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Abstract

Subspace clustering methods based on data self-

expression have become very popular for learning from

data that lie in a union of low-dimensional linear sub-

spaces. However, the applicability of subspace clustering

has been limited because practical visual data in raw for-

m do not necessarily lie in such linear subspaces. On the

other hand, while Convolutional Neural Network (ConvNet)

has been demonstrated to be a powerful tool for extract-

ing discriminative features from visual data, training such

a ConvNet usually requires a large amount of labeled data,

which are unavailable in subspace clustering application-

s. To achieve simultaneous feature learning and subspace

clustering, we propose an end-to-end trainable framework,

called Self-Supervised Convolutional Subspace Clustering

Network (S2ConvSCN), that combines a ConvNet module

(for feature learning), a self-expression module (for sub-

space clustering) and a spectral clustering module (for self-

supervision) into a joint optimization framework. Particu-

larly, we introduce a dual self-supervision that exploits the

output of spectral clustering to supervise the training of the

feature learning module (via a classification loss) and the

self-expression module (via a spectral clustering loss). Our

experiments on four benchmark datasets show the effective-

ness of the dual self-supervision and demonstrate superior

performance of our proposed approach.

1. Introduction

In many real-world applications such as image and video

processing, we need to deal with a large amount of high-

dimensional data. Such data can often be well approxi-

mated by a union of multiple low-dimensional subspaces,

where each subspace corresponds to a class or a category.

For example, the frontal facial images of a subject taken un-

der varying lighting conditions approximately span a linear

subspace of dimension up to nine [11]; the trajectories of

feature points related to a rigidly moving object in a video

sequence span an affine subspace of dimension up to three

[41]; the set of handwritten digit images of a single digit al-

so approximately span a low-dimensional subspace [8]. In

such cases, it is important to segment the data into multi-

ple groups where each group contains data points from the

same subspace. This problem is known as subspace cluster-

ing [42, 45], which we formally define as follows.

Problem (Subspace Clustering). Let X ∈ IRD×N be

a real-valued matrix whose columns are drawn from a u-

nion of n subspaces of IRD,
∪n

i=1{Si}, of dimensions

di ≪ min{D,N}, for i = 1, . . . , n. The goal of subspace

clustering is to segment the columns of X into their corre-

sponding subspaces.

In the past decade, subspace clustering has become an

important topic in unsupervised learning and many sub-

space clustering algorithms have been developed [2, 23, 4,

27, 22, 26, 5, 17, 37, 53, 51, 18]. These methods have been

successfully applied to various applications such as motion

segmentation [44, 40], face image clustering [3], genes ex-

pression microarray clustering [28, 20] and so on.

Despite the great success in the recent development of

subspace clustering, its applicability to real applications is

very limited because practical data do not necessarily con-

form with the linear subspace model. In face image cluster-

ing, for example, practical face images are often not aligned

and often contain variations in pose and expression of the

subject. Subspace clustering cannot handle such cases as

images corresponding to the same face no longer lie in lin-

ear subspaces. While there are recently developed tech-

niques for joint image alignment and subspace clustering

[21], such a parameterized model is incapable of handling a

broader range of data variations such as deformation, trans-

lation and so on. It is also possible to use manually de-

signed invariance features such as SIFT [25], HOG [1] and

PRICoLBP [38] of the images before performing subspace

clustering, e.g., in [36, 35]. However, there has been neither

theoretical nor practical evidence to show that such features

follow the linear subspace model.
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Recently, Convolutional Neural Networks (ConvNets)

have demonstrated superior ability in learning useful image

representations in a wide range of tasks such as face/object

classification and detection [15, 31]. In particular, it is

shown in [16] that when applied to images of different class-

es, ConvNets are able to learn features that lie in a union of

linear subspaces. The challenge for training such a Con-

vNet, however, is that it requires a large number of labeled

training images which is often unavailable in practical ap-

plications.

In order to train ConvNet for feature learning without

labeled data, many methods have been recently proposed

by exploiting the self-expression of data in a union of sub-

spaces [36, 14, 35, 54]. Specifically, these methods super-

vise the training of ConvNet by inducing the learned fea-

tures to be such that each feature vector can be expressed as

a linear combination of the other feature vectors. However,

it is difficult to learn good feature representations in such an

approach due to the lack of effective supervision.

Paper contribution. In this paper, we develop an end-

to-end trainable framework for simultaneous feature learn-

ing and subspace clustering, called Self-Supervised Con-

volutional Subspace Clustering Network (S2ConvSCN). In

this framework, we use the current clustering results to

self-supervise the training of feature learning and self-

expression modules, which is able to significantly improve

the subspace clustering performance. In particular, we in-

troduce the following two self-supervision modules:

1. We introduce a spectral clustering module which

uses the current clustering results to supervise the

learning of the self-expression coefficients. This is

achieved by inducing the affinity generated from the

self-expression to form a segmentation of the data that

aligns with the current class labels generated from clus-

tering.

2. We introduce a classification module which uses the

current clustering results to supervise the training of

feature learning. This is achieved by minimizing the

classification loss between the output of a classifier

trained on top of the feature learning module and the

current class labels generated from clustering.

We propose a training framework where the feature repre-

sentation, the data self-expression and the data segmenta-

tion are jointly learned and alternately refined in the learn-

ing procedure. Conceptually, the initial clustering results

do not align exactly with the true data segmentation, there-

fore the initial self-supervision incurs errors to the training.

Nonetheless, the feature learning is still expected to ben-

efit from such self-supervision as there are data with cor-

rect labels that produce useful information. An improved

feature representation subsequently helps to learn a better

self-expression and consequently produce a better data seg-

mentation (i.e., with less wrong labels). Our experiments on

four benchmark datasets demonstrate superior performance

of the proposed approach.

2. Related Work

In this section, we review the relevant prior work in sub-

space clustering. For clarity, we group them into two cate-

gories: a) subspace clustering in original space; and b) sub-

space clustering in feature space.

2.1. Subspace Clustering in Original Space

In the past years, subspace clustering has received a lot of

attention and many methods have been developed. Among

them, methods based on spectral clustering are the most

popular, e.g., [2, 23, 4, 27, 3, 22, 26, 5, 17, 37, 51, 53, 18,

50]. These methods divide the task of subspace clustering

into two subproblems. The first subproblem is to learn a da-

ta affinity matrix from the original data, and the second sub-

problem is to apply spectral clustering on the affinity matrix

to find the segmentation of the data. The two subproblems

are solved successively in one-pass [2, 23, 4, 27, 26, 51] or

solved alternately in multi-pass [5, 17, 7, 53, 18].

Finding an informative affinity matrix is the most crucial

step. Typical methods to find an informative affinity matrix

are based on the self-expression property of data [2, 45],

which states that a data point in a union of subspaces can be

expressed as a linear combination1 of other data points, i.e.,

xj =
∑

i ̸=j cijxi + ej , where ej is used to model the noise

or corruption in data. It is expected that the linear combi-

nation of data point xj uses the data points that belong to

the same subspace as xj . To achieve this objective, differ-

ent types of regularization terms on the linear combination

coefficients are used. For example, in [2] the ℓ1 norm is

used to find sparse linear combination; in [23] the nuclear

norm of the coefficients matrix is used to find low-rank rep-

resentation; in [46, 51] the mixture of the ℓ1 norm and the ℓ2
norm or the nuclear norm is used to balance the sparsity and

the denseness of the linear combination coefficients; and in

[48] a data-dependent sparsity-inducing regularizer is used

to find sparse linear combination. On the other hand, differ-

ent ways to model the noise or corruptions in data have also

been investigated, e.g., the vector ℓ1 norm is used in [2], the

ℓ2,1 norm is adopted in [23], and the correntropy term is

used in [9].

2.2. Subspace Clustering in Feature Space

For subspace clustering in feature space, we further di-

vide the existing methods into two types. The first type uses

latent feature space, which is induced via a Mercer kernel,

1If data points lie in a union of affine subspaces [19], then the linear

combination will be modified to affine combination.
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Figure 1. Architecture of the proposed Self-Supervised Convolutional Subspace Clustering Network (S2ConvSCN). It consists of mainly

five modules: a) stacked convolutional encoder module, which is used to extract convolutional features; b) stacked convolutional decoder

module, which is used with the encoder module to initialize the convolutional module; c) self-expression module, which is used to learn

the self-expressive coefficient matrix and also takes the self-supervision information from the result of spectral clustering to refine the

self-expressive coefficients matrix; d) FC-layers based self-supervision module, which builds a self-supervision path back to the stacked

convolutional encoder module; e) spectral clustering module, which provides self-supervision information to guide the self-expressive

model and FC-layers module. The modules with solid line box are the backbone components; whereas the modules in dashed box are the

auxiliary components to facilitate the training of the whole network.

e.g., [34, 32, 49, 47], or constructed via matrix decomposi-

tion, e.g., [24], [33]. The second type use explicit feature

space, which is designed by manual feature extraction, e.g.,

[36], or is learned from data, e.g., [14, 54].

Latent Feature Space. Many recent works have em-

ployed the kernel trick to map the original data into a high-

dimensional latent feature space, in which subspace cluster-

ing is performed, e.g., [34, 32, 49, 47]. For example, pre-

defined polynomial and Gaussian kernels are used in the k-

ernel sparse subspace clustering method [34, 32] and the

kernel low-rank representation method [49, 47, 12]. Un-

fortunately, it is not guaranteed that the data in the latent

feature space induced with such predefined kernels lie in

low-dimensional subspaces.2

On the other hand, the latent feature space has also been

constructed via matrix decomposition, e.g., [24], [33]. In

[24], a linear transform matrix and a low-rank representa-

tion are computed simultaneously; in [33], a linear transfor-

m and a sparse representation are optimized jointly. Howev-

er, the representation power of the learned linear transform

is still limited.

2In [12], while the data matrix in the latent feature space is encouraged

to be low-rank, it is not necessary that the data in feature space are encour-

aged to align with a union of linear subspaces.

Explicit Feature Space. Deep learning has gained a lot

of research interests due to its powerful ability to learn hi-

erarchical features in an end-to-end trainable way [10, 15].

Recently, there are a few works that use techniques in deep

learning for feature extraction in subspace clustering. For

example, in [36, 35], a fully connected deep auto-encoder

network with hand-crafted features (e.g., SIFT or HOG

features) combined with a sparse self-expression model is

developed; in [14], a stacked convolutional auto-encoder

network with a plus-in self-expression model is proposed.

While promising clustering accuracy has been reported,

these methods are still suboptimal because neither the po-

tentially useful supervision information from the clustering

result has been taken into the feature learning step nor a join-

t optimization framework for fully combining feature learn-

ing and subspace clustering has been developed. More re-

cently, in [54], a deep adversarial network with a subspace-

specific generator and a subspace-specific discriminator is

adopted in the framework of [14] for subspace clustering.

However, the discriminator need to use the dimension of

each subspace, which is usually unknown.

In this paper, we attempt to develop a joint optimization

framework for combining feature learning and subspace

clustering, such that the useful self-supervision information
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from subspace clustering result could be used to guide the

feature learning and to refine the self-expression model. In-

spired by the success of Convolutional Neural Networks in

recent years for classification tasks on images and videos

datasets [15] and the recent work [14], we integrate the con-

volutional feature extraction module into subspace cluster-

ing to form an end-to-end trainable joint optimization frame-

work, called Self-Supervised Convolutional Subspace Clus-

tering Network (S2ConvSCN). In S2ConvSCN, both the s-

tacked convolutional layers based feature extraction and the

self-expression based affinity learning are effectively self-

supervised by exploiting the feedback from spectral cluster-

ing.

3. Our Proposal: Self-Supervised Convolution-

al Subspace Clustering Network

In this section, we present our S2ConvSCN for joint fea-

ture learning and subspace clustering. We start with intro-

ducing our network formulation (see Fig. 1), then introduce

the self-supervision modules. Finally, we present an effec-

tive procedure for training the proposed network.

3.1. Network Formulation

As aforementioned, our network is composed of a fea-

ture extraction module, a self-expression module and self-

supervision modules for training the former two modules.

Feature Extraction Module. A basic component of our

proposed S2ConvSCN is the feature extraction module,

which is used to extract features from raw data that are a-

menable to subspace clustering. To extract localized fea-

tures while preserving spatial locality, we adopt the con-

volutional neural network which is comprised of multiple

convolutional layers. We denote the input to the network

as h(0) = x where x is the image. A convolutional lay-

er ℓ contains a set of filters w
(ℓ)
i and the associated bias-

es b
(ℓ)
i , i = 1, · · · ,m(ℓ), and produces m(ℓ) feature maps

from the output of the previous layer. The feature maps

{h
(L)
i }i=1,··· ,m(L) in the top layer L of the network are then

used to form a representation of the input data x. Specifi-

cally, the m(L) feature maps {h
(L)
i }m

(L)

i=1 are vectorized and

concatenated to form a representation vector z, i.e.,

z =
[

h
(L)
1 (:), · · · , h

(L)

m(L)(:)
]⊤

, (1)

where h
(L)
1 (:), · · · , h

(L)

m(L)(:) are row vectors denoting the

vectorization of the feature maps h
(L)
1 , · · · , h

(L)

m(L) . These

vectors are horizontally concatenated and then transposed

to form the vector z.

To ensure that the learned representation z contains

meaningful information from the input data x, the feature

maps h
(L)
1 , · · · , h

(L)

m(L) are fed into a decoder network to re-

construct an image x̂. The loss function for this encoder-

decoder network is the reconstruction error:

L0 =
1

2N

N
∑

j=1

∥xj − x̂j∥
2
2 =

1

2N
∥X − X̂∥2F , (2)

where N is the number of images in the training set.

Self-Expression Module. State-of-the-art subspace cluster-

ing methods are based on the self-expression property of

data, which states that each data point in a union of sub-

spaces can be expressed as a linear combination of other

data points [2, 45]. In order to learn feature representation-

s that are suitable for subspace clustering, we adopt a self-

expression module that imposes the following loss function:

λ∥C∥ℓ +
1

2
∥Z − ZC∥2F s.t. diag(C) = 0, (3)

where Z =
[

z1, · · · , zN
]

is a matrix containing features

from the feature extraction module as its columns, ∥C∥ℓ
is a properly chosen regularization term, the constraint

diag(C) = 0 is optionally used to rule out a trivial solution

of C = I , and λ > 0 is a tradeoff parameter.

Self-Supervision Modules. Once the self-expression coef-

ficient matrix C is obtained, we can compute a data affinity

matrix as A = 1
2 (|C|+ |C⊤|). Subsequently, spectral clus-

tering can be applied on A to obtain a segmentation of the

data by minimizing the following cost:

min
Q

∑

i,j

aij∥qi − qj∥
2
2, s.t. Q ∈ Q, (4)

where Q = {Q ∈ {0, 1}n×N : 1⊤Q = 1⊤ and rank(Q) =
n} is a set of all valid segmentation matrices with n groups,

and qi and qj are respectively the i-th and j-th columns

of Q indicating the membership of each data point to the

assigned cluster. In practice, since the search over all Q ∈
Q is combinatorial, spectral clustering techniques usually

relax the constraint Q ∈ Q to QQ⊤ = I .

Observe that the spectral clustering produces a labeling

of the data set which, albeit is not necessarily the correct

class label for all the data points, contains meaningful infor-

mation about the data. This motivates us to supervise the

training of the feature extraction and self-expression mod-

ules using the output of spectral clustering. In principle, the

features learned from the feature extraction module should

contain enough information for predicting the class labels of

the data points. Therefore, we introduce a classification lay-

er on top of the feature extraction module which is expect-

ed to produce labels that aligns with the labels generated

in spectral clustering. Furthermore, the segmentation pro-

duced by spectral clustering can also be used to construct a

binary segmentation matrix, which contains information re-

garding which data points should be used in the expression
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of a particular data point. Therefore, we incorporate the ob-

jective function of spectral clustering as a loss function in

our network formulation, which has the effect of supervis-

ing the training of the self-expression module. We present

the details of these two self-supervision modules in the fol-

lowing two subsections.

3.2. SelfSupervision for SelfExpression

To exploit the information in the labels produced by spec-

tral clustering, we incorporate spectral clustering as a mod-

ule of the network which provides a feedback to the self-

expression model (see Fig. 1).

To see how the objective function of spectral clustering

in (4) provides such feedback, we rewrite (4) to a weighted

ℓ1 norm of C as in [17], that is,

1

2

∑

i,j

aij∥qi − qj∥
2
2 =

∑

i,j

|cij |
∥qi − qj∥

2
2

2
:= ∥C∥Q, (5)

where we have used the fact that aij = 1
2 (|cij | + |cji|). It

can be seen from (5) that ∥C∥Q measures the discrepancy

between the coefficients matrix C and the segmentation ma-

trix Q. When Q is provided, minimizing the cost ∥C∥Q has

the effect of enforcing the self-expression matrix C to be

such that an entry cij is nonzero only if the i-th and j-th

data points have the same class labels. Therefore, incorpo-

rating the term ∥C∥Q in the network formulation helps the

training of the self-expression module. That is, the result

of previous spectral clustering can be incorporated into the

self-expression model to provide self-supervision for refin-

ing the self-expression matrix C.

3.3. SelfSupervision for Feature Learning

We also use the class labels generated from spectral clus-

tering to supervise the training of the feature extraction mod-

ule. Notice that the output of spectral clustering is an n-

dimensional vector which indicates the membership to n

subspaces (i.e., clusters). Thus, we design FC layers as

p×N1×N2×n, where p is the dimension of the extracted

convolutional feature, which is defined as the concatenation

of the different feature maps of the last convolutional layer

in the encoder block, and N1 and N2 are the numbers of

neurons in the two FC layers, respectively.

Denote y as the n-dimensional output of the FC layers,

where y ∈ IRn. Note that the output {qj}
N
j=1 of spectral

clustering will be treated as the target output of the FC lay-

ers. To exploit the self-supervision information to train the

convolutional encoder, we define a mixture of cross-entropy

loss and center loss (CEC) as follows:

L4 =
1

N

N
∑

j=1

(ln(1 + e−ỹ⊤j qj ) + τ∥yj − µπ(yj)
∥22), (6)

where ỹj is a normalization of yj via softmax, µπ(yj)
denotes

the cluster center which corresponds to yj , π(yj) is to take

the index of yj from the output of spectral clustering, and

0 ≤ τ ≤ 1 is a tradeoff parameter. The first term of L4 is

effectively a cross-entropy loss and the second term of L4 is

a center loss which compresses the intra-cluster variations.

An important issue in defining such a loss function is that

the output of spectral clustering {qj}
N
j=1 provides merely

pseudo labels for the input data. That is, the label index as-

signed to a cluster in the returned result of spectral cluster-

ing is up to an unknown permutation. Therefore, the class la-

bels from two successive epochs might not be consistent. To

address this issue, we propose to perform a permutation of

the new pseudo labels via Hungarian algorithm [29] to find

an optimal assignment between the pseudo labels of succes-

sive iterations before feeding them into the self-supervision

module with the cross-entropy loss in (6).

Remark 1. Note that the output of spectral clustering is

used in two interrelated self-supervision modules and thus

we call it a dual self-supervision mechanism.3

3.4. Training S2ConvSCN

To obtain an end-to-end trainable framework, we design

the total cost function of S2ConvSCN by putting together

the costs in (2), (3), (5), and (6) as follows:

L = L0 + γ1L1 + γ2L2 + γ3L3 + γ4L4, (7)

where L1 = ∥C∥ℓ, L2 = 1
2∥Z − ZC∥2F , L3 = ∥C∥Q, and

γ1, γ2, γ3 and γ4 are four tradeoff parameters. The tradeoff

parameters are set roughly to be inversely proportional to

the value of each cost in order to obtain a balance amongst

them.

To train S2ConvSCN, we propose a two-stage strategy

as follows: a) pre-train the stacked convolutional layers to

provide an initialization of S2ConvSCN; b) train the whole

network with the assistance of the self-supervision informa-

tion provided by spectral clustering.

Stage I: Pre-Training Stacked Convolutional Module.

The pre-training stage uses the cost L0. In this stage, we

set the weights in the two FC layers as zeros, which yield

zeros output. Meanwhile, we also set the output of spectral

clustering as zero vectors, i.e., qj = 0 for j = 1, · · · , N .

By doing so, the two FC layers are “sleeping” during this

pre-training stage. Moreover, we set the coefficient ma-

trix C as an identity matrix, which is equivalent to training

S2ConvSCN without the self-expression layer. As an op-

tional pre-training, we can also use the pre-trained stacked

3 While it is also sensible to term our approach with “self-training”,

we prefer to use the term “self-supervision” in order to emphasizes on

the mechanism of guiding the training of the whole framework, that is

to make each component as consistent as possible (i.e., be separable, self-

expressive, and block diagonal).
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Algorithm 1 Procedure for training S2ConvSCN

Require: Input data, tradeoff parameters,

maximum iteration Tmax, T0, and t=1.

1: Pre-train the stacked convolutional

module via stacked CAE.

2: (Optional) Pre-train the stacked

convolutional module with the

self-expressive layer.

3: Initialize the FC layers.

4: Run self-expressive layer.

5: Run spectral clustering layer to get the

segmentation Q.

6: while t ≤ Tmax do

7: Fixed Q, update the other parts T0

epoches.

8: Run spectral clustering once to update

Q and set t ← t+1.

9: end while

Ensure: trained S
2
ConvSCN and Q.

Extended Yale B ORL

Layers kernel size channels kernel size channels

encoder-1 5× 5 10 3× 3 3

encoder-2 3× 3 20 3× 3 3

encoder-3 3× 3 30 3× 3 5

decoder-1 3× 3 30 3× 3 5

decoder-2 3× 3 20 3× 3 3

decoder-3 5× 5 10 3× 3 3

Table 1. Network settings for Extended Yale B and ORL.

CAE to train the stacked CAE with the self-expression lay-

er.

Stage II: Training the Whole S2ConvSCN. In this stage,

we use the total cost L to train the whole S2ConvSCN as a

stacked CAE assisted with the self-expression module and

dual self-supervision. To be more specific, given the spec-

tral clustering result Q, we update the other parameters in

S2ConvSCN for T0 epoches, and then perform spectral clus-

tering to update Q. For clarity, we provide the detailed pro-

cedure to train S2ConvSCN in Algorithm 1.

Remark 2. In the total cost function as (7), if we set

γ3 = γ4 = 0, then the two self-supervision blocks will dis-

appear and our S2ConvSCN reduces to DSCNet [14]. Thus,

it would be interesting to add an extra pre-training stage,

i.e., using the cost function L0 + γ1L1 + γ2L2 to train the

stacked convolutional module and the self-expressive lay-

er together before evoking the FC layers and the spectral

clustering layer. This is effectively a DSCNet [14]. In ex-

periments, as used in [14], we stop the training by setting a

maximum number of epoches Tmax.

4. Experimental Evaluations

To evaluate the performance of our proposed

S2ConvSCN, we conduct experiments on four bench-

mark data sets: two face image data sets, the Extended

Yale B [6] and ORL [39], and two object image data sets,

COIL20 and COIL100 [30]. We compare our proposed

S2ConvSCN with the following baseline algorithms,

including Low Rank Representation (LRR) [23], Low

Rank Subspace Clustering (LRSC) [43], Sparse Subspace

Clustering (SSC) [3], Kernel Sparse Subspace Cluster-

ing (KSSC) [34], SSC by Orthogonal Matching Pursuit

(SSC-OMP) [52], Efficient Dense Subspace Clustering

(EDSC) [13], Structured SSC (S3C) [18], SSC with the

pre-trained convolutional auto-encoder features (AE+SSC),

EDSC with the pre-trained convolutional auto-encoder

features (AE+EDSC), Deep Subspace Clustering Networks

(DSCNet) [14] and Deep Adversarial Subspace Clustering

(DASC) [54]. For EDSC, AE+EDSC, DSCNet and DASC,

we directly cite the best results reported in [14] and [54].

For S3C, we use soft S3C with a fixed parameter α = 1.

The architecture specification of S2ConvSCN used in our

experiments for each dataset are listed in Table 1 and Ta-

ble 4. In the stacked convolutional layers, we set the kernel

stride as 2 in both horizontal and vertical directions, and use

Rectified Linear Unit (ReLU) [15] as the activation function

σ(·). In addition, the learning rate is set to 1.0 × 10−3 in

all our experiments. The whole data set is used as one batch

input. For the FC layers, we set N1 = N
2 and N2 = n.

To find informative affinity matrix, we adopt the vector

ℓ1 norm and the vector ℓ2 norm to define ∥C∥ℓ and denote

as S2ConvSCN-ℓ1 and S2ConvSCN-ℓ2, respectively. In the

second training stage, we update the stacked convolutional

layers, the self-expression model, and the FC layers for T0

epochs and then update the spectral clustering module once,

where T0 is set to 5 ∼ 16 in our experiments.

4.1. Experiments on Extended Yale B

The Extended Yale B database [6] consists of face im-

ages of 38 subjects, 2432 images in total, with approxi-

mately 64 frontal face images per subject taken under d-

ifferent illumination conditions, where the face images of

each subject correspond to a low-dimensional subspace. In

our experiments, we follow the protocol used in [14]: a)

each image is down-sampled from 192 × 168 to 48 × 42
pixels; b) experiments are conducted using all choices of

n ∈ {10, 15, 20, 25, 30, 35, 38}.

To make a fair comparison, we use the same setting as

that used in DSCNet [14], in which a three-layer stacked

convolutional encoders is used with {10, 20, 30} channels,

respectively. The detailed settings for the stacked convolu-

tional network used on Extended Yale B are shown Table

1. The common parameters γ1 and γ2 are set the same as

that in DSCNet, where γ1 = 1 (for the term ∥C∥ℓ) and
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Methods LRR LRSC SSC AE+ SSC KSSC SSC-OMP soft S3C† EDSC AE+ EDSC DSC-ℓ1 DSC-ℓ2 Ours (ℓ2) Ours (ℓ1)

10 subjects

Mean 19.76 30.95 8.80 17.06 14.49 12.08 6.34 5.64 5.46 2.23 1.59 1.18 1.18

Median 18.91 29.38 9.06 17.75 15.78 8.28 3.75 5.47 6.09 2.03 1.25 1.09 1.09

15 subjects

Mean 25.82 31.47 12.89 18.65 16.22 14.05 11.01 7.63 6.70 2.17 1.69 1.14 1.12

Median 26.30 31.64 13.23 17.76 17.34 14.69 10.89 6.41 5.52 2.03 1.72 1.14 1.14

20 subjects

Mean 31.45 28.76 20.11 18.23 16.55 15.16 14.07 9.30 7.67 2.17 1.73 1.31 1.30

Median 32.11 28.91 21.41 16.80 17.34 15.23 13.98 10.31 6.56 2.11 1.80 1.32 1.25

25 subjects

Mean 28.14 27.81 26.30 18.72 18.56 18.89 16.79 10.67 10.27 2.53 1.75 1.32 1.29

Median 28.22 26.81 26.56 17.88 18.03 18.53 17.13 10.84 10.22 2.19 1.81 1.34 1.28

30 subjects

Mean 38.59 30.64 27.52 19.99 20.49 20.75 20.46 11.24 11.56 2.63 2.07 1.71 1.67

Median 36.98 30.31 27.97 20.00 20.94 20.52 21.15 11.09 10.36 2.81 2.19 1.77 1.72

35 subjects

Mean 40.61 31.35 29.19 22.13 26.07 20.29 20.38 13.10 13.28 3.09 2.65 1.67 1.62

Median 40.71 31.74 29.51 21.74 25.92 20.18 20.47 13.10 13.21 3.10 2.64 1.69 1.60

38 subjects

Mean 35.12 29.89 29.36 25.33 27.75 23.52 19.45 11.64 12.66 3.33 2.67 1.56 1.52

Median 35.12 29.89 29.36 25.33 27.75 23.52 19.45 11.64 12.66 3.33 2.67 1.56 1.52

Table 2. Clustering Error (%) on Extended Yale B. The best results are in bold and the second best results are underlined.

γ2 = 1.0 × 10
n
10−3. For the specific parameters used

in S2ConvSCN, we set γ3 = 16 for the term ∥C∥Q and

γ4 = 72 for the cross-entropy term, respectively. We set

T0 = 5 and Tmax = 10 + 40n.

The experimental results are presented in Table 2. We ob-

serve that our proposed S2ConvSCN-ℓ1 and S2ConvSCN-ℓ2
remarkably reduced the clustering errors and yield the low-

est clustering errors with n ∈ {10, 15, 20, 25, 30, 35, 38}
than all the listed baseline methods. We note that DASC

[54] reported a clustering error of 1.44% on Extended Yale

B with n = 38, which is slightly better than our results.

To gain further understanding of the proposed dual self-

supervision, we use S2ConvSCN-ℓ1 as an example and eval-

uate the effect of using the dual self-supervision modules

via an ablation study. Due to space limitation, we only list

the experimental results of using a single self-supervision

via L3, using a single self-supervision via L4, and using du-

al self-supervision of L3 plus L4 on datasets Extended Yale

B in Table 3. As a baseline, we show the experimental re-

sults of DSCNet [14], which uses the loss L0 + L1 + L2.

As could be read from Table 3 that, using only a single

self-supervision module, i.e., L0 + L1 + L2 plus L3, or

L0 + L1 + L2 plus L4, the clustering errors are reduced.

Compared to using the self-supervision via a spectral clus-

tering loss L3 in the self-expression module, using the self-

supervision via the classification loss L4 in FC block is

more effective. Nonetheless, using the dual supervision

modules further reduces the clustering errors.

4.2. Experiments on ORL

The ORL dataset [39] consists of face images of 40 dis-

tinct subjects, each subjects having 10 face images under

varying lighting conditions, with different facial expression-

s (open/closed eyes, smiling/not smiling) and facial details

(glasses / no glasses) [39]. As the images were took under

variations of facial expressions, this data set is more chal-

lenging for subspace clustering due to the nonlinearity and

small sample size per subject.

In our experiments, each image is down-sampled from

112×92 to 32×32. We reduce the kernel size in convolution

module to 3× 3 due to small image size and set the number

of channels to {3, 3, 5}. The specification of the network

structure is shown in Table 1. For the tradeoff parameters,

we set γ1 = 0.1, γ2 = 0.01, γ3 = 8, and γ4 = 1.2 for our

S2ConvSCN. For the fine-tuning stage, we set T0 = 5 and

Tmax = 940. Experimental results are shown in Table 5.

Again, our proposed approaches yield the best results.

4.3. Experiments on COIL20 and COIL100

To further verify the effectiveness of our proposed

S2ConvSCN, we conduct experiments on dataset COIL20

and COIL100 [30]. COIL20 contains 1440 gray-scale im-

ages of 20 objects; whereas COIL100 contains 7200 images

of 100 objects. Each image was down-sampled to 32 × 32.

The settings of the stacked convolutional networks used for

COIL20 and COIL100 are listed in Table 4.

For the tradeoff parameters on COIL20, we set γ1 = 1,

γ2 = 30 as same as used in DSC-Net [14], and γ3 = 8,

γ4 = 6, T0 = 4, and Tmax = 80 in our S2ConvSCN. For the

tradeoff parameters on COIL100, we set γ1 = 1, γ2 = 30
as same as used in DSC-Net [14], and γ3 = 8, γ4 = 7,

T0 = 16, and Tmax = 110 in our S2ConvSCN.

For experiments on COIL20 and COIL100, we initial-

ize the convolutional module with stacked CAE at first, and

then train a stacked CAE assisted with a self-expressive

model. This is effectively DSCNet [14]. And then, we

train the whole S2ConvSCN. Experimental results are list-

ed in Table 5. As could be read, our S2ConvSCN-ℓ1 and

S2ConvSCN-ℓ2 reduce the clustering errors significantly.

This result confirms the effectiveness of the designed dual
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Losses

No. Subjects 10 subjects 15 subjects 20 subjects 25 subjects 30 subjects 35 subjects 38 subjects

Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median Mean Median

L0 + L1 + L2(DSC-ℓ1 [14]) 2.23 2.03 2.17 2.03 2.17 2.11 2.53 2.19 2.63 2.81 3.09 3.10 3.33 3.33

L0 + L1 + L2 + L3 1.58 1.25 1.63 1.55 1.67 1.57 1.61 1.63 2.74 1.82 2.64 2.65 2.75 2.75

L0 + L1 + L2 + L4 1.32 1.09 1.31 1.30 1.54 1.48 1.48 1.98 1.87 1.61 1.82 1.84 1.92 1.92

L0 + L1 + L2 + L3 + L4 1.18 1.09 1.12 1.14 1.30 1.25 1.29 1.28 1.67 1.72 1.62 1.60 1.52 1.52

Table 3. Ablation Study on S2ConvSCN-ℓ1 on Extended Yale B.
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Figure 2. The cost functions and clustering error of S2ConvSCN-

ℓ1 during training period on Extended Yale B (n = 10).

self-supervision components for the proper use of the useful

information from the output of spectral clustering.

4.4. Convergence Behaviors

To show the convergence behavior during training iter-

ations, we conduct experiments on Extended Yale B with

n = 10. We record the clustering errors and each cost func-

tion during training period, and show them as a function of

the number of epoches in Fig. 2. As could be observed from

Fig. 2(a), (c), (d) and (e), the cost functions L, L0, L2, and

L4, and the cluster error decrease rapidly and tend to “flat”.

To show more details in the iterations, in Fig. 2 (b) and (f),

we show the curves of ∥C∥1, ∥C∥Q and
∥C∥Q

∥C∥1
. Note that

∥C∥Q and
∥C∥Q

∥C∥1
are the cost and the relative cost of spec-

tral clustering, respectively. Compared to ∥C∥Q, we argue

that
∥C∥Q

∥C∥1
is more indicative to the clustering performance.

As could be observed, while ∥C∥1 and ∥C∥Q are increas-

ing4, the curve of
∥C∥Q

∥C∥1
tends to “flat”—which is largely

consistent to the curve of the clustering error in Fig. 2 (e).

5. Conclusion

We have proposed an end-to-end trainable framework

for simultaneous feature learning and subspace clustering,

called Self-Supervised Convolutional Subspace Clustering

4The observation that the curves of L1 and L3 go up is because the

entries of the extracted feature Z are slowly shrinking and thus the abso-

lute values of entries of C are slowly increasing, due to the absence of

normalization step in feature learning at each epoch.

COIL20 COIL100

Layers kernel size channels kernel size channels

encoder-1 3× 3 15 5× 5 50

decoder-1 3× 3 15 5× 5 50

Table 4. Network settings for COIL20 and COIL100.

Methods ORL COIL20 COIL100

LRR 33.50 30.21 53.18

LRSC 32.50 31.25 50.67

SSC 29.50 14.83 44.90

AE+SSC 26.75 22.08 43.93

KSSC 34.25 24.65 47.18

SSC-OMP 37.05 29.86 67.29

EDSC 27.25 14.86 38.13

AE+EDSC 26.25 14.79 38.88

soft S3C† 26.00 11.87 41.71

DSC-ℓ1 14.25 5.65 33.62

DSC-ℓ2 14.00 5.42 30.96

DASC [54] 11.75 3.61 -

S2ConvSCN-ℓ2 11.25 2.33 27.83

S2ConvSCN-ℓ1 10.50 2.14 26.67

Table 5. Clustering Error (%) on ORL, COIL20 and COIL100.

Network (S2ConvSCN). Specifically, in S2ConvSCN, the

feature extraction via stacked convolutional module, the

affinity learning via self-expression model, and the data

segmentation via spectral clustering are integrated into a

joint optimization framework. By exploiting a dual self-

supervision mechanism, the output of spectral clustering are

effectively used to improve the training of the stacked con-

volutional module and to refine the self-expression model,

leading to superior performance. Experiments on bench-

mark datasets have validated the effectiveness of our pro-

posed approach.
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