¼P

j ½A�:;j
��� ���, ‘1;2-norm Ak k1;2¼

P
i ½A�i;:
��� ���, spectral norm Ak k2

(largest singular value), ‘1-norm Ak k1¼ maxijjaijj and
nuclear norm Ak k
 (sum of all singular values).

1.1 Related Work

Due to the numerous applications in computer vision and
image processing, during the past two decades, subspace
clustering has been extensively studied and many algo-
rithms have been proposed to tackle this problem. Accord-
ing to their mechanisms of representing the subspaces,
existing works can be roughly divided into four main cate-
gories: mixture of Gaussian, matrix factorization, algebraic,
and spectral-type methods. The mixture of Gaussian based
methods model the data points as independent samples
drawn from a mixture of Gaussian distributions. So sub-
space clustering is converted to the model estimation prob-
lem and the estimation can be performed by using the
Expectation Maximization (EM) algorithm. Representative
methods are K-plane [3] and Q-flat [36]. The limitations are
that they are sensitive to errors and the initialization due to
the optimization mechanism. The matrix factorization based
methods, e.g., [8], [12], tend to reveal the data segmentation
based on the factorization of the given data matrix. They are
sensitive to data noise and outliers. Generalized Principal
Component Analysis (GPCA) [37] is a representative alge-
braic method for subspace clustering. It fits the data points
with a polynomial. However, this is generally difficult due
to the data noise and its cost is high especially for high-
dimensional data. Due to the simplicity and outstanding
performance, the spectral-type methods attract more atten-
tion in recent years. We give a more detailed review of this
type of methods as follows.

The spectral-type methods use the spectral clustering
algorithm [32] as the framework. They first learn an affinity
matrix to find the low-dimensional embedding of data and
then k-means is applied to achieve the final clustering result.
The main difference among different spectral-type methods
lies in the different ways of affinity matrix construction. The
entries of the affinity matrix (or graph) measure the similari-
ties of the data point pairs. Ideally, if the affinity matrix is
block diagonal, i.e., the between-cluster affinities are all
zeros, onemay achieve perfect data clustering by using spec-
tral clustering. The way of affinity matrix construction by
using the typical Gaussian kernel, or other local information
basedmethods, e.g., Local Subspace Affinity (LSA) [40], may
not be a good choice for subspace clustering since the data
points in a union of subspaces may be distributed arbitrarily
but not necessarily locally. Instead, a large body of affinity
matrix construction methods for subspace clustering by
using global information have been proposed in recent years,
e.g., [10], [17], [21], [24], [26], [28], [29], [39]. The main differ-
ence among them lies in the used regularization for learning
the representation coefficientmatrix.

Assume that we are given the data matrix X 2 RD�n,
where each column of X belongs to a union of k subspaces
fSgki¼1. Each subspace i contains ni data samples withPk

i¼1 ni ¼ n. Let Xi 2 RD�ni denote the submatrix in X that

belongs to Si. Without loss of generality, let X ¼ ½X1;
X2; . . . ;Xk� be ordered according to their subspace member-
ship. We discuss the case that the sampled data are noise
free. By taking advantage of the subspace structure, the
sampled data points obey the so called self-expressiveness
property, i.e., each data point in a union of subspaces can be
well represented by a linear combination of other points in
the dataset. This can be formulated as

X ¼ XZ; (1)

where Z 2 Rn�n is the representation coefficient matrix. The
choice of Z is usually not unique and the goal is to find cer-
tain Z such that it is discriminative for subspace clustering.
In the ideal case, we are looking for a linear representation
Z such that each sample is represented as a linear combina-
tion of samples belonging to the same subspace, i.e.,
Xi ¼ XiZi, where Zi is expected not to be an identity matrix.
In this case, Z in (1) has the k-block diagonal structure,1 i.e.,

Z ¼

Z1 0 � � � 0

0 Z2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Zk

2
66664

3
77775; Zi 2 Rni�ni : (2)

So the above Z reveals the true membership of data X. If we
apply spectral clustering on the affinity matrix defined as
ðjZj þ jZ>jÞ=2, then we may get correct clustering. So the
block diagonal matrix plays a central role in the analysis of
subspace clustering, though there has no “ground-truth” Z
(or it is not necessary). We formally give the following
definition.

Definition 1 (Block Diagonal Property (BDP)). Given the
data matrix X ¼ ½X1;X2; . . . ;Xk� drawn from a union of k sub-
spaces fSigki¼1, we say that Z obeys the Block Diagonal Prop-
erty if Z is k-block diagonal as in (2), where the nonzero entries
Zi correspond to only Xi.

Note that the concepts of the k-block diagonal matrix and
block diagonal property have some connections and differ-
ences. The block diagonal property is specific for subspace
clustering problem but k-block diagonal matrix is not. A
matrix obeying the block diagonal property is k-block diag-
onal, but not vice versa. The block diagonal property further
requires that each block corresponds one-to-one with each
subject of data.

Problem (1) may have many feasible solutions and thus
the regularization is necessary to produce the block diago-
nal solution. Motivated by the observation that the block
diagonal solution in (2) is sparse, the Sparse Subspace Clus-
tering (SSC) [10] finds a sparse Z by ‘0-norm minimizing.
However, this leads to an NP-hard problem and the
‘1-norm is used as the convex surrogate of ‘0-norm. This
leads to the following convex program

min
Z

Zk k1; s:t: X ¼ XZ; diagðZÞ ¼ 0: (3)

1. In this work, we say that a matrix is k-block diagonal if it has at
least k connected components (blocks). The block diagonalty is up to
a permutation, i.e., if Z is k-block diagonal, then P>ZP is still k-block
diagonal for any permutation matrix P. See also the discussions in
Section 3.1.
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It is proved that the optimal solution Z by SSC satisfies
the block diagonal property when the subspaces are
independent.

Definition 2 (Independent subspaces). A collection of sub-
spaces fSigki¼1 is said to be independent if dimð�n

i¼1SiÞ ¼Pn
i¼1 dimðSiÞ, where � denotes the direct sum operator.

Another important spectral-type method is Low-Rank
Representation (LRR) [21]. It seeks a low-rank coefficient
matrix by nuclear norm minimization

min
Z

Zk k
; s:t: X ¼ XZ: (4)

The above problem has a unique closed form solution
Z ¼ VV>, where V is from the skinny SVD of X ¼ USV>.
This matrix, termed Shape Interaction Matrix (SIM) [8], has
been widely used for subspace segmentation. It also enjoys
the block diagonal property when the subspaces are inde-
pendent [21].

Beyond SSC and LRR, many other subspace clustering
methods, e.g., [24], [28], [29], [39], have been proposed and
they all fall into the following formulation

minfðZ;XÞ; s:t: X ¼ XZ;Z 2 V; (5)

where V is some matrix set. The main difference lies in the
choice of the regularizer or objective. For example, theMulti-
Subspace Representation (MSR) [29] combines the idea of
SSC and LRR, while the Least Squares Regression (LSR) [28]
simply uses Zk k2 and it is efficient due to a closed form solu-
tion. See Table 1 for a summary of existing spectral-type
methods. An important common property for the methods
in Table 1 is that their solutions all obey the block diagonal
property under certain subspace assumption (all require
independent subspaces assumption except SSQP [39] that
requires orthogonal subspaces assumption). Their proofs
use specific properties of their objectives.

Beyond the independent subspaces assumption, some
other subspaces assumptions are proposed to analyze the
block diagonal property in different settings [6], [7], [10],
[34]. However, the block diagonal property of Z does not
guarantee the correct clustering, since each block may not
be fully connected. For example, the work [10] shows that
the block diagonal property holds for SSC when the subspa-
ces are disjoint and the angles between subspace pairs are
large enough. Such an assumption is weaker than the inde-
pendent subspaces assumption, but the price is that SSC
suffers from the so-called “graph connectivity” issue [31].
This issue is also related to the correlation of the columns of

the data matrix [28]. As will be seen in Theorem 3 given
later, the ‘1-minimization in SSC makes not only the
between-cluster connections sparse, but also the inner-clus-
ter connections sparse. In this case, the clustering results
obtained by spectral clustering may not be correct. Never-
theless, the block diagonal property is the condition that
verifies the design intuition of the spectral-type methods. If
the obtained coefficient matrix Z obeys the block diagonal
property and each block is fully connected (Z is not “too
sparse”), then we immediately get the correct clustering.

The block diagonal property of the solutions by different
methods in Table 1 is common under certain subspace
assumptions. However, in real applications, due to the data
noise or corruptions, the required assumptions usually do
not hold and thus the block diagonal property is violated.
By taking advantage of the k-block diagonal structure as a
prior, the work [11] considers SSC and LRR with an addi-
tional hard Laplacian constraint, which enforces Z to be
k-block diagonal with exact k connected blocks. Though
such a k-block diagonal solution may not obey the block
diagonal property without additional subspace assumption,
it is verified to be effective in improving the clustering per-
formance of SSC and LRR in some applications. Due to the
nonconvexity, this model suffers from some issues: the used
stochastic sub-gradient descent solver may not be stable;
and the theoretical convergence guarantee is relatively
weak due to the required assumptions on the data matrix.

1.2 Contributions

In this work, we focus on the most recent spectral-type sub-
space clustering methods due to their simplicity and effec-
tiveness. From the above review, it can be seen that the key
difference between different spectral-type subspace cluster-
ing methods (as given in Table 1) is the used regularizer on
the representation matrix Z. Their motivations for the design
intuition may be quite different, but all have the common
property that their solutions obey the block diagonal prop-
erty under certain subspace assumption. However, their
proofs of such a property are given case by case by using spe-
cific properties of the models. Moreover, existingmethods in
Table 1 are indirect as their regularizers are not induced by
the block diagonal matrix structure. The method in [11] that
enforces the solution to be k-block diagonal with exact k con-
nected blocks by a hard constraint is a direct method. But
such a constraint may be too restrictive since the k-block
diagonal matrix is not necessary for correct clustering when
using spectral clustering. A soft regularizer instead of the
hard constraint may be more flexible. Motivated by these
observations, we raise several interesting questions:

1. Consider the general model (5), what kind of objec-
tive f guarantees that the solutions obey the block
diagonal property?

2. Is it possible to give a unified proof of the block diag-
onal property by using common properties of the
objective f?

3. How to design a soft block diagonal regularizer
which encourages a matrix to be or close to be
k-block diagonal? When applying it to subspace clus-
tering, how to solve the block diagonal regularized
problem efficiently with the convergence guarantee?

TABLE 1
A Summary of Existing Spectral-Type Subspace Clustering

Methods Based on Different Choices of f and V

Methods fðZ;XÞ V

SSC [10] Zk k1 fZjdiagðZÞ ¼ 0g
LRR [21] Zk k
 -
MSR [29] Zk k1þ� Zk k
 fZjdiagðZÞ ¼ 0g
SSQP [39] Z>Z

�� ��
1

fZjdiagðZÞ ¼ 0; Z � 0g
LSR [28] Zk k2 -

CASS [24]
P

j XDiagð½Z�:;jÞ
��� ���



fZjdiagðZÞ ¼ 0g

1 V is not specified if there has no restriction on Z.
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We aim to address the above questions and in particular
we make the following contributions:2

1. We propose the Enforced Block Diagonal (EBD) con-
ditions and prove in a unified manner that if the
objective function in (5) satisfies the EBD conditions,
the solutions to (5) obey the block diagonal property
when the subspaces are independent. We show that
the EBD conditions are not restrictive and a large
family of norms and their combinations satisfy these
conditions. The block diagonal property of existing
methods in Table 1 falls into our special case.

2. We propose a k-block diagonal regularizer which
encourages a nonnegative symmetric matrix to be
k-block diagonal. Beyond the sparsity and low-rank-
ness, we would like to emphasize that the block diag-
onal matrix is another interesting structure and our
proposed block diagonal regularizer is the first soft
regularizer for pursuing such a structure. The regu-
larizer plays a similar role as the ‘0- or ‘1-norm for
pursuing sparsity and the rank function or nuclear
norm for pursuing low-rankness. See Fig. 1 for intui-
tive illustrations of the three structuredmatrices.

3. We propose the Block Diagonal Representation
(BDR) method for subspace clustering by using the
block diagonal regularizer. Compared with the regu-
larizers used in existing methods, BDR is more direct
as it uses the block diagonal structure prior. A disad-
vantage of the BDR model is that it is nonconvex due
to the block diagonal regularizer. We solve it by an
alternating minimization method and prove the con-
vergence without restrictive assumptions. Experi-
mental analysis on several real datasets demonstrates
the effectiveness of our approach.

2 THEORY OF BLOCK DIAGONAL PROPERTY

In this section, considering problem (5), we develop the uni-
fied theory for pursuing solutions which obey the block
diagonal property. We first give an important property of
the feasible solution to (5). This will lead to our EBD
conditions.

Theorem 1. Consider a collection of data points drawn from k
independent subspaces fSigki¼1 of dimensions fdigki¼1. Let
X ¼ ½X1; . . . ;Xk� 2 RD�n, where Xi 2 RD�ni denotes the data
point drawn from Si, rankðXiÞ ¼ di and

Pk
i¼1 ni ¼ n. For any

feasible solution Z
 2 Rn�n to the following system

X ¼ XZ; (6)

decompose it into two parts, i.e., Z
 ¼ ZB þ ZC , where

ZB ¼

Z

1 0 � � � 0

0 Z

2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Z

k

2
66664

3
77775; ZC ¼

0 
 � � � 


 0 � � � 

..
. ..

. . .
. ..

.


 
 � � � 0

2
66664

3
77775; (7)

with Z

i 2 Rni�ni corresponding to Xi. Then, we have XZ

B ¼
X, or equivalently XiZ



i ¼ Xi, i ¼ 1; . . . ; k, and XZC ¼ 0.

Proof. For any feasible solutionZ
 to problem (6), we assume
that ½X�:;j ¼ ½XZ
�:;j 2 Sl for some l. Then ½XZB�:;j ¼
½X1Z1; . . . ;XkZk�:;j 2 Sl and ½XZC �:;j 2 �i6¼lSi. On the other

hand, ½XZC �:;j ¼ ½XZ
�:;j � ½XZB�:;j 2 Sl. This implies that

½XZC �:;j 2 Sl \ �i6¼lSi. By the assumption that the subspa-

ces are independent, we have Sl \ �i6¼lSi ¼ f0g. Thus,
½XZC �:;j ¼ 0. Consider the above procedure for all

j ¼ 1; . . . ; n, we have XZC ¼ 0 and thus XZB ¼ X�
XZC ¼ X. The proof is completed. tu
Theorem 1 gives the property of the representation

matrix Z
 under the independent subspaces assumption.
The result shows that, to represent a data point ½X�:;j in Sl,
only the data points Xl from the same subspace Sl have the
real contributions, i.e., X ¼ XZB, while the total contribution
of all the data points from other subspaces �i 6¼lSi is zero,
i.e., XZC ¼ 0. So Theorem 1 characterizes the underlying
representation contributions of all data points. However,
such contributions are not explicitly reflected by the repre-
sentation matrix Z
 since the decomposition Z
 ¼ ZB þ ZC

is unknown when ZC 6¼ 0. In this case, the solution Z
 to (6)
does not necessarily obey the block diagonal property, and
thus it does not imply the true clustering membership of
data. To address this issue, it is natural to consider some
regularization on the feasible solution set of (6) to make
sure that ZC ¼ 0. Then Z
 ¼ ZB obeys the block diagonal
property. Previous works show that many regularizers, e.g.,
the ‘1-norm and many others shown in Table 1, can achieve
this end. Now the questions is, what kind of functions leads
to a similar effect? Motivated by Theorem 1, we give a fam-
ily of such functions as below.

Definition 3 (Enforced Block Diagonal conditions).
Given any function fðZ;XÞ defined on ðV;DÞ, where V is a set
consisting of some square matrices and D is a set consisting of
matrices with nonzero columns. For any Z ¼ ½Z1 Z3

Z4 Z2
� 2 V,

Z 6¼ 0, Z1, Z2 2 V, and X ¼ ½X1;X2�, where X1 and X2 corre-
spond to Z1 and Z2, respectively. Let ZB ¼ ½Z1 0

0 Z2
� 2 V.

Assume that all the matrices are of compatible dimensions. The
EBD conditions for f are

(1) fðZ;XÞ ¼ fðP>ZP;XPÞ, for any permutation matrix
P, P>ZP 2 V.

(2) fðZ;XÞ � fðZB;XÞ, where the equality holds if and
only if Z ¼ ZB (or Z3 ¼ Z4 ¼ 0).

(3) fðZB;XÞ ¼ fðZ1;X1Þ þ fðZ2;X2Þ.
We have the following remarks for the EBD conditions:

Fig. 1. Illustrations of three interesting structures of matrix: sparse, low-
rank and block diagonal matrices. The first two are extensively studied
before. This work focuses on the pursuit of block diagonal matrix.

2. Part of this work is extended from our conference paper [28].
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1. The EBD condition (1) is a basic requirement for sub-
space clustering. It guarantees that the clustering
result is invariant to any permutation of the columns
of the input data matrix X. Though we assume that
X ¼ ½X1;X2; . . . ;Xk� is ordered according to the true
membership for the simplicity of discussion, the
input matrix in problem (5) can be X̂ ¼ XP, where P
can be any permutation matrix which reorders the
columns of X. Let Z be feasible to X ¼ XZ. Then
Ẑ ¼ P>ZP is feasible to X̂ ¼ X̂Ẑ. The EBD condition
(1) guarantees that fðZ;XÞ ¼ fðẐ; X̂Þ. Thus, Ẑ is
equivalent to Z up to any reordering of the input
data matrix X. This is necessary for data clustering.

2. The EBD condition (2) is the key which enforces the
solutions to (5) to be block diagonal under certain
subspace assumption. From Theorem 1, we have
X ¼ XZ ¼ XZB. So the EBD condition (2) guarantees
that Z ¼ ZB when minimizing the objective. This
will be more clear from the proof of Theorem 3.

3. The EBD condition (3) is actually not necessary to
enforce the solutions to (5) to be block diagonal. But
through the lens of this condition, we will see the
connection between the structure of each block of the
block diagonal solutions and the used objective f .
Also, we find that many objectives in existing meth-
ods satisfy this condition.

The EBD conditions are not restrictive. Before giving the
examples, we provide some useful properties discussing
different types of functions that satisfy the EBD conditions.

Proposition 1. If f satisfies the EBD conditions (1)-(3) on
ðV;DÞ, then it does on ðV1;DÞ, where V1 � V and V1 6¼ ;.

Proposition 2. Assume that fðZ;XÞ ¼ P
ij gijðzijÞ, where gij is

a function defined on Vij, and it satisfies that gijðzijÞ � 0,
gijðzijÞ ¼ 0 if and only if zij ¼ 0. Then f satisfies the EBD con-
ditions (1)-(3) on ðV;RD�nÞ, where V ¼ fZjzij 2 Vijg.

Proposition 3. Assume that fðZ;XÞ ¼ P
j gjð½Z�:;j;XÞ, where

gj is a function defined on ðVj;DÞ. Assume that X ¼ ½X1;X2�,
w ¼ ½w1;w2� 2 Vj, w

B ¼ ½w1; 0� 2 Vj, and their dimensions
are compatible. If gj satisfies the following conditions:

(1) gjðw;XÞ ¼ gjðP>w;XPÞ, for any permutation matrix
P, P>w 2 Vj,

(2) gjðw;XÞ � gjðwB;XÞ, where the equality holds if and
only ifw ¼ wB,

(3) gjðwB;XÞ ¼ gjðw1;X1Þ,
then f satisfies the EBD conditions (1)-(3) on ðV;DÞ, where
V ¼ fZj½Z�:;j 2 Vjg.

Proposition 4. Assume that fðZ;XÞ ¼ P
i gið½Z�i;:;XÞ, where gi

is a function defined on ðVi;DÞ. Assume that X ¼ ½X1; X2�,
w> ¼ ½w1;w2�> 2 Vi, ðwBÞ> ¼ ½w1; 0�> 2 Vi, and their dimen-
sions are compatible. If gi satisfies the following conditions:

(1) giðw>;XÞ ¼ giðw>P;XPÞ, for any permutation
matrix P,w>P 2 Vi,

(2) giðw>;XÞ � giððwBÞ>;XÞ, where the equality holds if
and only ifw ¼ wB,

(3) giððwBÞ>;XÞ ¼ giðw>
1 ;X1Þ,

then f satisfies the EBD conditions (1)-(3) on ðV;DÞ, where
V ¼ fZj½Z�i;: 2 Vig.

Proposition 5. If fi satisfies the EBD conditions (1)-(3) on
ðVi;DÞ, i ¼ 1; . . . ;m, then

Pm
i �ifi (for positive �i) also satis-

fies the EBD conditions (1)-(3) on ðV;DÞ when V ¼ \m
i¼1Vi

and V 6¼ ;.
Proposition 6. Assume that f1 satisfies the EBD conditions

(1)-(3) on ðV1;DÞ, f2 satisfies the EBD conditions (1) and (3)
on ðV2;DÞ and f2ðZ;XÞ � f2ðZB;XÞ, where Z, ZB and X are
the same as those in Definition 3. Then, f1 þ f2 satisfies the
EBD conditions (1)-(3) on ðV;DÞ when V ¼ V1 \V2 and
V 6¼ ;.

Theorem 2. Some functions of interest which satisfy the EBD
conditions (1)-(3) are:

Function fðZ;XÞ ðV;DÞ
‘0- and ‘1-norm kZk0 and kZk1 -
square of Frobenius norm kZk2 -
elastic net kZk1 þ �kZk2 -
‘2;1-norm kZk2;1 -
‘1;2-norm kZk1;2 -

- kZ>Zk1 V ¼ fZjZ � 0g
‘1+nuclear norm kZk1 þ �kZk
 -
trace Lasso

P
j kXDiagð½Z�:;jÞk
 D ¼ fXj8j; ½X�:;j 6¼ 0g

others
P

ij �ijjzijjpij -

1 V (resp. D) is not specified if there has no restriction on Z (resp. X).
2 For the parameters, � > 0, �ij > 0, pij � 0.

Theorem 2 gives some functions of interest which satisfy
the EBD conditions. They can be verified by using Proposi-
tions 2-6. An intuitive verification is discussed as follows
and the detailed proofs can be found in the supplementary
material, which can be found on the Computer Society Digi-
tal Library at http://doi.ieeecomputersociety.org/10.1109/
TPAMI.2018.2794348.

1. Proposition 2 verifies the EBD conditions of func-
tions which are separable w.r.t. each element of a
matrix, e.g., kZk0, kZk1, kZk2 and

P
ij �ijjzijjpij .

2. Proposition 3 verifies the EBD conditions of func-
tions which are separable w.r.t. each column of a
matrix, e.g., kZk2;1 and

P
i kXDiagð½Z�:;iÞk
.

3. Proposition 4 verifies the EBD conditions of func-
tions which are separable w.r.t. each row of a matrix,
e.g., kZk1;2.

4. Proposition 5 shows that the function which is a posi-
tive linear combination of functions that satisfy the
EBD conditions still satisfies the EBD conditions, e.g.,

kZk1 þ �kZk2 or more generally kZk0 þ �1kZk1 þ �2

kZk2 þ �3kZk2;1 þ �4kZk1;2 þ �5kZ>Zk1 þ �6kZk
 þ �7P
i kXDiagð½Z�:;iÞk
, where �i > 0. So Proposition 5

enlarges the family of such type of functions and
shows that the EBD conditions are not restrictive.

5. Proposition 6 shows that f1 þ f2 satisfies the EBD con-
ditions (1)-(3) when f1 satisfies the EBD conditions
(1)-(3) and f2 satisfies the EBD conditions (1) and (3)
and the first part of EBD condition (2). An example is
Zk k1þ� Zk k
. Seemore discussions about Zk k
 below.

There are also some interesting norms which do not sat-
isfy the EBD conditions. For example, considering the infin-
ity norm Zk k1, the EBD condition (1) holds while the other
two do not. The nuclear norm Zk k
 satisfies the EBD
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condition (1) and (3). But for the EBD condition (2), we only
have (see Lemma 7.4 in [22])

Z1 Z3

Z4 Z2

� �����
����


� Z1 0

0 Z2

� �����
����


¼ Z1k k
 þ Z2k k
:

But the equality may hold when Z3 6¼ 0 and Z4 6¼ 0. A coun-
terexample is that, when both Z and ZB are positive semide-
finite, Zk k
¼

P
i �iðZÞ ¼ TrðZÞ ¼ TrðZBÞ ¼ P

i �iðZBÞ ¼ ZB
�� ��


,
where �iðZÞ’s denote the eigenvalues of Z. As will be seen
in the proof of Theorem 3, this issue makes the proof of the
block diagonal property of LRR which uses the nuclear
norm different from others. We instead use the uniqueness
of the LRR solution to (4) to fix this issue.

Now, based on the EBD conditions, below we will show
that the solution to problem (5) satisfies the block diagonal
property. This provides a new perspective to understand
the common property of the block diagonal solution
guarantee.

Theorem 3. Consider a collection of data points drawn from k
independent subspaces fSigki¼1 of dimensions fdigki¼1. Let
Xi 2 RD�ni denote the data points in Si, rankðXiÞ ¼ di andPk

i¼1 ni ¼ n. Let X ¼ ½X1; . . . ;Xk� 2 D, where D is a set con-
sisting of matrices with nonzero columns. Considering problem
(5), assume that fZjX ¼ XZg \V is nonempty and let Z
 be
any optimal solution. If one of the following cases holds,

Case I: f satisfies the EBD condition (1)-(2) on ðV;DÞ,
Case II: f satisfies the EBD condition (1) on ðV;DÞ and Z


is the unique solution,
then Z
 satisfies the block diagonal property, i.e.,

Z
 ¼

Z

1 0 � � � 0

0 Z

2 � � � 0

..

. ..
. . .

. ..
.

0 0 � � � Z

k

2
66664

3
77775; (8)

with Z

i 2 Rni�ni corresponding to Xi. Furthermore, if f satis-

fies the EBD conditions (1)-(3), then each block Z

i in (8) is

optimal to the following problem

min
W

fðW;XiÞ s:t: Xi ¼ XiW;W 2 V: (9)

Proof. First, by the EBD condition (1), fðZ;XÞ ¼ fðP>ZP;XPÞ
holds for any permutation P. This guarantees that the
learned Z
 based on X by solving (5) is equivalent to P>Z
P
based on XP. So we only need to discuss the structure of Z


based on the ordered input datamatrixX ¼ ½X1; . . . ;Xk�.
For any optimal solution Z
 2 V to problem (5), we

decompose it into two parts Z
 ¼ ZB þ ZC , where ZB

and ZC are of the forms in (7). Then, by Theorem 1, we
have XZB ¼ X and XZC ¼ 0. This combines the EBD con-
ditions, which implies that ZB is feasible to (5). By the
EBD conditions (2), we have fðZ
;XÞ � fðZB;XÞ. On the
other hand, Z
 is optimal to (5), thus we have
fðZ
;XÞ 
 fðZB;XÞ. Therefore, fðZ
;XÞ ¼ fðZB;XÞ. In
Case I, by the EBD condition (2), we have Z
 ¼ ZB. The
same result holds in Case II. Hence, Z
 ¼ ZB satisfies the
block diagonal property in both cases.

If the EBD condition (3) is further satisfied, we have
fðZ
;XÞ ¼ Pk

i¼1 fðZ

i ;XiÞ, which is separable. By the

block diagonal structure of Z
, X ¼ XZ
 is equivalent to
Xi ¼ XiZ



i , i ¼ 1; . . . ; k. Hence, both the objectives and

constraints of (5) are separable and thus problem (5) is
equivalent to problem (9) for all i ¼ 1; . . . ; k. This guaran-
tees the same solutions of (5) and (9). tu
We have the following remarks for Theorem 3:

1. Theorem 3 gives a general guarantee of the block
diagonal property for the solutions to (5) based on
the EBD conditions. By Theorem 2, the block diago-
nal properties of existing methods (except LRR) in
Table 1 are special cases of Theorem 3 (Case I). Note
that some existing models, e.g., SSC, have a con-
straint diagðZÞ ¼ 0. This does not affect the EBD con-
ditions due to Proposition 1. Actually, additional
proper constraints can be introduced in (5) if neces-
sary and the block diagonal property still holds.

2. The nuclear norm used in LRR does not satisfy the
EBD condition (2). Fortunately, the LRR model (4)
has a unique solution [22]. Thus the block diagonal
property of LRR is another special case of Theorem 3
(Case II). If we choose V ¼ fZjX ¼ XZg, then the
nuclear norm satisfies the EBD conditions (1) and (2)
on ðV;Rd�nÞ due to the uniqueness of LRR. So, in
some cases, the Case II can be regarded as a special
case of Case I in Theorem 3.

3. The SSQP method [39] achieves the solution obeying
the block diagonal property under the orthogonal
subspace assumption. However, the EBD conditions
and Theorem 3 show that the weaker independent
subspace assumption is enough. Actually, if the sub-
spaces are orthogonal, X>X already obeys the block
diagonal property.

4. Theorem 3 not only provides the block diagonal
property guarantee of Z
 (there are no connections
between-subspaces), but also shows what property
each block has (the property of the connections
within-subspace). Let us take the SSC model as an
example. The ith block Z


i of Z

, which is optimal to

(3), is the minimizer to

Z

i ¼ argmin

W
Wk k1 s:t: Xi ¼ XiW; diagðWÞ ¼ 0:

So SSC not only finds a sparse representation
between-subspaces but also within-subspace. Hence,
each Z


i may be too sparse (not fully connected) espe-
cially when the columns of Xi are highly correlated.
This perspective provides an intuitive interpretation
of the graph connectivity issue in SSC.

5. Theorem 3 not only provides a good summary of
existing methods, but also provides the general moti-
vation for designing new subspace clustering meth-
ods as the EBD conditions are easy to verify by using
Propositions 1-6.

3 SUBSPACE CLUSTERING BY BLOCK DIAGONAL

REPRESENTATION

Theorem 3 shows that it is not difficult to find a solution
obeying the block diagonal property under the independent
subspaces assumption as the EBD conditions are not restric-
tive. Usually, the solution is far from being k-block diagonal
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since the independent subspaces assumption does not hold
due to data noise. The more direct method [11] enforces the
representation coefficient matrix to be k-block diagonal
with exact k connected blocks. However, in practice, the
k-block diagonal affinity matrix is not necessary for correct
clustering when using spectral clustering. Similar phenome-
nons are observed in the pursuits of sparsity and low-rank-
ness. The sparsity (or low-rankness) is widely used as a
prior in many applications, but the exact sparsity (or rank)
is not (necessarily) known. So the ‘1-norm (or nuclear norm)
is very widely used as a regularizer to encourage the solu-
tion to be sparse (or low-rank). Now, considering the
k-block diagonal matrix, which is another interesting struc-
ture, what is the corresponding regularizer?

In this section, we will propose a simple block diagonal
regularizer for pursuing such an interesting structure. By
using this regularizer, we then propose a direct subspace
clustering subspace method, termed Block Diagonal Repre-
sentation. We will also propose an efficient solver and pro-
vide the convergence guarantee.

3.1 Block Diagonal Regularizer

In this work, we say that a matrix is k-block diagonal if it
has at least k connected components (blocks). Such a con-
cept is somewhat ambiguous. For example, consider the fol-
lowing matrix

B ¼
B0 0 0

0 B0 0

0 0 B0

2
64

3
75;where B0 ¼

1 0

�1 1

� �
(10)

is fully connected. We can say that B is 3-block diagonal
(this is what we expect intuitively). But by the definition,
we can also say that it is 1- or 2-block diagonal. Thus, we
need a more precise way to characterize the number of con-
nected components.

Assume that B is an affinity matrix, i.e., B � 0 and
B ¼ B>, the corresponding Laplacian matrix, denoted as LB,
is defined as

LB ¼ DiagðB11Þ � B:

The number of connected components of B is related to the
spectral property of the Laplacian matrix.

Theorem 4 (38, Proposition 4). For any B � 0, B ¼ B>, the
multiplicity k of the eigenvalue 0 of the corresponding Lapla-
cian matrix LB equals the number of connected components
(blocks) in B.

For any affinity matrix B 2 Rn�n, let �iðLBÞ, i ¼ 1; . . . ; n,
be the eigenvalues of LB in the decreasing order, i.e.,
�1ðLBÞ � �2ðLBÞ � � � � � �nðLBÞ. It is known that LB � 0 and
thus �iðLBÞ � 0 for all i. Then, by Theorem 4, B has k con-
nected components if and only if

�iðLBÞ
> 0; i ¼ 1; . . . ; n� k;

¼ 0; i ¼ n� kþ 1; . . . ; n:

�
(11)

Motivated by such a property, we define the k-block diago-
nal regularizer as follows.

Definition 4 (k-block diagonal regularizer). For any affin-
ity matrix B 2 Rn�n, the k-block diagonal regularizer is defined
as the sum of the k smallest eigenvalues of LB, i.e.,

Bk k k ¼
Xn

i¼n�kþ1

�iðLBÞ: (12)

It can be seen that Bk k k ¼ 0 is equivalent to the fact that
the affinity matrix B is k-block diagonal. So Bk k k can be
regarded as the block diagonal matrix structure induced
regularizer.

It is worth mentioning that (11) is equivalent to
rankðLBÞ ¼ n� k. One may consider using rankðLBÞ as the
k-block diagonal regularizer. However, this is not a good
choice. The reason is that the number of data points n is
usually much larger than the number of clusters k and thus
LB is of high rank. It is generally unreasonable to find a high
rank matrix by minimizing rankðLBÞ. More importantly, it is
not able to control the targeted number of blocks, which is
important in subspace clustering. Another choice is the con-
vex relaxation LBk k
, but it suffers from the same issues.

It is interesting that the sparse minimization in the SSC
model (3) is equivalent to minimizing LBk k
. Indeed,

LBk k
¼ TrðLBÞ ¼ TrðDiagðB11Þ � BÞ
¼ Bk k1 � diagðBÞk k1;

where we use the facts that B ¼ B>, B � 0 and LB � 0. So,
the SSC model (3) is equivalent to

min
Z

LBk k

s:t: X ¼ XZ; diagðZÞ ¼ 0; B ¼ ðjZj þ jZ>jÞ=2:

This perspective shows that the approximation of the block
diagonal matrix by using sparse prior in SSC is loose. In
contrast, our proposed k-block diagonal regularizer (12) not
only directly encourages the matrix to be block diagonal,
but is also able to control the number of blocks, which is
important for subspace clustering. A disadvantage is that
the k-block diagonal regularizer is nonconvex.

3.2 Block Diagonal Representation

With the proposed k-block diagonal regularizer at hand, we
now propose the Block Diagonal Representation method for
subspace clustering. When considering the noise free case,
we may use the following model directly

min
B

Bk k k ; s:t: X ¼ XB;B � 0;B ¼ B>:

It is interesting that whether the obtained solution satisfies
the block diagonal property. This can be verified by using
the EBD conditions in Definition 3.

Theorem 5. Let V ¼ fBjB � 0;B ¼ B>; Bk k kþ1 > 0g. Then
Bk k k satisfies the EBD conditions (1) and (2) on V.

As a corollary of Theorems 3 and 5 implies that the above
BDR model owns the block diagonal property when the
subspaces are independent. Note that in Theorem 5, there
has an additional assumption Bk k kþ1 > 0 which requires B
to have at most k connected components (blocks). This is
because Bk k k ¼ 0 does not exactly control the number of
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connected components and the magnitudes of entries of
B. If we use Bk k k þ� Bk k2, where � > 0, then the EBD
conditions (1) and (2) hold without the additional assump-

tion Bk k kþ1 > 0. This is because Bk k2 takes the magnitudes
of entries into account. For the reason details, please refer to
the proof of Theorem 5 in the supplementary material,
available online.

To handle the problem with noises, we consider the fol-
lowing BDR model

min
B

1

2
kX� XBk2 þ g Bk k k ;

s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>;

where g > 0 and we simply require the representation
matrix B to be nonnegative and symmetric, which are neces-
sary properties for defining the block diagonal regularizer
on B. But the restrictions on B will limit its representation
capability. We alleviate this issue by introducing an inter-
mediate term

min
Z;B

1

2
kX� XZk2 þ �

2
kZ� Bk2 þ g Bk k k ;

s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>:
(13)

The above two models are equivalent when � > 0 is suffi-
ciently large. As will be seen in Section 3.3, another benefit
of the term �

2 kZ� Bk2 is that it makes the subproblems
involved in updating Z and B strongly convex and thus the
solutions are unique and stable. This also makes the conver-
gence analysis easy.

Example 1. We give an intuitive example to illustrate the
effectiveness of BDR. We generate a data matrix
X ¼ ½X1;X2; . . . ;Xk� with its columns sampled from k sub-
spaceswithout noise.We generate k ¼ 5 subspaces fSigki¼1

whose bases fUigki¼1 are computed by Uiþ1 ¼ TUi,
1 
 i 
 k, where T is a random rotation matrix and
U1 2 RD�r is a random orthogonal matrix. We set D ¼ 30
and r ¼ 5. For each subpace, we sample ni ¼ 50 data vec-
tors by Xi ¼ UiQi, 1 
 i 
 k, with Qi being an r� ni i.i.d.
Nð0; 1Þmatrix. So we have X 2 RD�n, where n ¼ 250. Each
column of X is normalized to have a unit length. We then
solve (13) to achieve Z and B (we set � ¼ 10 and g ¼ 3).
Note that the generated data matrix X is noise free. So we
also compute the shape interaction matrix VV> (here V is
from the skinny SVD of X ¼ USV>), which is the solution
to the LRRmodel (4), for comparison. We plotVV>, Z and
B and their binarized versions in Fig. 2. The binarization Ẑ
of amatrixZ is defined as

Ẑij ¼
0; if jZijj <¼ t;

1; otherwise;

�

where we use t ¼ 10�3. From Fig. 2, it can be seen that
both VV> and its binarized version are very dense and
neither of them obeys the block diagonal property.
This implies that the generated subspaces are not inde-
pendent, though the sampled data points are noise
free. In contrast, the obtained B by our BDR and its
binarized version are not only k-block diagonal but
they also obey the block diagonal property (this obser-
vation does not depend on the choice of the binariza-
tion parameter t). This experiment clearly shows the
effectiveness of the proposed k-block diagonal regular-
izer for pursuing a solution obeying the block diagonal
property in the case that the independent subspaces
assumption is violated. Moreover, we observe that Z is
close to but denser than B. From the binarized version,
we see that Z is not a k-block diagonal matrix. How-
ever, when applying the spectral clustering algorithm
on Z and B, we find that both lead to correct clustering
while VV> does not. This shows the robustness of
spectral clustering to the affinity matrix which is not
but “close to” k-block diagonal. When g is relatively
smaller, we observe that B may not be k-block diago-
nal, but it still leads to correct clustering. This shows
that, for the subspace clustering problem, the soft block
diagonal regularizer is more flexible than the hard con-
straint in [11].

3.3 Optimization of BDR

We show how to solve the nonconvex problem (13). The key
challenge lies in the nonconvex term Bk k k . We introduce an
interesting property about the sum of eigenvalues by Ky
Fan to reformulate Bk k k .

Fig. 2. Plots of the shape interaction matrix VV>, Z and B from BDR and
their binarized versions respectively for Example 1.
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Theorem 6 (9, p. 515). Let L 2 Rn�n and L � 0. Then

Xn
i¼n�kþ1

�iðLÞ ¼ min
W

hL;Wi; s:t: 0 � W � I; TrðWÞ ¼ k:

Then, we can reformulate Bk k k as a convex program

Bk k k ¼ min
W

hLB;Wi; s:t: 0 � W � I; TrðWÞ ¼ k:

So (13) is equivalent to

min
Z;B;W

1

2
kX� XZk2 þ �

2
kZ� Bk2 þ ghDiagðB11Þ � B;Wi

s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>;
0 � W � I;TrðWÞ ¼ k:

(14)

There are 3 blocks of variables in problem (14). We observe
that W is independent from Z, thus we can group them as a
super block fW;Zg and treat fBg as the other block. Then
(14) can be solved by alternating updating fW;Zg and fBg.

First, fix B ¼ Bt, and update fWtþ1;Ztþ1g by

fWtþ1;Ztþ1g ¼ argmin
W;Z

1

2
kX� XZk2 þ �

2
kZ� Bk2

þ ghDiagðB11Þ � B;Wi
s:t: 0 � W � I;TrðWÞ ¼ k:

This is equivalent to updatingWtþ1 and Ztþ1 separably by

Wtþ1 ¼ argmin
W

DiagðB11Þ � B;Wh i;
s:t: 0 � W � I;TrðWÞ ¼ k;

(15)

and

Ztþ1 ¼ argmin
Z

1

2
X� XZk k2 þ �

2
Z� Bk k2: (16)

Second, fixW ¼ Wtþ1 and Z ¼ Ztþ1, and update B by

Btþ1 ¼ argmin
B

�

2
kZ� Bk2 þ ghDiagðB11Þ � B;Wi

s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>:
(17)

Note that the above three subproblems are convex and have
closed form solutions. For (15),Wtþ1 ¼ UU>, whereU 2 Rn�k

consist of k eigenvectors associated with the k smallest eigen-
values ofDiagðB11Þ � B. For (16), it is obvious that

Ztþ1 ¼ ðX>Xþ �IÞ�1ðX>Xþ �BÞ: (18)

For (17), it is equivalent to

Btþ1 ¼ argmin
B

1

2
B� Zþ g

�
ðdiagðWÞ11> �WÞ

��� ���2
s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>:

(19)

This problem has a closed form solution given as follows.

Proposition 7. Let A 2 Rn�n. Define Â ¼ A� DiagðdiagðAÞÞ.
Then the solution to the following problem

min
B

1

2
kB�Ak2; s:t: diagðBÞ ¼ 0;B � 0;B ¼ B>; (20)

is given by B
 ¼ ½ðÂþ Â
>Þ=2�þ.

The whole procedure of the alternating minimization
solver for (14) is given in Algorithm 1. We denote the objec-
tive of (14) as fðZ;B;WÞ. Let S1 ¼ fBjdiagðBÞ ¼ 0;B �
0;B ¼ B>g and S2 ¼ fWj0 � W � I;TrðWÞ ¼ kg. Denote the
indicator functions of S1 and S2 as iS1ðBÞ and iS2ðWÞ, respec-
tively. We give the convergence guarantee of Algorithm 1
for nonconvex BDR problem.

Algorithm 1. Solve (14) by Alternating Minimization

Input: X 2 Rd�n, � > 0, g > 0, � > 0.
Initialization: t ¼ 0, Wt ¼ 0, Zt ¼ 0, Bt ¼ 0. while not con-

verged do
1) ComputeWtþ1 by solving (15);
2) Compute Ztþ1 by solving (16);
3) Compute Btþ1 by solving (17);
4) IfmaxfkZtþ1 � Ztk1; kBtþ1 � Btk1g 
 �, break;
5) t ¼ tþ 1.

end while
Output: Z, B 2 Rn�n.

Proposition 8. The sequence fWt;Zt;Btg generated by Algo-
rithm 1 has the following properties:

(1) The objective fðZt;Bt;WtÞ þ iS1ðBtÞ þ iS2ðWtÞ is
monotonically decreasing. Indeed,

fðZtþ1;Btþ1;Wtþ1Þ þ iS1ðBtþ1Þ þ iS2ðWtþ1Þ

 fðZt;Bt;WtÞ þ iS1ðBtÞ þ iS2ðWtÞ

� �

2
Ztþ1 � Zt

�� ��2��

2
Btþ1 � Bt

�� ��2;
(2) Ztþ1 � Zt ! 0, Btþ1 � Bt ! 0 andWtþ1 �Wt ! 0;
(3) The sequences fZtg, fBtg and fWtg are bounded.

Theorem 7. The sequence fWt;Zt;Btg generated by Algorithm
1 has at least one limit point and any limit point ðZ
;B
;W
Þ
of fZt;Bt;Wtg is a stationary point of (14).
Please refer to the supplementary material, available

online for the proof of the above theorem. Generally, our
proposed solver in Algorithm 1 for the nonconvex BDR
model is simple. The convergence guarantee in Theorem 7
for Algorithm 1 is practical as there have no unverifiable
assumptions.

3.4 Subspace Clustering Algorithm

We give the procedure of BDR for subspace clustering as pre-
viousworks [10], [21], [28]. Given the datamatrixX, we obtain
the representation matrix Z and B by solving the proposed
BDR problem (13) by Algorithm 1. Both of them can be used
to infer the data clustering. The affinity matrix can be defined
asW ¼ ðjZj þ jZ>jÞ=2 orW ¼ ðjBj þ jB>jÞ=2, and then the tra-
ditional spectral clustering [32] is applied on W to group the
data points into k groups. As will be seen in the experiments,
the clustering performance onZ andB is comparable.

It is worth mentioning that our BDR requires to know the
number of subspaces k when computing the affinity matrix
and using the spectral clustering to achieve the final result.
Such a requirement is necessary for all the spectral-type
subspace clustering methods, e.g., [10], [21], [28], though it
is only used in the spectral clustering step. If the number of
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subspaces is not known, some other techniques can be used
for the estimation, e.g., [4], [21]. This work only focuses on
the case that the number of subspaces is known.

We would like to emphasize some differences between
our BDR and [11]. The proposed subspace clustering
method in [11] uses a hard constraint to enforce the solution
to be exactly k-block diagonal. However, for correct cluster-
ing, the exact k-block diagonal solution is not necessary.
The best clustering results may be obtain by balancing the
representation loss and the number of blocks of the solution.
Our proposed soft block diagonal regularizer is more flexi-
ble to control the balance between the representation loss
and the number of blocks of the solution by tuning the
parameters k and g in (13). Furthermore, the proposed sto-
chastic subgradient method for nonconvex optimization in
[11] is generally very slow and its convergence guarantee
requires restrictive assumptions on the input data. This
makes their method not practical. In contrast, our solver for
BDR owns stronger convergence guarantee without any
restrictive assumptions. It will be seen from the experimen-
tal results that our method is very efficient in Section 4.

4 EXPERIMENTS

In this section, we conduct several experiments on real data-
sets to demonstrate the effectiveness of our BDR. The com-
pared methods include SCC [5], SSC [10], LRR [21], LSR
[28], S3C [20], BDR-B (our BDR model by using B) and BDR-
Z (our BDR model by using Z). For the existing methods,
we use the codes released by the authors. We test on three
datasets: Hopkins 155 database [35] for motion segmenta-
tion, Extended Yale B [19] for face clustering andMNIST [13]
for handwritten digit clustering. For all the compared meth-
ods, we tune the parameters (for some methods, we use the
parameters which are given in their codes for some data-
sets) and use the ones which achieve the best results in most
cases for each dataset. Note that BDR-B and BDR-Z use the
same parameters.3 In Algorithm 1, we set � ¼ 10�3.

For the performance evaluation, we use the usual cluster-
ing error defined as follows

clustering error ¼ 1� 1

n

Xn
i¼1

dðpi;mapðqiÞÞ; (21)

where pi and qi represent the output label and the ground
truth one of the ith point respectively, dðx; yÞ ¼ 1 if x ¼ y,
and dðx; yÞ ¼ 0 otherwise, and mapðqiÞ is the best mapping
function that permutes clustering labels to match the ground
truth labels. All experiments are conducted on a PC with an
Intel(R) Xeon(R) CPU E5640 at 2.67 GHz and 2.66 GHz, 24 G
memory, runningWindows 7 andMatlab 2016a.

4.1 Motion Segmentation

We consider the application of subspace clustering for
motion segmentation. It refers to the problem of segmenting
a video sequence with multiple rigidly moving objects into
multiple spatiotemporal regions that correspond to the dif-
ferent motions in the scene. The coordinates of the points in
trajectories of one moving object form a low dimensional
subspace. Thus, the motion segmentation problem can be
solved via performing subspace clustering on the trajectory
spatial coordinates. We test on the widely used Hopkins
155 database [35]. It consists of 155 video sequences, where
120 of the videos have two motions and 35 of the videos
have three motions. The feature trajectories of each video
can be well modeled as data points that approximately lie
in a union of linear subspaces of dimension at most 4 [10].
Each sequence is a sole dataset (i.e., data matrix X) and so
there are in total 155 subspace clustering tasks.

We consider two settings to construct the data matrix X
for each sequence: (1) use the original 2F -dimensional fea-
ture trajectories, where F is the number of frames of the
video sequence; (2) project the data matrix into 4k-dimen-
sional subspace, where k is the number of subspaces, by
using PCA. Most of the compared methods are spectral-
type methods, except SCC. For spectral-type methods, they
used different post-processing on the learned affinity matri-
ces when using spectral clustering. We first consider the
same setting as [10] which defines the affinity matrix by
W ¼ ðjZj þ jZ>jÞ=2, where Z is the learned representation
coefficient matrix, and no additional complex post-process-
ing is performed. In the Hopkins 155 database, there are 120
videos of two motions and 35 videos of three motions. So
we report the mean and median of the clustering errors of
these videos. Tables 2 and 3 report the clustering errors of
applying the compared methods on the dataset when we
use the original 2F -dimensional feature trajectories and
when we project the data into a 4k-dimensional subspace
using PCA, respectively. Fig. 3 gives the percentage of

TABLE 2
Clustering Errors (%) of Different Algorithms on the Hopkins

155 Database with the 2F -Dimensional Data Points

method SCC SSC LRR LSR S3C BDR-B BDR-Z

2 motions

mean 2.46 1.52 3.65 3.24 1.73 1.00 0.95
median 0.00 0.00 0.22 0.00 0.00 0.00 0.00

3 motions

mean 11.00 4.40 9.40 5.94 4.76 1.95 0.85
median 1.63 1.63 3.99 2.05 0.93 0.21 0.21

All

mean 4.39 2.18 4.95 3.85 2.41 1.22 0.93
median 0.00 0.00 0.53 0.45 0.00 0.00 0.00

TABLE 3
Clustering Errors (%) of Different Algorithms on the Hopkins 155
Database with the 4k-Dimensional Data Points by Applying PCA

method SCC SSC LRR LSR S3C BDR-B BDR-Z

2 motions

mean 3.58 1.83 4.22 3.35 1.81 1.26 1.04
median 0.00 0.00 0.29 0.29 0.00 0.00 0.00

3 motions

mean 7.11 4.40 9.43 6.13 5.01 1.22 1.22
median 0.47 0.56 3.70 2.05 1.06 0.21 0.20

All

mean 4.37 2.41 5.40 3.97 2.53 1.25 1.08
median 00.00 0.00 0.53 0.53 0.00 0.00 0.00

3. We will release the codes of our BDR and the used datasets soon.
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sequences for which the clustering error is less than or equal
to a given percentage of misclassification. Furthermore, con-
sider that many subspace clustering methods achieve state-
of-the-art performance on the Hopkins 155 database by
using different techniques for pre-processing and post-proc-
essing. So we give a direct performance comparison of the
subspace clustering methods with their reported settings on
all 155 sequences in Table 4. Based on these results, we have
the following observations:

	 From Tables 2 and 3, it can be seen that our BDR-B
and BDR-Z achieve close performance and both out-
perform the existing methods in both settings,
though many existing methods already perform
very well. Considering that the reported results are
the means of the clustering errors of many sequen-
ces, the improvements (from the existing best result
2:18% to our 0:93% in Table 2 and from the existing
best result 2:41% to our 1:08% in Table 3) by our
BDR-B and BDR-Z are significant.

	 From Fig. 3, it can be seen that there are many more
sequences which are almost correctly segmented by
our BDR-B abd BDR-Z than existing methods. This
demonstrates that the improvements over existing
methods by our methods are achieved on most of
the sequences.

	 For most methods, the clustering performance using
the 2F -dimensional feature trajectories in Table 2 is
slightly better than using the 4k-dimensional PCA
projections in Table 3. This implies that the feature
trajectories of k motions in a video almost perfectly
lie in a 4k-dimensional linear subspace of the
2F -dimensional ambient space.

	 FromTable 4, it can be seen that our BDR-Zperformed
on the 2F -dimensional data points still outperforms
many existing state-of-the-art methodswhich use var-
ious post-processing techniques. LatLRR [23] is
slightly better than our method. But it requires much
more complex pre-processing and post-processing,
andmuch higher computational cost.

4.2 Face Clustering

We consider the face clustering problem, where the goal is
to group the face images into clusters according to their sub-
jects. It is known that, under the Lambertian assumption,
the face images of a subject with a fixed pose and varying
illumination approximately lie in a linear subspace of
dimension 9 [2]. So, a collection of face images of k subjects
approximately lie in a union of 9-dimensional subspaces.
Therefore the face clustering problem can be solved by
using subspace clustering methods.

We test on the Extended Yale B database [19]. This dataset
consists of 2,414 frontal face images of 38 subjects under 9
poses and 64 illumination conditions. For each subject, there
are 64 images. Each cropped face image consists of 192�168
pixels. To reduce the computation and memory cost, we
downsample each image to 32� 32 pixels and vectorize it to
a 1,024 vector as a data point. Each data point is normalized
to have a unit length. We then construct the data matrix X
from subsets which consist of different numbers of subjects
k 2 f2; 3; 5; 8; 10g from the Extended Yale B database. For
each k, we randomly sample k subjects face images from all
38 subjects to construct the data matrix X 2 RD�n, where
D ¼ 1; 024 and n ¼ 64k. Then the subspace clustering meth-
ods can be performed on X and the clustering error is
recorded. We run 20 trials and the mean, median, and stan-
dard variance of clustering errors are reported.

The clustering errors by different subspace clustering
methods on the Extended Yale B database are shown in
Table 5. It can be seen that our BDR-B and BDR-Z achieve
similar performance and both outperform other methods in
most cases. Generally, when the number of subjects (or sub-
spaces) increases, the clustering problem ismore challenging.
We find that the improvements by ourmethods aremore sig-
nificant when the number of subjects increases. This experi-
ment clearly demonstrates the effectiveness of our BDR for

Fig. 3. Percentage of sequences for which the clustering error is less
than or equal to a given percentage of misclassification. Left: 2F -dimen-
sional data. Right: 4n-dimensional data.

TABLE 4
The Mean Clustering Errors (%) of 155 Sequences
on Hopkins 155 Dataset by State-of-the-Art Methods

LSA [40] SSC [10] LRR [21] LatLRR [23] LSR [28]
4.52 2.18 1.59 0.85 1.71

CASS [24] SMR [14] BD-SSC [11] BD-LRR [11] BDR-Z
1.47 1.13 1.68 0.97 0.93

TABLE 5
Clustering Error (%) of Different Algorithms on the Extended Yale B Database

2 subjects 3 subjects 5 subjects 8 subjects 10 subjects

method mean median std mean median std mean median std mean median std mean median std

SCC 24.02 19.92 17.82 42.19 41.93 8.93 61.36 62.34 6.10 71.87 72.27 4.72 72.48 73.28 6.14
SSC 1.64 0.78 2.91 3.26 0.52 7.69 6.30 4.22 5.43 8.94 9.67 6.18 10.09 11.33 4.59
LRR 5.39 0.39 14.50 6.04 1.04 12.34 8.13 2.34 9.61 6.79 3.42 6.50 9.49 12.58 5.38
LSR 3.16 0.78 10.18 3.96 1.56 8.72 7.85 6.72 8.72 28.14 31.05 12.32 33.27 33.12 4.57
S3C 1.29 0.00 2.69 2.79 0.52 7.38 4.66 1.88 5.15 6.37 6.35 5.32 6.87 6.17 3.67
BDR-B 3.28 0.78 10.15 3.02 1.30 7.78 4.45 2.19 6.29 3.08 2.93 1.18 2.95 2.81 1.09
BDR-Z 2.97 0.00 10.23 1.15 1.04 0.95 3.00 2.66 2.25 4.46 4.20 2.39 4.04 3.52 1.52
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the challenging face clustering task on the Extended Yale B

database. S3C [20] is an improved SSC method and it also
performs well in some cases. However, it needs to tune more
parameters in order to achieve comparable performance and
it is time consuming. Fig. 4 provides the average computa-
tional time of eachmethod as a function of the number of sub-
jects. It can be seen that S3C has the most highest
computational time, while LSR, which has a closed form
solution, is the most efficient method. Our BDR-B (BDR-Z
has as similar running time and thus it is not reported) is
faster than most methods except LSR (LSR is much faster
than BDR). So our BDR is a good choice when considering
the trade-off between the performance and computational
cost. Furthermore, we consider the influence of the parame-
ters � and g on the clustering performance. On this dataset,
we observe that � ¼ 50 and g ¼ 1 performwell in most cases.
We report the average clustering error on the 10 subjects
problem based on two settings: (1) fix g ¼ 1 and choose
� 2 f10; 20; 30; 40; 50; 60; 70g; (2) fix � ¼ 50 and choose
g 2 f0:001; 0:01; 0:1; 0:5; 1; 2; 3; 5; 10; 50g. The results are
shown in Fig. 5. It can be seen that the clustering error
increases when � and g are relatively too small or too large.
In the “too small” case, the performance degeneration is due
to the relatively weak regularization effect. On the other
hand, if � and g are relatively large,Z andB in the early itera-
tions are not discriminative due to relatively large recon-
struction loss. This issue may accumulate till the algorithm
converges due to the nonconvexity of the problem and the
non-optimal solution guarantee issue of our solver.

4.3 Handwritten Digit Clustering

Weconsider the application of subspace clustering for cluster-
ing images of handwritten digits which also have the sub-
space structure of dimension 12 [13]. We test on the MNIST

database [18], which contains grey scale images of handwrit-
ten digits 0 � 9. There are 10 subjects of digits. We consider
the clustering problemswith the number of subjects k varying
from 2 to 10. For each k, we run the experiments for 20 trials
and report the mean clustering error. For each trial and each
k, we consider random k subjects of digits from 0 � 9, and
each subject has 100 randomly sampled images. Each grey
image is of size 28� 28 and is vectorized as a vector of length
784. Each data point is normalized to have a unit length. So
for each k, we have the datamatrix of size 784� 100k.

Fig. 6a plots the clustering errors as a function of the
number of subjects on the MNIST database. It can be seen
that our BDR-B and BDR-Z achieve the smallest cluster-
ing errors in most cases, though the improvements over
the best compared method are different on different num-
bers of subjects. Fig. 6b gives a comparison on the aver-
age running time and it can be seen that our BDR-B
(similar to BDR-Z) is much more efficient than most
methods except LSR. The clustering performance of SSC
and S3C is close to our BDR-B in some cases, but their
computational cost is much higher than ours. So this
experiment demonstrates the effectiveness and high-effi-
ciency of our BDR. Fig. 6c plots an example of the affinity
matrix B obtained by BDR on a 4 subjects clustering task.
By direct computation, we observe that Bk k k ¼ 0, though
B does not satisfy the block diagonal property. It still
leads to a good performance as it is close to k-block diag-
onal. Fig. 7 plots the clustering errors as a function of the

Fig. 5. Clustering error ð%Þ of BDR-Z as a function of � when fixing g ¼ 1
(left) and g when fixing � ¼ 50 (right) for the 10 subjects problems from
the Extended Yale B database.

Fig. 6. Results on the MNIST database. (a) Plots of clustering errors ver-
sus the number of subjects; (b) Plots of average computational time
(sec.) versus the number of subjects; (c) An example of the affinity
matrix B obtained by our BDR model.

Fig. 4. Average computational time (sec.) of the algorithms on the
Extended Yale B database as a function of the number of subjects.

Fig. 7. Plots of clustering errors versus the parameter k in model (13) on
the subsets with 2, 4, 6 and 8 subjects from the MNISTdatabase.
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input parameter k in model (13) on the subproblems with
2, 4, 6 and 8 subjects from the MNIST database. It can be
seen that our BDR model achieves the best performance
when k is set to the ground truth of the subject number
in most cases. The clustering errors are relatively larger
when the difference of k and the ground truth number of
subjects is larger. If k is relatively large, the errors
increase more significantly since B is k-block diagonal
and thus it tends to be “too sparse”. Furthermore, to ver-
ify our theoretical convergence results, we plot the objec-
tive function value of (14) in each iteration obtained in
Algorithm 1 for all iterations on a 5 subjects subset of the
MNIST database in Fig. 8. It can be seen that the objective
function value is monotonically decreasing and this phe-
nomenon is consistent with our convergence analysis in
Proposition 8.

5 CONCLUSION AND FUTURE WORKS

This paper studies the subspace clustering problem which
aims to group the data points approximately drawn from
a union of k subspaces into k clusters corresponding to
their underlying subspaces. We observe that many exist-
ing spectral-type subspace clustering methods own the
same block diagonal property under certain subspace
assumption. We consider a general problem and show
that if the objective satisfies the proposed Enforced Block
Diagonal conditions or its solution is unique, then the
solution(s) obey the block diagonal property. This unified
view provides insights into the relationship among the
block diagonal property of the solution and the used
objectives, as well as to facilitate the design of new algo-
rithms. Inspired by the block diagonal property, we pro-
pose the first k-block diagonal regularizer which is useful
for encouraging the matrix to be k-block diagonal. This
leads to the Block Diagonal Representation method for
subspace clustering. A disadvantage of the BDR model is
that it is nonconvex due to the k-block diagonal regular-
izer. We propose to solve the BDR model by a simple and
generally efficient method and more importantly we pro-
vide the convergence guarantee without restrictive
assumptions. Numerical experiments well demonstrate
the effectiveness of our BDR.

There are many potential interesting future works:

1. The problem of the affinity matrix construction is
not limited to the subspace clustering (or spectral
clustering), but is everywhere and appears in many
applications, e.g., [33], [41], [43]. The proposed
k-block diagonal regularizer provides a new learning
way and it is natural to consider the extension to
related applications.

2. Beyond the sparse vector and low-rank matrix, the
block diagonal matrix is another interesting structure
of structured sparsity. The sparsity of the sparse vec-
tor is defined on the entries while the sparsity of the
low-rank matrix is defined on the singular values.
For the block diagonal matrix, its sparsity can be
defined on the eigenvalues of the Laplacian matrix.
So we can say that a block diagonal affinity matrix is
spectral sparse if there have many connected blocks.
This perspective motivates us to consider the statisti-
cal recovery guarantee of the block diagonal matrix
regularized or constrained problems as that in com-
pressive sensing.

3. The proposed k-block diagonal regularizer is noncon-
vex and this makes the optimization of the problem
with such a regularizer challenging. Our proposed
solver and convergence guarantee are specific for the
nonconstrained BDR problem. How to solve more
complicated problems (e.g., using the ‘1-norm to con-
trol the reconstruction error to model the outliers)
and provide the convergence guarantee is interesting.
The general Alternating Direction Method of Multi-
pliers [25] is a potential solver.
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