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Abstract

We propose a new optimization method for training
feed-forward neural networks. By rewriting the activa-
tion function as an equivalent proximal operator, we
approximate a feed-forward neural network by adding
the proximal operators to the objective function as penal-
ties, hence we call the lifted proximal operator machine
(LPOM). LPOM is block multi-convex in all layer-wise
weights and activations. This allows us to use block co-
ordinate descent to update the layer-wise weights and
activations. Most notably, we only use the mapping of
the activation function itself, rather than its derivative,
thus avoiding the gradient vanishing or blow-up issues
in gradient based training methods. So our method is
applicable to various non-decreasing Lipschitz contin-
uous activation functions, which can be saturating and
non-differentiable. LPOM does not require more auxil-
iary variables than the layer-wise activations, thus using
roughly the same amount of memory as stochastic gra-
dient descent (SGD) does. Its parameter tuning is also
much simpler. We further prove the convergence of up-
dating the layer-wise weights and activations and point
out that the optimization could be made parallel by asyn-
chronous update. Experiments on MNIST and CIFAR-10
datasets testify to the advantages of LPOM.

Introduction

Feed-forward deep neural networks (DNNs) are cascades of
fully connected layers and there are no feedback connections.
In recent years, with the advances in hardware and dataset
sizes, feed-forward DNNs have become standard in many
tasks, such as image recognition (Krizhevsky, Sutskever, and
Hinton, 2012), speech recognition (Hinton et al., 2012), nat-
ural language understanding (Collobert et al., 2011), and
building the Go game learning system (Silver et al., 2016).
For several decades, training a DNN is accomplished by
optimizing a highly nonconvex and nested function of the net-
work weights. The predominant method for training DNNss is
stochastic gradient descent (SGD) (Rumelhart, Hinton, and
Williams, 1986), whose effectiveness has been demonstrated
by the successes of DNNSs in various real-world applications.
Recently, many variants of SGD have been proposed, which
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use adaptive learning rates and momentum terms, e.g., Nes-
terov momentum (Sutskever et al., 2013), AdaGrad (Duchi,
Hazan, and Singer, 2011), RMSProp (Dauphin, de Vries, and
Bengio, 2015), and Adam (Kingma and Ba, 2014). SGD and
its variants use a few training samples to estimate the full gra-
dient, making the computational complexity of each iteration
small. Moreover, the estimated gradients have noise, which is
helpful for escaping saddle points (Ge et al., 2015). However,
they have some drawbacks as well. One major problem is the
vanishing or blow-up gradient issue, where the magnitudes of
gradients decrease or increase exponentially with the number
of layers. This causes slow or unstable convergence, espe-
cially in very deep networks. This flaw can be remitted by
using non-saturating activation functions, such as rectified
linear unit (ReLU), and modified network architectures, such
as ResNet (He et al., 2016). However, the fundamental prob-
lem remains. Also, their parameters are difficult to tune (e.g.,
learning rates and convergence criteria) (Le et al., 2011). Fur-
thermore, they cannot deal with non-differentiable activation
functions directly (e.g., binarized neural networks (Hubara et
al., 2016)) and do not allow parallel weight updates across the
layers (Le et al., 2011). For more on the limitations of SGD,
please refer to (Taylor et al., 2016) and (Le et al., 2011).

The drawbacks of SGD motivate research on alternative
training methods for DNNs. Recently, training a feed-forward
neural network is formulated as a constrained optimization
problem, where the network activations are introduced as
auxiliary variables and the network configuration is guaran-
teed by layer-wise constraints (Carreira-Perpinan and Wang,
2014). It breaks the dependency among the nested function-
s into equality constraints, so many standard optimization
methods can be utilized. Some methods of this type of ap-
proach were studied and they differed in how to handle the
equality constraints. Carreira-Perpinan and Wang (2014) ap-
proximated the equality constraints via quadratic penalties
and alternately optimized network weights and activation-
s. Zeng et al. (2018) introduced one more block of auxil-
iary variables per layer and also approximated the equality
constraints via quadratic penalties. Inspired by alternating
direction method of multiplier (ADMM) (Lin, Liu, and Su,
2011), Taylor et al. (2016) and Zhang, Chen, and Saligrama
(2016) used the augmented Lagrangian approach to obtain
exact enforcement of the equality constraints. However, the
two methods involved the Lagrange multipliers and nonlinear



constraints, thus were more memory demanding and more
difficult in optimization. Motivated by the fact that the ReLU
activation function is equivalent to a simple constrained con-
vex minimization problem, Zhang and Brand (2017) relaxed
the nonlinear constraints as penalties, which encode the net-
work architecture and the RelLU activation function. Thus,
the nonlinear constraints no longer exist. However, their ap-
proach is limited to the ReLU function and does not apply
to other activation functions. Askari et al. (2018) followed
this idea by considering more complex convex optimiza-
tion problems and discussed several types of non-decreasing
activation functions. However, their methods to update the
weights and activations are still limited to the ReLU func-
tion. Their approach cannot outperform SGD and can only
serve for initializing SGD. Actually, we have found that their
formulation was incorrect (see Subsection “Advantages of
LPOM”).

This paper makes the following contributions:

e We propose a new formulation to train feed-forward
DNNs, which we call the lifted proximal operator ma-
chine (LPOM)'. LPOM is block multi-convex, i.e., the
problem is convex w.r.t. weights or activations of each lay-
er when the remaining weights and activations are fixed. In
contrast, almost all existing DNN training methods do not
have such a property. This greatly facilitates the training
of DNNS.

e Accordingly, we apply block coordinate descent (BCD) to
solve LPOM. Most notably, the update of the layer-wise
weights or activations only utilizes the activation function
itself, rather than its derivative, thus avoiding the gradient
vanishing or blow-up issues in gradient based training
methods. Moreover, LPOM does not need more auxiliary
variables than the layer-wise activations, thus its memory
cost is close to that of SGD. It is also easy to tune the
penalties in LPOM. We further prove that the iterations to
update layer-wise weights or activations are convergent.

e Since only the activation function itself is involved in com-
putation, LPOM is able to handle general non-decreasing
Lipschitz continuous activation functions, which can be sat-
urating (such as sigmoid and tanh) and non-differentiable
(such as ReLU and leaky ReLU). So LPOM successfully
overcomes the computational difficulties when using most
of existing activation functions.

We implement LPOM on fully connected DNNs and test it on
benchmark datasets, MNIST and CIFAR-10, and obtain sat-
isfactory results. For convolutional neural networks (CNNs),
since we have not reformulated pooling and skip-connections,
we leave the implementation of LPOM on CNNss to future
work. Note that the existing non-gradient based approaches
also focus on fully connected DNNSs first (Carreira-Perpinan
and Wang, 2014; Zeng et al., 2018; Taylor et al., 2016; Zhang,
Chen, and Saligrama, 2016; Zhang and Brand, 2017; Askari
et al., 2018). We also point out that LPOM could be solved
in parallel by asynchronous update.

'"Two patents were filed in Nov. 2017 and Oct. 2018, respectively.

Related Work
The optimization problem for training a standard feed-
forward neural network is:

. n—1_ /. .. 2 Tx1yy...
{mWIP}e(qs(W ¢(---d(W2(W'XY)) ), L), (1)

where X! € R™*™ is a batch of training samples, L €
Re*™ denotes the corresponding labels, n; is the dimension
of the training samples, m is the batch size, c is the number of
classes, {W*}5! are the weights to be learned in which the
biases have been omitted for simplicity, ¢(-) is an element-
wise activation function (e.g., sigmoid, tanh, and ReLU), and
£(-,-) is the loss function (e.g., the least-square error or the
cross-entropy error). Here the neural network is defined as a
nested function, where the first layer function of the neural
network is ¢(W1X1), the i-th layer (i=2, - - - , n) function
has the form ¢(W?X), and X is the output of the (i —1)-
th layer function. A common approach to optimize (1) is
by SGD, i.e., calculating the gradient w.r.t. all weights of
the network using backpropagation and then updating the
weights by gradient descent.

By introducing the layer-wise activations as a block of
auxiliary variables, the training of a neural network can be
equivalently formulated as an equality constrained optimiza-
tion problem (Carreira-Perpinan and Wang, 2014):

min (X", L)
{wiy {x*} )

st X =p(WitXh), i=23,--- n,

where X is the activation of the i-th layer and other notations
are the same as those in (1). The constraints in (2) ensure that
the auxiliary variables {X?}" , exactly match the forward
pass of the network. Compared with problem (1), problem (2)
is constrained. But since the objective function is not nest-
ed, hence much simpler, such an equivalent reformulation
may lead to more flexible optimization methods. Note that
when using SGD to solve problem (1), it actually works on
problem (2) implicitly as the activations {X*}?_, need be
recorded in order to compute the gradient.

Inspired by the quadratic-penalty method, Carreira-
Perpinan and Wang (2014) developed the method of auxiliary
coordinates (MAC) to solve problem (2). MAC uses quadrat-
ic penalties to approximately enforce equality constraints and
tries to solve the following problem:

. n fx i i—1 yri-1y]|2
min (X", L)+= X'—p(W' X , 3
i BT D)+ 51— [ AE)
where 1 > 0 is a constant that controls the weight of the
constraints and || - || is the Frobenius norm. Zeng et al.
(2018) decoupled the nonlinear activations in (2) with new
auxiliary variables:

~min (X" L)
{wir{xi} {v*} @)
s.t. Ui:Wi_lXi_laXi:qs(Ui)a 222737 s 1.

This is called as the 3-splitting formulation. Accordingly,
problem (2) is the 2-splitting formulation. Following the



MAC method, rather than directly solving problem (4), they
optimized the following problem instead:
min (X" L)
Wi {x 34U}
H - i i—1 yi-12 i iy]|2 3)
O (U =W X R4 X - U [).
i=2
They adapted a BCD method to solve the above problem.
Taylor et al. (2016) also considered solving problem (4).
Inspired by ADMM (Lin, Liu, and Su, 2011), they added a
Lagrange multiplier to the output layer, which yields

L min o LU L)
(WX UM

n ﬁ n n—1yn-1[|2
U M)+ U= X ©

n—1
Hi i i—1 i i i
+y ST =W X R+ X =6 (U)7),
i=2
where M is the Lagrange multiplier and 8 > 0 and p; > 0
are constants. Note that the activation function on the out-
put layer is absent. So (6) is only a heuristic adaptation of
ADMM. Zhang, Chen, and Saligrama (2016) adopted a simi-
lar technique but used a different variable splitting scheme:
~min - U(X", L)
{wir{xi}{U} @)
st UT =X Xi=p(WU™), i=2,3,--- ,n.

Despite the nonlinear equality constraints, which ADMM
is not designed to handle, they added a Lagrange multiplier
for each constraint in (7). Then the augmented Lagrangian
problem is as follows:

e min o L(XT L)
{wit{x} {vi} {A"} {B?}
A (e e
=2

T HXi_(z)(WiflUifl)_f_Bifl||i) 7

where A® and B? are the Lagrange multipliers.

Different from naively applying the penalty method and
ADMM, Zhang and Brand (2017) interpreted the ReLLU ac-
tivation function as a simple smooth convex optimization
problem. Namely, the equality constraints in problem (2) us-
ing the ReL U activation function can be rewritten as a convex
minimization problem:

Xi _ QZ/)(WiilXiil)

:maX(Wi_lXi_l, 0) (9)
=argmin | U" — WL X2,
Ui>0

where 0 is a zero matrix with an appropriate size. Based on
this observation, they approximated problem (2) with the
activation function being ReLU in the following way:

n

min (X" L)+

i i i—1 yi—1)2
— | X"—W*'"X
(Wi {x} 2 | I

prs (10)
st XP>0,i=2,3,--- ,n,

where the penalty terms encode both the network structure
and activation function. Unlike MAC and ADMM based
methods, it does not include nonlinear activations. More-
over, the major advantage is that problem (10) is block multi-
convex, i.e., the problem is convex w.r.t. each block of vari-
ables when the remaining blocks are fixed. They developed a
new BCD method to solve it. They also empirically demon-
strated the superiority of the proposed approach over SGD
based solvers in Caffe (Jia et al., 2014) and the ADMM based
method (Zhang, Chen, and Saligrama, 2016). Askari et al.
(2018) inherited the same idea. By introducing a more com-
plex convex minimization problem, they could handle more
general activation functions.

Lifted Proximal Operator Machine

In this section, we describe our basic idea of LPOM and its
advantages over existing DNN training methods.

Reformulation by Proximal Operator

We assume that the activation function ¢ is non-decreasing.
Then ¢~ (z) = {y|z = ¢(y)} is a convex set. ¢~ 1(z) is a
singleton {y} iff ¢ is strictly increasing at ¢(y). We want to
construct an objective function h(z, y), parameterized by y,
such that its minimizer is exactly = ¢(y). Accordingly, we
may replace the constraint = ¢(y) by minimizing h(z,y),
which can be added to the loss of DNNs as a penalty.

Since the proximal operator (Parikh and Boyd, 2014)

prox (y) =argmin ()4 3 (= ), (D)

is commonly used in optimization, we consider using the
proximal operator to construct the optimization problem. De-
fine

f(x)= / S () —y)dy.

Note that f(x) is well defined, if allowed to take value of
+00, even if ¢ ~!(y) is non-unique for some y between 0 and
x. Anyway, ¢!, f, and g (to be defined later) will not be
explicitly used in our computation. It is easy to show that the
optimality condition of (11)is 0 € (¢~ (z) — z) + (z — ).
So the solution to (11) is exactly z = ¢(y).

Note that f(z) is a univariate function. For a matrix
X =(Xk1), we define f(X)=(f(Xx;)). Then the optimality
condition of the following minimization problem:

1 , ,
argminle(XZ)1+§||X1—Wl71X171||%:, (12)
X'i

where 1 is an all-one column vector, is
0co (XY —witxi—t (13)
where ¢~ 1(X?) is also defined element-wise. So the optimal
solution to (12) is
Xi:¢(Wi_1Xi_1), (14)
which is exactly the constraint in problem (2). So we may
approximate problem (2) naively as:

min_ (X", L)
{Wit {X}

- ; 1o o (15)
+ Y (1AL - ).
=2



Table 1: The f(x) and g(x) of several representative activation functions. Note that 0 < a < 1 for the leaky ReLU function and

a>0 for the exponential linear unit (ELU) function. We only use ¢(x) in our computation.

function]| ¢(x) | ¢ 1(x) | f(=) [ 9(x)
. log = logz+(1—2z)lo (l—x)—ﬁ 0<x<l
1 - Tlogx €z g 2 X _z?
sigmoid | 0= 0<z<1) { +00, otherwise log(e® +1)—%
I(d—2z)log(1—x)
ef—e~ " 1 IOg 1# 2 [ 22 eHe” " z?
tanh e (271 <1£ <1) 1+ac g(1+2))]-%, —-1< r<1 log(5—)—%
400, otherwise
z, >0 0, >0 0, z>0
ReLU || max(z,0) { (—=00,0), =0 { 400, otherwise { —%xQ, <0
ezl { z, >0 { x, >0 { 0, >0 0, >0
ReL}[,J ax, ©<0 x/a, <0 %m, <0 %382, <0
ELU T, z>0| |z, >0 , >0 0, , >0
ale—1), z<0| log(1+2%), =<0 a—i—]‘ )(log(£4+1)—1)—%, x<0 a(e’—a)—*5, 2<0
softplus || log(1+e") log(e®—1) N o0 analytic expressmn No analytic expression

n— 1

However, its optimality conditions for {X*}~' are:

OEMi((b—l(Xi)_Wi—lXi—l)
Fpip (W)T WX =X i =2, n — L.
(16)

We can clearly see that the equality constraints (14) in prob-
lem (2) do not satisfy the above!

In order that the equality constraints (14) fulfill the opti-
mality conditions of the approximating problem, which is
necessary if we want to use the simple feed-forward process
to infer new samples, we need to modify (16) as

0 (671 (X~ WX
i (WO (WX =X i =2, n— L
a7
This corresponds to the following problem:
min L)+ w17 f(x
Wiy {x7} ) Z:M < i
=2 (18)

. ) 1 . ) )
+1Tg(W171X171)1+§HX17W271X171 ”%) ,

where .
olz)= / (6(y)—)dy.

g(X) is also defined element-wise for a matrix X . The f(x)’s
and g(x)’s of some representative activation functions are
shown in Table 1. (18) is the formulation of our proposed
LPOM, where we highlight that the introduction of g is non-
trivial and non-obvious.

Advantages of LPOM
Denote the objective function of LPOM in (18) as F'(W, X).
Then we have the following theorem:

Theorem 1 Suppose ((X™, L) is convex in X™ and ¢ is non-
decreasing. Then F (W, X) is block multi-convex, i.e., convex
in each X* and W if all other blocks of variables are fixed.

Proof. F(W, X) can be simplified to

F(W,X) = (X", L +Zuz (1Tf
(19)

_|_1T (W’L 1X’L 1) <X’L WZ lxl 1

where f(z fo y)dy and §(z) = [y #(y)dy. Since
both ¢ and ¢~ ! are non- decreasmg, both f(x) and g(x)
are convex. It is easy to verify that 17g(W=1X~1)1 is
convex in X*~! when W#~! is fixed and convex in Wi~!
when X*~! is fixed. The remaining term (X¢ Wi=1X¢~1)
in F(W, X)) is linear in one block when the other two blocks
are fixed. The proof is completed. (]

Theorem 1 allows for efficient BCD algorithms to solve
LPOM and guarantees that the optimal solutions for updating
X* and W* can be obtained, due to the convexity of sub-
problems. In contrast, the subproblems in the penalty and the
ADMM based methods are all nonconvex.

When compared with ADMM based methods (Taylor et al.,
2016; Zhang, Chen, and Saligrama, 2016), LPOM does not
require Lagrange multipliers and more auxiliary variables
than {X?}" ,. Moreover, we have designed delicate algo-
rithms so that no auxiliary variables are needed either when
solving LPOM (see Section “Solving LPOM”). So LPOM
has much less variables than ADMM based methods and
hence saves memory greatly. Actually, its memory cost is
close to that of SGD as SGD needs to save { X"},

When compared with the penalty methods (Carreira-
Perpinan and Wang, 2014; Zeng et al., 2018), the optimality
conditions of LPOM are simpler. For example the optimality

conditions for {X?}?7' and {W?}!'_}! in LPOM are (17)
and
(WX - X"y (xHT=0, i=1,---,n—1, (20)
while those for MAC are
(Xi—p(W 1)
+(WHT (WX =X F)og/ (WX =0, (2D

=2,---,n—1.



and
(W' X)) =X o/ (W X)(XH)T =0,i=1,--- ,n—1,
(22)

where o denotes the element-wise multiplication. We can see
that the optimality conditions for MAC have extra ¢/ (W X?),
which is nonlinear. The optimality conditions for Zeng et al.
(2018) can be found in Supplementary Materials. They also
have an extra ¢’ (U*). This may imply that the solution sets
of MAC and (Zeng et al., 2018) are more complex and also
“larger” than that of LPOM. So it may be easier to find good
solutions of LPOM.

When compared with the convex optimization reformula-
tion methods (Zhang and Brand, 2017; Askari et al., 2018),
LPOM can handle much more general activation functions.
Note that Zhang and Brand (2017) only considered ReL.U.
Although Askari et al. (2018) claimed that their formulation
can handle general activation functions, its solution method
was still restricted to ReLU. Moreover, Askari et al. (2018) do
not have a correct reformulation as its optimality conditions
for {X?}'-} and {W}I ! are

0 €p (6 (X = WX ) — gy (W T XL,
1=2,---,n—1,

and
XHHXHT=0,i=1,--- ,n—1,

respectively. It is clear that the equality constraints (14) do
not satisfy the above. Moreover, somehow Askari et al. (2018)
further added extra constraints X* > 0, no matter what the
activation function is. So their reformulation cannot approxi-
mate the original DNN (2) well. This may explain why Askari
et al. (2018) could not obtain good results. Actually, they can
only provide good initialization for SGD.

When compared with gradient based methods, such as
SGD, LPOM can work with any non-decreasing Lipschitz
continuous activation function without numerical difficul-
ties, including being saturating (e.g., sigmoid and tanh) and
non-differentiable (e.g., ReLU and leaky ReLU) and could
update the layer-wise weights and activations in parallel in
an asynchronous way (see next section)?. In contrast, gra-
dient based methods can only work with limited activation
functions, such as ReLU, leaky ReLU, and softplus, in order
to avoid the gradient vanishing or blow-up issues, and they
cannot be parallelized when computing the gradient and the
activations. Moreover, gradient based methods require much
parameter tuning, which is difficult (Le et al., 2011), while
the tuning of penalties 1;’s in LPOM is much simpler.

Solving LPOM

Thanks to the block multi-convexity (Theorem 1), LPOM can
be solved by BCD. Namely, we update X or W* by fixing all
other blocks of variables. The optimization can be performed
using a mini-batch of training samples, as summarized in
Algorithm 1. Below we give more details.

But our current implementation is still serial.

Algorithm 1: Solving LPOM

Input: training dataset, batch size m, iteration no.s S and
K;.
for s =1to S do
Randomly choose m, training samples X' and L.
Solve {X"}7.} by iterating Eq. (25) for K, times (or
until convergence).
Solve X™ by iterating Eq. (28) for K times.
Solve {W?}"~ ! by applying Algorithm 2 to (30).
end for
Output: {W*}I- 1.

Updating { X*}7

We first introduce the serial method for updating {X*}7-,.
We update {X*} , from i = 2 to n successively, just like
the feed-forward process of DNNs. For i = 2,--- ,n — 1,
with {IWW?}?' and other {X7 o j»i fixed, problem (18)
reduces to

. 1 . .
min s (17 £+ - )

(23)
o 1, . o
s (1TgV XTI W ).
The optimality condition is:
0c ; —1 Xz _Wi—lXi—l
a6 (X) ) o

+ pipr (WHT (WP XY= X)),

Based on fixed-point iteration (Kreyszig, 1978) and in order
to avoid using ¢!, we may update X? by iterating

Xi,t+1 :¢ (WilXil o %(Wz)T((b(WZXZ,t) XZ—H))
(25)

until convergence, where the superscript ¢ is the iteration
number. The convergence analysis is as follows?:

Theorem 2 Suppose that ¢ is differentiable and |¢' (z)| <
v. If p < 1, then the iteration is convergen-
t and the convergent rate is linear, where p =
By VIO TV T -

Hei

In the above, |A| is a matrix whose entries are the absolute

values of A, || - ||; and || - ||oo are the matrix 1-norm (largest

absolute column sum) and the matrix co-norm (largest abso-

lute row sum), respectively. Note that the choice of p in the

above theorem is quite conservative. So in our experiments,

we do not obey the choice as long as the iteration converges.
When considering X™, problem (18) reduces to

; 1
i 00, £ (17 FOL X7 ).
(26)

3The proofs of theorems can be found in Supplementary Materi-
als.



Assume that the loss function is differentiable w.r.t. X™. The
optimality condition is:

dU(X", L)

—1

Also by fixed-point iteration, we may update X" by iterating
i@ﬁ(X”?t, L)) (28)

n  OX7™

until convergence. The convergence analysis is as follows:

Theorem 3 Suppose that ¢(x) is differentiable and

|¢' (z)| <~ and H ‘ (%) ‘ ) <n. If T <1, then the iter-

ation is convergent and the convergent rate is linear, where

n)_W'rL—an—l). (27)

Xn,t—&-l :d) (Wn—lxn—l _

7=
fin
If ¢(X™, L) is the least-square error, i.e., (X", L) =3 || X"~
2 9%0(X,L) . .
L|%, then ||| sx 5% - =1. So we obtain p,, >".
10Apq 1

The above serial update procedure can be easily changed
to asynchronously parallel update: each X" is updated using
the latest information of other X7’s, j # i.4

. Yy n—1
Updating {W"*}!'~

{Wi}7-! can be updated with full parallelization. When
{X %}, are fixed, problem (18) reduces to
R
min 17 g (W X)L g WX X i = 1, e,
(29)

which can be solved in parallel. (29) can be rewritten as

min 17 (W X" 1 —(X" T WiX?), (30)
Wi

where g(x fo y)dy, as introduced before. Suppose that
o(x) is B- LlpSChltZ continuous, which is true for almost all
activation functions in use. Then §(x) is S-smooth:

19" (x) =3 (y)|=o(x)—d(y)| < Blz—yl.  (31)

Problem (30) could be solved by APG (Beck and Teboulle,
2009) by locally linearizing (W) = g(W X'). However, the
Lipschitz constant of the gradient of §(W), which is 3|/ X |3,
can be very large, hence the convergence can be slow. Below
we propose a variant of APG that is tailored for solving (30)
much more efficiently.

Consider the following problem:

ngn F(z)=p(Az) + h(x), (32)

where both ¢(y) and h(z) are convex. Moreover, ¢(y) is L,-
smooth: ||V (2)—=Ve(y)|| < Ly||lz—y||, Vo, y. We assume
that the following problem

Ay 2 | Alwe) ()
(33)

Tr+1 =argmin{Ve(Ayy),

“The convergence can be proven when the objective function is

. . O\ i ; 0
augmented with a proximal term 5 | X% — X%9)|%, where X*? is

chosen as the last update of X*. As the implementation and analysis
of asynchronously parallel update deserve an independent paper, we
choose not to squeeze them in this paper.

Algorithm 2: Solving (32).
Input: x(, z1, 0p=0, k = 1, iteration no. K.
for k =1to K> do
Compute 0y, via 1 —0, =+/0;(1—605_1).
Compute yy, via y =0z — 0k (Ok—12K—1— k).
Update x4 via (33).
end for
Output: xj.

is easy to solve for any given y. We propose Algorithm 2
to solve (32), which naturally comes from the proof of its
convergence theorem:

Theorem 4 If we use Algorithm 2 to solve problem (32),
then the convergence rate is at least O(k™2):

Fon-Fa W bl < g (Flo) - Fa')+ 2 1 P)

where zp, = A0k _125—1— 2+ (1—0k_1)x
optimal solution to problem (32).

*| and z* is any

Problem (30) is an instantiation of (32). Accordingly, the
instantiation of subproblem (33) is as follows:

WHH = argmin (¢(Y*' X"), (W -Y"") X")
w

8 T <
+S IV =Y X = (X WX,
It is a least-square problem and the solution is:
. 1 S . .
W’L,t+1 :Yl’t—7(¢(YZ’tX1)—X1+1)(Xl)T7 (35)

B

where (X?)' is the pseudo-inverse of X* and Y plays the
role of y;, in Algorithm 2.

Experiments

We evaluate LPOM by comparing with SGD and two non-
gradient based methods (Askari et al., 2018; Taylor et al.,
2016). The other non-gradient based methods do not train
fully connected feed-forward neural networks for classifica-
tion tasks (e.g., using skip connections (Zhang and Brand,
2017), training autoencoders (Carreira-Perpinan and Wang,
2014), and learning for hashing (Zhang, Chen, and Saligra-
ma, 2016)). So we cannot include them for comparison. For
simplicity, we utilize the least-square loss function and the
ReLU activation function unless specified otherwise. Unlike
(Askari et al., 2018), we do not use any regularization on the
weights {Wz}f ~'. We run LPOM and SGD with the same
inputs and random initializations (Glorot and Bengio, 2010).
We implement LPOM with MATLAB without optimizing the
code. We use the SGD based solver in Caffe (Jia et al., 2014).
For the Caffe solver, we modify the demo code and care-
fully tune the parameters to achieve the best performances.
For (Askari et al., 2018), we quote their results. For (Taylor
et al., 2016), we read the results from Fig.1 (b) of the paper.
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Figure 1: Comparison of LPOM and SGD on the MNIST and the CIFAR-10 datasets.

Table 2: Comparison of accuracies of LPOM and (Askari et al., 2018) on the MNIST dataset

Table 3: Comparison with SGD and
(Taylor et al., 2016) on the SVHD

using different networks. dataset.
Hidden Tayers || 300 | 300-100 | 500-150 | 500-200-100 | 400-200-100-50 SGD 95.0%
(Askari etal., 2018) [ 89.8% | 87.5% | 86.5% 85.3% 77.0% (Taylor et al., 2016) || 96.5%
LPOM 97.7% | 96.9% | 97.1% 96.2% 96.1% LPOM 98.3%
Comparison with SGD networks. We do not use pre-processing or data augmentation.

We conduct experiments on two datasets, i.e., MNIST 5 and
CIFAR-10 (Krizhevsky and Hinton, 2009). For the MNIST
dataset, we use 28 x 28 = 784 raw pixels as the inputs. It in-
cludes 60,000 training images and 10,000 test images. We do
not use pre-processing or data augmentation. For LPOM and
SGD, in each epoch the entire training samples are passed
through once. The performance depends the choice of net-
work architecture. Following (Zeng et al., 2018), we imple-
ment a 784-2048-2048-2048-10 feed-forward neural network.
For LPOM, we simply set y; =20 in (18). We run LPOM and
SGD for 100 epochs with a fixed batch size 100. The training
and test accuracies are shown in Fig. 1 (a) and (b). We can
see that the training accuracies of the two methods are both
approximately equal to 100%. However, the test accuracy of
LPOM is slightly better than that of SGD (98.2% vs. 98.0%).

For the CIFAR-10 dataset, as in (Zeng et al., 2018) we
implement a 3072-4000-1000-4000-10 feed-forward neural
network. We normalize color images by subtracting the train-
ing dataset’s means of the red, green, and blue channels,
respectively. We do not use pre-processing or data augmen-
tation. For LPOM, we set p; =100 in (18). We run LPOM
and SGD for 100 epochs with a fixed batch size 100. The
training and test accuracies are shown in Fig. 1 (c) and (d).
We can see that the training accuracies of SGD and LPOM
are approximately equal to 100%. However, the test accuracy
of LPOM is better than that of SGD (52.5% vs. 47.5%).

Comparison with Other Non-gradient Based
Methods

We compare against (Askari et al., 2018) with identical ar-
chitectures on the MNIST dataset. Askari et al. (2018) only
use the ReL.U activation function in real computation. As
in (Askari et al., 2018), we run LPOM for 17 epochs with a
fixed batch size 100. For LPOM, we set p; = 20 for all the

‘http://yann.lecun.com/exdb/mnist/

The test accuracies of the two methods are shown in Table 2.
We can see that LPOM with the ReLLU activation function
performs better than (Askari et al., 2018) with significant gap-
s. This complies with our analysis in Subsection “Advantages
of LPOM”.

Following the settings of dataset and network architecture
in (Taylor et al., 2016), we test LPOM on the Street View
House Numbers (SVHN) dataset (Netzer et al., 2011). For
LPOM, we set p; =20 in (18). The test accuracies of SGD,
(Taylor et al., 2016), and LPOM are shown in Table 3. We can
see that LPOM outperforms SGD and (Taylor et al., 2016).
This further verifies the advantage of LPOM.

Conclusions

In this work we have proposed LPOM to train fully connected
feed-forward neural networks. Using the proximal operator,
LPOM transforms the neural network into a new block multi-
convex model. The transformation works for general non-
decreasing Lipschitz continuous activation functions. We
apply the block coordinate descent algorithm to solve LPOM,
where each subproblem has convergence guarantee. LPOM
does not require more auxiliary variables than the layer-wise
activations and its penalties are relatively easy to tune. It
could also be solved in parallel in an asynchronous way.
Our experimental results show that LPOM works better than
SGD, (Askari et al., 2018), and (Taylor et al., 2016) on fully
connected neural networks. Future work includes extending
LPOM to train convolutional and recurrent neural networks
and applying LPOM to network quantization.
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