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Abstract
The Alternating Direction Method of Multipliers (ADMM) is widely used for linearly con-
strained convex problems. It is proven to have an o(1/

√
K ) nonergodic convergence rate

and a faster O(1/K ) ergodic rate after ergodic averaging, where K is the number of itera-
tions. Such nonergodic convergence rate is not optimal. Moreover, the ergodic averagingmay
destroy the sparseness and low-rankness in sparse and low-rank learning. In this paper, we
modify the accelerated ADMM proposed in Ouyang et al. (SIAM J. Imaging Sci. 7(3):1588–
1623, 2015) and give an O(1/K ) nonergodic convergence rate analysis, which satisfies
|F(xK ) − F(x∗)| ≤ O(1/K ), ‖AxK − b‖ ≤ O(1/K ) and xK has a more favorable sparse-
ness and low-rankness than the ergodic peer, where F(x) is the objective function andAx = b
is the linear constraint. As far as we know, this is the first O(1/K ) nonergodic convergent
ADMM type method for the general linearly constrained convex problems. Moreover, we
show that the lower complexity bound of ADMM type methods for the separable linearly
constrained nonsmooth convex problems is O(1/K ), which means that our method is opti-
mal.

Keywords Accelerated Alternating Direction Method of Multipliers · O(1/K) nonergodic
convergence rate · O(1/K) lower complexity bound

1 Introduction

We consider the following general linearly constrained convex problem:

min
xi ∈Rni

2∑

i=1

( fi (xi ) + hi (xi )) , s.t .
2∑

i=1

Aixi = b, (1)
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where both fi and hi are convex. fi is Li -smooth and hi can be nonsmooth. Specially, fi

can vanish in problem (1). Problems like (1) arise from diverse applications in machine
learning, imaging and computer vision, see, e.g., [1–3] and references therein. In machine
learning, fi is often the loss function to fit the data and hi is the regularizer that promotes
some prior information on the desired solution, such as sparseness and low-rankness. We
say fi is Li -continuous if it satisfies | fi (xi ) − fi (yi )| ≤ Li‖xi − yi‖,∀xi , yi , and Li -
smooth if ∇ fi is Li -continuous: ‖∇ fi (xi ) − ∇ fi (yi )‖ ≤ Li‖xi − yi‖,∀xi , yi . We denote
Fi (xi ) = fi (xi ) + hi (xi ), x = (x1, x2), F(x) = ∑2

i=1 Fi (xi ) and Ax = ∑2
i=1 Aixi .

The discussion in this paper also suits for the general constraint
∑2

i=1 Ai (xi ) = b, where
Ai : Rni → R

m is a linear mapping. For simplicity we focus on
∑2

i=1 Aixi = b. We denote
‖x‖ as ‖x‖2 for a vector x.

ADMM [1] is widely used in imaging and vision to solve problem (1) since the separable
structure can be exploited. ADMM consists of three steps:

xk+1
1 = argmin

x1
L(x1, xk

2, λ
k, ρ), (2a)

xk+1
2 = argmin

x2
L(xk+1

1 , x2, λk, ρ), (2b)

λk+1 = λk + ρ

(
2∑

i=1

Aix
k+1
i − b

)
, (2c)

where

L(x1, x2, λ, ρ) =
2∑

i=1

( fi (xi ) + hi (xi )) +
〈
λ,

2∑

i=1

Aixi − b

〉
+ ρ

2

∥∥∥∥∥

2∑

i=1

Aixi − b

∥∥∥∥∥

2

is the augmented Lagrangian function and λ is the Lagrange multiplier. When Fi is not
simple and Ai is non-unitary, the cost of solving the subproblems may be high. Thus the
Linearized ADMM (LADMM) is proposed by linearizing the augmented term ‖Ax − b‖2
and the complex fi [4–6] such that the subproblems may even have closed form solutions.

Traditional convergence rate analysis on ADMM is difficult due to its serial update of x1
and x2,whichmeans that (xk+1

1 , xk+1
2 ) is not the solution tominx1,x2 L(x1, x2, λk). Thus some

alternative criteria are used instead. The most popular criterion is the ergodic convergence
rate.

Definition 1 Let {x1, . . . , xK } be a sequence produced by the algorithm that they have the
property promoted by the regularizer h(x), for instance, sparseness and low-rankness.We say
a convergence rate is nonergodic if it measures the optimality at xK directly. A convergence
rate is ergodic if it considers the optimality at the point of

∑K
k=1 ckxk with ck > 0 and∑K

k=1 ck = 1.

Themost commonly used ergodic criterion for ADMM is the average form of 1
K

∑K
k=1 x

k .
It is proved in [7] thatADMMconvergeswith an O(1/K ) ergodic rate.A critical disadvantage
of the ergodic result is that the point measured for the convergence rate analysis may not
have the property promoted by h(x) since it may be destroyed by the ergodic averaging. For
example, in sparse learning, {x1, . . . , xK } are sparse, but their average may not be sparse
any more. So the nonergodic analysis is strongly required for ADMM. He and Yuan [8]
proved ‖wK+1 −wK ‖2 ≤ 1

K withwK = (xK , λK ). However, this criterion does not directly
measure how far F(xK ) is from F(x∗) and how much the constraint error ‖AxK − b‖ is,
where x∗ is an optimal solution to problem (1).
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Recently, Davis and Yin [9] proved that the Douglas–Rachford (DR) splitting [10] con-
verges with an O(1/K ) ergodic rate and an o(1/

√
K ) nonergodic rate. Moreover, they

constructed some examples showing that this rate is tight. As is known, ADMM is a special
case of DR splitting [11]. So for ADMM, Davis and Yin [9] established |F(xK ) − F(x∗)| ≤
o(1/

√
K ) and ‖AxK − b‖ ≤ o(1/

√
K ) in a nonergodic sense. Thus in sparse and low-rank

learning, we have that for ADMM the nonergodic solution xK is sparse or low-rank, but has
the slow o(1/

√
K ) theoretical convergence rate, and the ergodic solution

∑K
k=1 ckxk has the

faster O(1/K ) theoretical convergence rate, but may not be sparse or low-rank. We want
to combine the advantages of these two aspects, i.e., a faster O(1/K ) convergence rate but
still in the nonergodic sense. This paper aims to solve this problem via using Nesterov’s
acceleration scheme for ADMM.

Beck and Teboulle [12] extended Nesterov’s accelerated gradient method [13] to the
nonsmooth unconstrained problem of minx f (x) + h(x), which consists of two steps:

first extrapolates a point yk = xk + θk (1−θk−1)

θk−1 (xk − xk−1) and then computes xk+1 =
Proxαh

(
yk − α∇ f (yk)

)
, where Proxαh(z) = argminxh(x) + 1

2α ‖x − z‖2. On the other
hand, Nesterov [14] proposed another accelerated gradient method, which consists of
three steps: zk = (1 − θk−1)zk−1 + θk−1xk , yk = (1 − θk)zk + θkxk and xk+1 =
Prox α

θk h

(
xk − α

θk ∇ f (yk)
)
. We follow [15] to name these two schemes as Nesterov’s first

and second acceleration scheme, respectively.
Chen et al. [16] proposed an inertial proximal ADMM which uses the same idea as

Nesterov’sfirst scheme:first extrapolates a point (x̂k
1, x̂

k
2, λ̂

k) and thenperforms the steps (2a)–
(2c) on (x̂k

1, x̂
k
2, λ̂

k). However, they only established the o(1/
√

K ) convergence rate in the
sense of mink=1,...,K |F(xk)− F(x∗)| ≤ o(1/

√
K ) and mink=1,...,K ‖Axk −b‖ ≤ o(1/

√
K ).

Lorenz and Pock [17] analyzed the inertial forward-backward algorithm for the general
monotone inclusions, which include problem (1) as a special case. However, no convergence
rate is established in [17].

Ouyang et al. [18] proposed an accelerated ADMM via Nesterov’s second acceleration
scheme. The convergence rate is better than that of LADMM in terms of their dependence
on the Lipschitz constant of the smooth component. However, the entire convergence rate
remains O(1/K ) in an ergodic sense. Nesterov’s second scheme only influences the lin-
earization of fi in steps (2a)–(2b). It cannot improve the nonergodic rate of ADMM. Thus,
the nonergodic rate of the accelerated ADMM in [18] cannot be better than o(1/

√
K ). Please

see Sect. 2 for detailed explanations.
When strong convexity is assumed, Goldstein et al. [19] proposed an O(1/K 2) convergent

ADMM for its dual problem. When even more assumptions are made, e.g. the objective
function is strongly convex and has Lipschitz continuous gradient, or subdifferentials of the
underlying functions are piecewise linear multifunctions, linear convergence can be obtained
[20–24]. Some researchers studied the first-order primal-dual algorithm for the saddle-point
problem, which includes problem (1) as a special case. For example, Chambolle and Pock
[2] established the O(1/K ) ergodic convergence rate for the general convex problems, the
accelerated O(1/K 2) convergence rate when the primal or the dual objective is uniformly
convex and the linear convergence rate when both are uniformly convex. Chen et al. [25]
combined Nesterov’s second scheme with the primal-dual algorithm and also established the
O(1/K ) ergodic convergence rate.
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1.1 Contributions

Although the O(1/K ) convergence rate of ADMM and its accelerated versions is widely
studied in the literatures, they all need an ergodic averaging [2,7,16,18,25], which may
destroy the sparseness and low-rankness in sparse and low-rank learning. As far as we know,
there is no literature establishing the O(1/K ) nonergodic convergence rate of ADMM type
methods for the general convex problem (1). Moreover, as proved in [9], the nonergodic
convergence rate of the traditional ADMM is o(1/

√
K ) and it will be shown in Sect. 4 that

this rate is tight. In this paper, we aim to give the first O(1/K ) nonergodic convergent ADMM
type method.

We modify the accelerated ADMM proposed in [18] and give an O(1/K ) nonergodic
analysis satisfying |F(xK ) − F(x∗)| ≤ O(1/K ) and ‖AxK − b‖ ≤ O(1/K ). Compared
with the O(1/K ) ergodic rate in [7,18], our result is in a nonergodic sense and thus enjoys a
more favorable sparseness and low-rankness in applications of sparse and low-rank learning.
Compared with the nonergodic rate in [9,18], we improve it from o(1/

√
K ) to O(1/K ).

We also show that the lower complexity bound of ADMM type methods for the separable
linearly constrained convex problems is O(1/K ) when each Fi is nonsmooth and non-
strongly convex, which means that the convergence rate of ADMM type methods cannot be
better than O(1/K ) no matter how it is accelerated. Thus our method is optimal.

2 Review of the Accelerated ADMM in [18]

In this section, we first review the accelerated ADMM in [18] for problem (1), which consists
of the following steps1:

yk
i = (1 − θk)xk

i + θkzk
i , i = 1, 2, (3a)

zk+1
1 = argmin

z1
f1(zk

1) +
〈
∇ f1(yk

1), z1 − zk
1

〉
+ θk L1

2
‖z1 − zk

1‖2 + h1(z1)

+
〈
λ̂k,A1z1

〉
+
〈
βAT

1 (A1zk
1 + A2zk

2 − b), z1 − zk
1

〉
+ β‖A1‖2

2
‖z1 − zk

1‖2, (3b)

zk+1
2 = argmin

z2
f2(zk

2) +
〈
∇ f2(yk

2), z2 − zk
2

〉
+ θk L2

2
‖z2 − zk

2‖2 + h2(z2)

+
〈
λ̂k,A2z2

〉
+
〈
βAT

2 (A1z
k+1
1 + A2zk

2 − b, z2 − zk
2

〉
+ β‖A2‖2

2
‖z2 − zk

2‖2, (3c)

xk+1
1 = (1 − θk)xk

1 + θkzk+1
1 , (3d)

xk+1
2 = (1 − θk)xk

2 + θkzk+1
2 , (3e)

λ̂k+1 = λ̂k + β(A1z
k+1
1 + A2z

k+1
2 − b), (3f)

where θk satisfies 1
(θk−1)2

≥ 1−θk

(θk )2
. Since the regularizer h(x) acts directly on z in (3b)–(3c),

(zk+1
1 , zk+1

2 ) has the property promoted by h(x) and the convergence measured at (zK
1 , zK

2 )

is in the nonergodic sense. In fact, in sparse or low-rank learning, we often use the l1-norm
and nuclear norm as the regularization. The proximal operator of the l1-norm is the soft-
thresholding [26], which is defined as

1 We simplify some parameter settings and extend the class of problems it is solving, but the algorithm
framework remains the same as [18].
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argmin
z

‖z‖1 + γ

2
‖z − w‖2 =

⎧
⎪⎨

⎪⎩

wi − 1
γ
, if wi ≥ 1

γ
,

wi + 1
γ
, if wi ≤ − 1

γ
,

0, otherwise.

Thus, if we use h(z) = ‖z‖1, (zk+1
1 , zk+1

2 ) tends to be sparse during the iterations. Similarly,
the proximal operator of the nuclear norm is the singular value thresholding [27], which is
defined as

argmin
Z

‖Z‖∗ + γ

2
‖Z − W‖2F = U ˆΣVT ,

where we let UΣVT = W be its SVD and

Σ̂i,i =

⎧
⎪⎨

⎪⎩

Σi,i − 1
γ
, if Σi,i ≥ 1

γ
,

Σi,i + 1
γ
, if Σi,i ≤ − 1

γ
,

0, otherwise.

Thus, if we use h(Z) = ‖Z‖∗, (Zk+1
1 ,Zk+1

2 ) tends to be low-rank during the iterations.

Accordingly, xK is a convex combination of z1, . . . , zK : xK = 1∑K
k=1

1
θk−1

∑K
k=1

zk

θk−1 and

so it is an ergodic result measured at (xK
1 , xK

2 ). The zeros may lie in different positions of
z1, . . . , zK for sparse learning (or in different positions of their singular values for low-rank
learning) and thus xK may not be sparse or low-rank any more. It is proved in [18] that
(3a)–(3f) has the O(1/K ) ergodic convergence rate measured at (xK

1 , xK
2 ).

We can see that the accelerated ADMM in [18] is a direct combination of Nesterov’s sec-
ond acceleration scheme and the traditional LADMM. Nesterov’s acceleration scheme only
influences the linearization of fi and cannot improve the convergence rate of the traditional
ADMM. In fact, we can consider the special case of fi (xi ) = 0, i = 1, 2 (correspondingly,
Li = 0) and omit the linearization of the augmented term (or letA1 = A2 = I for simplicity).
In this case, procedure (3a)–(3f) reduces to:

zk+1
1 = argmin

z1
h1(z1) +

〈
λ̂k,A1z1

〉
+ β

2
‖A1z1 + A2zk

2 − b‖2, (4a)

zk+1
2 = argmin

z2
h2(z2) +

〈
λ̂k,A2z2

〉
+ β

2
‖A1z

k+1
1 + A2z2 − b‖2, (4b)

xk+1
1 = (1 − θk)xk

1 + θkzk+1
1 , (4c)

xk+1
2 = (1 − θk)xk

2 + θkzk+1
2 , (4d)

λ̂k+1 = λ̂k + β(A1z
k+1
1 + A2z

k+1
2 − b). (4e)

We can see that procedure (4a)–(4e) reduces to the traditional ADMM and (4c)–(4d) has
no influence on the iterations of the traditional ADMM. It only gives a different way of
ergodic averaging. Thus the nonergodic convergence rate of procedure (4a)–(4e) measured
at (zK

1 , zK
2 ) remains o(1/

√
K ). Since (4a)–(4e) is a special case of (3a)–(3f), we can have

that the nonergodic rate of procedure (3a)–(3f) measured at (zK
1 , zK

2 ) should not be better
than o(1/

√
K ).
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3 ALADMM-NE withO(1/K)Nonergodic Convergence Rate

In this section, we give our Accelerated LADMM with NonErgodic convergence rate
(ALADMM-NE). We first provide an equivalent description of (3a)–(3f) for the smooth
case of problem (1) in Sect. 3.1, which motivates our nonergodic algorithm for the nons-
mooth case in Sect. 3.2. Then we give the convergence rate analysis in Sect. 3.3 and at last,
we discuss the advantage and disadvantage of the accelerated ADMM in Sect. 3.4.

3.1 An Equivalent Algorithm for the Smooth Problem

In this section, we give an equivalent description of (3a)–(3f) for the smooth
case of problem (1) with hi (x) = 0, i = 1, 2:

yk
i = xk

i + θk(1 − θk−1)

θk−1 (xk
i − xk−1

i ), i = 1, 2, (5a)

xk+1
1 = argmin

x1
f1(yk

1) +
〈
∇ f1(yk

1), x1 − y1
〉
+ L1

2
‖x1 − yk

1‖2 +
〈
λk,A1x1

〉

+ β

θk

〈
AT
1 (A1yk

1 + A2yk
2 − b), x1 − yk

1

〉
+ β‖A1‖2

2θk
‖x1 − yk

1‖2, (5b)

xk+1
2 = argmin

x2
f2(yk

2) +
〈
∇ f2(yk

2), x2 − y2
〉
+ L2

2
‖x2 − yk

2‖2 +
〈
λk,A2x2

〉

+ β

θk

〈
AT
2 (A1x

k+1
1 + A2yk

2 − b), x2 − yk
2

〉
+ β‖A2‖2

2θk
‖x2 − yk

2‖2, (5c)

λk+1 = λk + βτ(Axk+1 − b), (5d)

for some 1 > τ > 0.5, θ0 = 1 and θk+1 = 1
1−τ+ 1

θk
, which leads to 1

(θk−1)2
≥ 1−θk

(θk )2
and

thus coincides with the requirement for (3b)–(3f). It can be observed that if we set τ = 1,
then θk = 1, yk

i = xk
i ,∀k, and (5a)–(5d) reduces to the traditional LADMM. At first glance,

(3a)–(3f) combines ADMM with Nesterov’s second acceleration scheme while (5a)–(5d)
uses Nesterov’s first acceleration scheme.

Proposition 1 The sequence (xk
1, x

k
2) produced in (3a)–(3f) and (5a)–(5d) are equivalent

when hi (x) = 0, i = 1, 2.

Proof We derive each step of (5a)–(5d) from (3a)–(3f). From (3a), (3d) and (3e), we have

yk
i = (1 − θk)xk

i + θkzk
i

= (1 − θk)xk
i + θk

θk−1

(
xk

i − (1 − θk−1)xk−1
i

)

= xk
i + θk(1 − θk−1)

θk−1

(
xk

i − xk−1
i

)
,

which is (5a). From the optimality condition of (3b), we have

0 = ∇ f1(yk
1) + θk L1

(
zk+1
1 − zk

1

)
+ AT

1 λ̂k + βAT
1

(
A1zk

1 + A2zk
2 − b

)

+ β‖A1‖2
(
zk+1
1 − zk

1

)

3a,3d= ∇ f1
(
yk
1

)
+ L1

(
xk+1
1 − yk

1

)
+ AT

1 λ̂k + βAT
1

(
A1zk

1 + A2zk
2 − b

)
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+ β‖A1‖2
θk

(
xk+1
1 − yk

1

)

3a= ∇ f1
(
yk
1

)
+ L1

(
xk+1
1 − yk

1

)
+ AT

1 λ̂k

+ βAT
1

(
A1yk

1

θk
− 1 − θk

θk
A1xk

1 + A2yk
2

θk
− 1 − θk

θk
A2xk

2 − b

)

+ β‖A1‖2
θk

(
xk+1
1 − yk

1

)

= ∇ f1
(
yk
1

)
+ L1

(
xk+1
1 − yk

1

)
+ AT

1 λ̂k − β(1 − θk)

θk
AT
1

(
A1xk

1 + A2xk
2 − b

)

+ β

θk
AT
1

(
A1yk

1 + A2yk
2 − b

)
+ β‖A1‖2

θk

(
xk+1
1 − yk

1

)

= ∇ f1
(
yk
1

)
+ L1

(
xk+1
1 − yk

1

)
+ AT

1 λk + β

θk
AT
1

(
A1yk

1 + A2yk
2 − b

)

+ β‖A1‖2
θk

(
xk+1
1 − yk

1

)
,

where we define λk = λ̂k − β(1−θk )

θk (A1xk
1 +A2xk

2 −b). It is exactly the optimality condition
of (5b). Similarly, from the optimality condition of (3c), we also have

0 = ∇ f2
(
yk
2

)
+ θk L2

(
zk+1
2 − zk

2

)
+ AT

2 λ̂k + βAT
2

(
A1z

k+1
1 + A2zk

2 − b
)

+ β‖A2‖2
(
zk+1
2 − zk

2

)

= ∇ f2
(
yk
2

)
+ L2

(
xk+1
2 − yk

2

)
+ AT

2 λ̂k + βAT
2

(
A1z

k+1
1 + A2zk

2 − b
)

+ β‖A2‖2
θk

(
xk+1
2 − yk

2

)

3d,3a= ∇ f2
(
yk
2

)
+ L2

(
xk+1
2 − yk

2

)
+ AT

2 λ̂k

+ βAT
2

(
A1x

k+1
1

θk
− 1 − θk

θk
A1xk

1 + A2yk
2

θk
− 1 − θk

θk
A2xk

2 − b

)

+ β‖A2‖2
θk

(
xk+1
2 − yk

2

)

= ∇ f2
(
yk
2

)
+ L2

(
xk+1
2 − yk

2

)
+ AT

2 λk + β

θk
AT
2

(
A1x

k+1
1 + A2yk

2 − b
)

+ β‖A2‖2
θk

(
xk+1
2 − yk

2

)
,

which is the optimality condition of (5c). From the definition of λk , we have

λk+1 − λk

= λ̂k+1 − λ̂k − β(1 − θk+1)

θk+1 (Axk+1 − b) + β(1 − θk)

θk
(Axk − b)

3 f= β(Azk+1 − b) − β(1 − θk+1)

θk+1 (Axk+1 − b) + β(1 − θk)

θk
(Axk − b)
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Algorithm 1 Accelerated LADMM with NonErgodic convergence rate (ALADMM-NE)

Initialize λ0, x0i = x−1
i , i = 1, 2, 1 > τ > 0.5, β > 0, θ0 = 1, θ−1 = 1/τ .

for k = 0, 1, 2, . . . do
Update yk

i , i = 1, 2 using (5a),

Update xk+1
1 and xk+1

2 serially, using (6a) and (6b), respectively,

Update λk+1 using (5d),
θk+1 = 1

1−τ+ 1
θk

.

end for

3d,3e= β

(
Axk+1 − (1 − θk)Axk

θk
− b
)

− β(1 − θk+1)

θk+1 (Axk+1 − b)

+ β(1 − θk)

θk
(Axk − b)

= β

(
(Axk+1 − b) − (1 − θk)(Axk − b)

θk

)
− β(1 − θk+1)

θk+1 (Axk+1 − b)

+ β(1 − θk)

θk
(Axk − b)

= β

(
1

θk
− 1 − θk+1

θk+1

)
(Axk+1 − b)

= βτ(Axk+1 − b),

where we define τ = 1
θk − 1−θk+1

θk+1 and it is the same with (5d). ��

3.2 The Nonergodic Algorithm for the Nonsmooth Problem

From the discussion in Sect. 2, we know that the accelerated ADMM proposed in [18] has
the o(1/

√
K ) nonergodic convergence rate measured at (zK

1 , zk
2) and the O(1/K ) ergodic

convergence rate measured at (xk
1, x

k
2). We want to have an algorithmwith the faster O(1/K )

nonergodic convergence rate. After establishing the equivalence between (3a)–(3f) and (5a)–
(5d), a straightforward intuition is to put the nonsmooth term hi (x) in steps (5b) and (5c)
directly:

xk+1
1 = argmin

x1
f1(yk

1) +
〈
∇ f1(yk

1), x1 − y1
〉
+ L1

2
‖x1 − yk

1‖2 + h1(x1)

+
〈
λk,A1x1

〉
+ β

θk

〈
AT
1 (A1yk

1 + A2yk
2 − b), x1 − yk

1

〉
+ β‖A1‖2

2θk
‖x1 − yk

1‖2,
(6a)

xk+1
2 = argmin

x2
f2(yk

2) +
〈
∇ f2(yk

2), x2 − y2
〉
+ L2

2
‖x2 − yk

2‖2 + h2(x2)

+
〈
λk,A2x2

〉
+ β

θk

〈
AT
2 (A1x

k+1
1 + A2yk

2 − b), x2 − yk
2

〉
+ β‖A2‖2

2θk
‖x2 − yk

2‖2.
(6b)

We describe the new method in Algorithm 1. Due to the different positions of the terms
hi (xi ), i = 1, 2, Algorithm 1 and procedure (3a)–(3f) are no longer equivalent for the nons-
mooth problem. In fact, when we consider the simple case of f1(x1) = 0 and f2(x2) = 0 and
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Table 1 Comparing Algorithm 1 with the original ADMM, (2a)–(2c) and the accelerated ADMM, (3a)–(3f)
on the properties of the ergodic and nonergodic solutions

Algorithm Solution Ergodic or nonergodic Sparse/low-rank Convergence rate

(2a)–(2c)
∑K

k=1 x
k

K Ergodic No O (1/K )

xK Nonergodic Yes O
(
1/

√
K
)

(3a)–(3f) xK Ergodic No O (1/K )

zK Nonergodic Yes O
(
1/

√
K
)

Algorithm 1 xK Nonergodic Yes O (1/K )

omit the linearization of the augmented term, (3a)–(3f) reduces to the traditional ADMM,
while Algorithm 1 reduces to the following iterates:

yk
i = xk

i + θk(1 − θk−1)

θk−1

(
xk

i − xk−1
i

)
, i = 1, 2, (7a)

xk+1
1 = argmin

x1
h1(x1) +

〈
λk,A1x1

〉
+ β

2θk
‖A1x1 + A2yk

2 − b‖2, (7b)

xk+1
2 = argmin

x2
h2(x2) +

〈
λk,A2x2

〉
+ β

2θk
‖A1x

k+1
1 + A2x2 − b‖2, (7c)

λk+1 = λk + βτ(Axk+1 − b). (7d)

We can see that procedure (7a)–(7d) is totally different from the traditional ADMM, which
verifies that Algorithm 1 is different from procedure (3a)–(3f). The analysis in this paper can
be easily used to establish the O(1/K ) nonergodic convergence rate of procedure (7a)–(7d)
measured at {xk

1, x
k
2}. We only consider the complex case of Algorithm 1 and omit the proof

for the simple case of (7a)–(7d).
In Algorithm 1, hi (xi ) acts on xi directly and thus it has the property promoted by hi (xi ),

such as the sparseness or low-rankness if hi (xi ) is a sparse or low rank regularizer. So the
convergence rate measured at xK in Algorithm 1 is in the nonergodic sense. As comparison,
(3a)–(3f) promotes the sparseness and low-rankness on zi , and xK is a convex combination
of z1, . . . , zK and it may not be sparse or low-rank any more due to the ergodic averaging.
In applications where sparseness or low-rankness is strongly required, we should use the
nonergodic solutions and Algorithm 1 is superior to (3a)–(3f), since the nonergodic solution
in Algorithm 1 has a faster convergence rate than the nonergodic solution in procedure (3a)–
(3f). We demonstrate the differences in Table 1. It should be noted that for the smooth case,
since h(x) vanishes, we do not distinguish the ergodic and the nonergodic rates between
(3a)–(3f) and (5a)–(5d).

3.3 The Convergence Rate Analysis

In this section, we prove the O(1/K ) convergence rate measured at xK for Algorithm 1. Due
to the different positions of the nonsmooth terms hi (xi ), the proof technique for procedure
(3a)–(3f) in [18] cannot be extended to Algorithm 1 and more efforts are needed for the
analysis on Algorithm 1. Moreover, Ouyang et al. [18] need the assumption that the primal
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and dual variables are bounded in order to accomplish the proof. As comparison, we do not
need this assumption. This verifies that our proof is totally different from [18].

ALADMM-NE is an extension ofNesterov’s first acceleration scheme fromunconstrained
problems to constrained ones. For unconstrained problems, a crucial property of Nesterov’s
first acceleration scheme is

F(xk+1) − F(x∗)
(θk)2

− F(xk) − F(x∗)
(θk−1)2

≤ δ
(
‖zk − x∗‖2 − ‖zk+1 − x∗‖2

)
. (8)

The main step in the convergence rate proof of ALADMM-NE is to construct a counterpart
of (8) for both the objective and the constraint functions. Proposition 2 plays such a role for
the objective. As comparison, the traditional ADMM [28] can prove a similar result in the
form of

F(xk) − F(x∗) +
〈
λ∗,Axk − b

〉

≤ δ
(
‖xk − x∗‖2 − ‖xk+1 − x∗‖2

)
+ κ

(
‖λk − λ∗‖2 − ‖λk+1 − λ∗‖2

)
,

which can only lead to the ergodic result after telescoping.

Proposition 2 Assume that fi (xi ) is convex and Li -smooth, hi (xi ) is convex, i=1,2. Let
1−θk

θk = 1
θk−1 − τ with 0 < τ < 1 and θ0 = 1. For Algorithm 1, we have

1

θk

(
F(xk+1) − F(x∗) +

〈
λ∗,Axk+1 − b

〉)
− 1

θk−1

(
F(xk) − F(x∗) +

〈
λ∗,Axk − b

〉)

+ τ
(

F(xk) − F(x∗) +
〈
λ∗,Axk − b

〉)

≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2

)
+ ηk

2

2
‖dk

2 − x∗
2‖2 − ηk+1

2

2
‖dk+1

2 − x∗
2‖2

+
(

ηk
1

2
‖dk

1 − x∗
1‖2 − β

2
‖A1dk

1 − A1x∗‖2
)

−
(

ηk+1
1

2
‖dk+1

1 − x∗
1‖2 − β

2
‖A1d

k+1
1 − A1x∗‖2

)
,

where λ̂k = λk + β(1−θk )

θk

(
Axk − b

)
, ηk

i = Liθ
k + β‖Ai‖22, dk+1

i = xk+1
i
θk − 1−θk

θk xk
i ,

d0i = x0i , i = 1, 2, and {x∗, λ∗} is any KKT point.

Before proving Proposition 2, we first prove the following Lemma.

Lemma 1 Let λ
k+1
2 = λk + β

θk

(
A1x

k+1
1 + A2yk

2 − b
)

. Then for Algorithm 1, we have

θkb + (1 − θk)Axk − Axk+1 = θk

β

(
λ̂k − λ̂k+1

)
,

θk

2β
‖λ̂k+1 − λ

k+1
2 ‖2 ≤ β

2θk
‖A2‖22‖xk+1

2 − yk
2‖2,

λ̂K+1 − λ̂0 =
K∑

k=0

[
β
Axk+1 − b

θk
− β

Axk − b
θk−1 + βτ

(
Axk − b

)]
.
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Proof From λ̂k = λk + β(1−θk )

θk

(
Axk − b

)
, 1−θk+1

θk+1 = 1
θk − τ and λk+1 = λk +

βτ
(∑2

i=1 Aix
k+1
i − b

)
we have

λ̂k+1 = λk+1 + β
(1 − θk+1)

(∑2
i=1 Aix

k+1
i − b

)

θk+1

= λk+1 + β

(
1

θk
− τ

)( 2∑

i=1

Aix
k+1
i − b

)

= λk + βτ

(
2∑

i=1

Aix
k+1
i − b

)
+ β

(
1

θk
− τ

)( 2∑

i=1

Aix
k+1
i − b

)

= λk + β

θk

(
2∑

i=1

Aix
k+1
i − b

)
(9a)

= λ̂k − β
(1 − θk)

(∑2
i=1 Aixk

i − b
)

θk
+ β

θk

(
2∑

i=1

Aix
k+1
i − b

)

= λ̂k − β

θk

(
θkb + (1 − θk)

2∑

i=1

Aixk
i −

2∑

i=1

Aix
k+1
i

)
. (9b)

On the other hand, from (9a) and the definition of λ
k+1
2 we have

θk

2β
‖λ̂k+1 − λ

k+1
2 ‖2 = θk

2β

∥∥∥∥
β

θk
A2(x

k+1
2 − yk

2)

∥∥∥∥
2

≤ β

2θk
‖A2‖22‖xk+1

2 − yk
2‖2.

From (9b) and 1−θk

θk = 1
θk−1 − τ we have

λ̂K+1 − λ̂0

=
K∑

k=0

(
λ̂k+1 − λ̂k

)

=
K∑

k=0

[
β

∑2
i=1 Aix

k+1
i − b

θk
− β

1 − θk

θk

(
2∑

i=1

Aixk
i − b

)]

=
K∑

k=0

[
β

∑2
i=1 Aix

k+1
i − b

θk
− β

∑2
i=1 Aixk

i − b

θk−1 + βτ

(
2∑

i=1

Aixk
i − b

)]
.

��
Then we can prove Proposition 2 using Lemma 1.

Proof Let λ
k+1
1 = λk + β

θk

(∑2
i=1 Aiyk

i − b
)
. From the optimality conditions of (6a) and

(6b), we have

0 ∈∇ fi (yk
i ) + ∂hi (x

k+1
i ) + AT

i λ
k+1
i +

(
Li + β‖Ai‖22

θk

)(
xk+1

i − yk
i

)
,
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From the convexity of hi (xi ) we have

hi (xi ) − hi (x
k+1
i )

≥ −
〈
∇ fi (yk

i ) + AT
i λ

k+1
i +

(
Li + β‖Ai‖22

θk

)
(xk+1

i − yk
i ), xi − xk+1

i

〉
.

On the other hand, since fi is Li -smooth and convex, we have

fi (x
k+1
i ) ≤ fi (yk

i ) +
〈
∇ fi (yk

i ), x
k+1
i − yk

i

〉
+ Li

2
‖xk+1

i − yk
i ‖2

= fi (yk
i ) +

〈
∇ fi (yk

i ), xi − yk
i

〉
+
〈
∇ fi (yk

i ), x
k+1
i − xi

〉
+ Li

2
‖xk+1

i − yk
i ‖2

≤ fi (xi ) +
〈
∇ fi (yk

i ), x
k+1
i − xi

〉
+ Li

2
‖xk+1

i − yk
i ‖2.

Adding the above two inequalities, we can have

F(xk+1) − F(x)

≤
2∑

i=1

[〈
AT

i λ
k+1
i , xi − xk+1

i

〉
+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , xi − yk

i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

.

Letting xi = xk
i and xi = x∗

i respectively, we have

F(xk+1) − F(xk)

≤
2∑

i=1

[〈
AT

i λ
k+1
i , xk

i − xk+1
i

〉
+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , x

k
i − yk

i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

,

and

F(xk+1) − F(x∗)

≤
2∑

i=1

[〈
AT

i λ
k+1
i , x∗

i − xk+1
i

〉
+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , x

∗
i − yk

i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

.

Multiplying the first inequality by 1 − θk , multiplying the second by θk and adding them
together, we have

F(xk+1) − (1 − θk)F(xk) − θk F(x∗)

≤
2∑

i=1

[〈
λ

k+1
i , θkAix∗

i + (1 − θk)Aixk
i − Aix

k+1
i

〉
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+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , θ

kx∗
i + (1 − θk)xk

i − yk
i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

.

Adding term
〈
λ∗,
∑2

i=1 Aix
k+1
i − (1 − θk)

∑2
i=1 Aixk

i − θkb
〉
to both sides, we can have

F(xk+1) − F(x∗) +
〈
λ∗,Axk+1 − b

〉
− (1 − θk)

(
F(xk) − F(x∗) +

〈
λ∗,Axk − b

〉)

= F(xk+1) − (1 − θk)F(xk) − θk F(x∗)

+
〈
λ∗,

2∑

i=1

Aix
k+1
i − (1 − θk)

2∑

i=1

Aixk
i − θkb

〉

≤
2∑

i=1

[〈
λ

k+1
i − λ∗, θkAix∗

i + (1 − θk)Aixk
i − Aix

k+1
i

〉

+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , θ

kx∗
i + (1 − θk)xk

i − yk
i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

=
〈
λ

k+1
1 − λ

k+1
2 , θkA1x∗

1 + (1 − θk)A1xk
1 − A1x

k+1
1

〉

+
2∑

i=1

[〈
λ

k+1
2 − λ∗, θkAix∗

i + (1 − θk)Aixk
i − Aix

k+1
i

〉

+
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , θ

kx∗
i + (1 − θk)xk

i − yk
i

〉

−
(

Li

2
+ β‖Ai‖22

θk

)
‖xk+1

i − yk
i ‖2
]

,

where we use
∑2

i=1 Aix∗
i = b. Let dk+1

i = xk+1
i
θk − 1−θk

θk xk
i and dk

i = yk
i

θk − 1−θk

θk xk
i , i = 1, 2.

Then we can have
yk

i
θk − 1−θk

θk xk
i = xk

i
θk−1 − 1−θk−1

θk−1 xk−1
i , which leads to

yk
i = xk

i + θk(1 − θk−1)

θk−1

(
xk

i − xk−1
i

)
.

which is (5a). From the definitions of λ
k+1
1 , λ

k+1
2 , dk+1

i and dk
i , we can have

〈
λ

k+1
1 − λ

k+1
2 , θkA1x∗

1 + (1 − θk)A1xk
1 − A1x

k+1
1

〉

= β

θk

〈
A1yk

1 − A1x
k+1
1 , θkA1x∗

1 + (1 − θk)A1xk
1 − A1x

k+1
1

〉

= β

2θk

[
‖θkA1x∗

1 + (1 − θk)A1xk
1 − A1x

k+1
1 ‖2 − ‖θkA1x∗

1 + (1 − θk)A1xk
1 − A1yk

1‖2
]
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+ β

2θk
‖A1yk

1 − A1x
k+1
1 ‖2

≤ βθk

2

[
‖A1d

k+1
1 − A1x∗

1‖2 − ‖A1dk
1 − A1x∗

1‖2
]

+ β‖A1‖22
2θk

‖yk
1 − xk+1

1 ‖2,
and
(

Li + β‖Ai‖22
θk

) 〈
xk+1

i − yk
i , θ

kx∗
i + (1 − θk)xk

i − yk
i

〉

=
(

Li

2
+ β‖Ai‖22

2θk

)[
‖θkx∗

i + (1 − θk)xk
i − yk

i ‖2 − ‖θkx∗
i + (1 − θk)xk

i − xk+1
i ‖2

]

+
(

Li

2
+ β‖Ai‖22

2θk

)
‖xk+1

i − yk
i ‖2.

= θkηk
i

2

[
‖dk

i − x∗
i ‖2 − ‖dk+1

i − x∗
i ‖2
]

+
(

Li

2
+ β‖Ai‖22

2θk

)
‖xk+1

i − yk
i ‖2,

where ηk
i = Liθ

k + β‖Ai‖22. From Lemma 1 we have

F(xk+1) − F(x∗) +
〈
λ∗,Axk+1 − b

〉
− (1 − θk)

(
F(xk) − F(x∗) +

〈
λ∗,Axk − b

〉)

≤ θk

β

〈
λ

k+1
2 − λ∗, λ̂k − λ̂k+1

〉

+ βθk

2

[
‖A1d

k+1
1 − A1x∗

1‖2 − ‖A1dk
1 − A1x∗

1‖2
]

+ θk
2∑

i=1

ηk
i

2

[
‖dk

i − x∗
i ‖2 − ‖dk+1

i − x∗
i ‖2
]

− β‖A2‖22
2θk

‖yk
2 − xk+1

2 ‖2

= θk

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2 + ‖λ̂k+1 − λ
k+1
2 ‖2

)

+ βθk

2

[
‖A1d

k+1
1 − A1x∗

1‖2 − ‖A1dk
1 − A1x∗

1‖2
]

+ θk
2∑

i=1

ηk
i

2

[
‖dk

i − x∗
i ‖2 − ‖dk+1

i − x∗
i ‖2
]

− β‖A2‖22
2θk

‖yk
2 − xk+1

2 ‖2

≤ θk

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k‖2
)

+ βθk

2

[
‖A1d

k+1
1 − A1x∗

1‖2 − ‖A1dk
1 − A1x∗

1‖2
]

+ θk
2∑

i=1

ηk
i

2

[
‖dk

i − x∗
i ‖2 − ‖dk+1

i − x∗
i ‖2
]
.

Dividing both sides by θk and using 1−θk

θk = 1
θk−1 − τ , we have

1

θk

(
F(xk+1) − F(x∗) +

〈
λ∗,Axk+1 − b

〉)
− 1

θk−1

(
F(xk) − F(x∗) +

〈
λ∗,Axk − b

〉)

+ τ
(

F(xk) − F(x∗) +
〈
λ∗,Axk − b

〉)
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≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k |2
)

+
(

ηk
1

2
‖dk

1− x∗
1‖2 − β

2
‖A1dk

1 − A1x∗
1‖2−

ηk
1

2
‖dk+1

1 − x∗
1‖2 + β

2
‖A1d

k+1
1 − A1x∗

1‖2
)

+ ηk
2

2

[
‖dk

2 − x∗
2‖2 − ‖dk+1

2 − x∗
2‖2
]

≤ 1

2β

(
‖λ̂k − λ∗‖2 − ‖λ̂k+1 − λ∗‖2 − ‖λk+1

2 − λ̂k |2
)

+
(

ηk
1

2
‖dk

1− x∗
1‖2−

β

2
‖A1dk

1 − A1x∗
1‖2−

ηk+1
1

2
‖dk+1

1 −x∗
1‖2+

β

2
‖A1d

k+1
1 −A1x∗

1‖2
)

+ ηk
2

2
‖dk

2 − x∗
2‖2 − ηk+1

2

2
‖dk+1

2 − x∗
2‖2,

where we use θk+1 ≤ θk and ηk+1
i ≤ ηk

i , which can be derived from
1

θk+1 − 1 = 1
θk − τ and

0 < τ < 1. ��
A good property of Proposition 2 is that we can sum the inequality over k = 0, . . . , K

and then bound 1
θ K (F(xK+1) − F(x∗) + 〈λ∗,AxK+1 − b〉) by a constant, which leads to

F(xK+1) − F(x∗) + 〈λ∗,AxK+1 − b〉 ≤ O(θ K ). For the constraint functions, we have a
similar result, which is described in the following proposition.

Proposition 3 If the conditions in Proposition 2 hold, then for Algorithm 1 we have
∥∥∥∥∥

K∑

k=0

(
Axk+1 − b

θk
− Axk − b

θk−1 + τ
(
Axk − b

))∥∥∥∥∥ ≤
√
2βC + ‖λ∗ − λ̂0‖

β
,

where C = 1
2β ‖λ0 − λ∗‖2 + L1+β‖A1‖22

2 ‖x01 − x∗
1‖2 − β

2 ‖A1x01 − A1x∗
1‖2 + L2+β‖A2‖22

2 ‖x02
−x∗

2‖2.

Proof Summing the inequality in Proposition 2 over k = 0, 1, . . . , K , we have

1

θ K

(
F(xK+1) − F(x∗) +

〈
λ∗,AxK+1 − b

〉)

+
K∑

k=1

τ
(

F(xk) − F(x∗) +
〈
λ∗,Axk − b

〉)
≤ C − 1

2β
‖λ̂K+1 − λ∗‖2,

(10)

where we use θ0 = 1, 0 = 1−θ0

θ0
= 1

θ−1 − τ ,

ηK+1
1

2
‖dK+1

1 − x∗
1‖2 − β

2
‖A1d

K+1
1 − A1x∗

1‖2 ≥ 0,

and

C ≡ 1

2β
‖λ0 − λ∗‖2 +

(
L1 + β‖A1‖22

2
‖x01 − x∗

1‖2 − β

2
‖A1x01 − A1x∗

1‖2
)

+ L2 + β‖A2‖22
2

‖x02 − x∗
2‖2
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= 1

2β
‖λ̂0 − λ∗‖2 +

(
η01

2
‖d01 − x∗

1‖2 − β

2
‖A1d01 − A1x∗

1‖2
)

+ η02

2
‖d02 − x∗

2‖2.

The last relation comes from d0i = x0i , λ̂0 = λ0 + β(1−θ0)

θ0

(∑2
i=1 Aix0i − b

)
= λ0 and

η0i = Liθ
0 + β‖Ai‖22.

Since {x∗, λ∗} is any KKT point, we have

x∗ = argmin
x

F(x) +
〈
λ∗,

2∑

i=1

Aixi − b

〉
.

So

F(x∗) = F(x∗) +
〈
λ∗,

2∑

i=1

Aix∗
i − b

〉
≤ F(x) +

〈
λ∗,

2∑

i=1

Aixi − b

〉
, ∀x. (11)

Thus we have

1

2β
‖λ̂K+1 − λ∗‖2 ≤ C,

which leads to

‖λ̂K+1 − λ̂0‖ ≤ ‖λ̂K+1 − λ∗‖ + ‖λ∗ − λ̂0‖ ≤ √2βC + ‖λ∗ − λ̂0‖.
From Lemma 1, we have

∥∥∥∥∥

K∑

k=0

[∑2
i=1 Aix

k+1
i − b

θk
−
∑2

i=1 Aixk
i − b

θk−1 + τ

(
2∑

i=1

Aixk
i − b

)]∥∥∥∥∥

≤
√
2βC + ‖λ∗ − λ̂0‖

β
.

��
Both Propositions 2 and 3 have a similar form to (8). Thus we have extended Nesterov’s

first acceleration scheme from unconstrained problems to constrained problems. Moreover,
from Proposition 3 we can see that Nesterov’s acceleration scheme is critical to accelerate
not only the decrease of the objective, but also the constraint error.

In Proposition 3, the summation lies inside the norm ‖·‖. Thus it is more difficult to bound∥∥∥Ax
K+1−b
θ K

∥∥∥ than bounding 1
θ K (F(xK+1) − F(x∗) + 〈λ∗,AxK+1 − b〉) from Propositon 2.

We discover the following critical Lemma which can overcome this difficulty.

Lemma 2 Consider a sequence {a1, a2, . . .} of vectors, if {ak} satisfies
∥∥∥∥∥(1/τ + K (1/τ − 1))aK+1 +

K∑

k=1

ak

∥∥∥∥∥ ≤ c, ∀K = 0, 1, 2, . . . .

where 1 > τ > 0. Then ‖∑K
k=1 a

k‖ < c for all K = 1, 2, . . ..

Proof For each K ≥ 0, there exists cK+1 with every entry cK+1
i ≥ 0 such that

−cK+1
i ≤ (1/τ + K (1/τ − 1))aK+1

i +
K∑

k=1

ak
i ≤ cK+1

i ,
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and ‖cK+1‖ = c. Let sK
i =∑K

k=1 a
k
i , ∀K ≥ 1 and s0i = 0, then

−cK+1
i − sK

i

1/τ + K (1/τ − 1)
≤ aK+1

i ≤ cK+1
i − sK

i

1/τ + K (1/τ − 1)
, ∀K ≥ 0,

where we use 1/τ > 1 and 1/τ + K (1/τ − 1) > 0. Thus, for all K ≥ 0, we have

sK+1
i

= aK+1
i + sK

i

≤ cK+1
i − sK

i

1/τ + K (1/τ − 1)
+ sK

i

= cK+1
i

1/τ + K (1/τ − 1)
+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)
sK

i

≤ cK+1
i

1/τ + K (1/τ − 1)

+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

(
cK

i

1/τ + (K − 1)(1/τ − 1)
+ K (1/τ − 1)

1/τ + (K − 1)(1/τ − 1)
sK−1

i

)

≤ cK+1
i

1/τ + K (1/τ − 1)
+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

cK
i

1/τ + (K − 1)(1/τ − 1)

+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

K (1/τ − 1)

1/τ + (K − 1)(1/τ − 1)

(
cK−1

i

1/τ + (K − 2)(1/τ − 1)

+ (K − 1)(1/τ − 1)

1/τ + (K − 2)(1/τ − 1)
sK−2

i

)

≤ cK+1
i

1/τ + K (1/τ − 1)

+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

cK
i

1/τ + (K − 1)(1/τ − 1)

+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

K (1/τ − 1)

1/τ + (K − 1)(1/τ − 1)

cK−1
i

1/τ + (K − 2)(1/τ − 1)

+ · · ·

+
⎛

⎝
K+1∏

j=2

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)

⎞

⎠
(

c1i
1/τ + 0(1/τ − 1)

+ 1/τ − 1

1/τ + 0(1/τ − 1)
s0i

)

=
K+1∑

k=1

⎛

⎝ ck
i

1/τ + (k − 1)(1/τ − 1)

K+1∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)

⎞

⎠ ,

where we set
∏K+1

j=K+2
j(1/τ−1)

1/τ+( j−1)(1/τ−1) = 1. Define

rk = 1

1/τ + (k − 1)(1/τ − 1)

K+1∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)
, ∀k = 1, 2, . . . , K + 1.
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Then we have rk > 0 and sK+1
i ≤ ∑K+1

k=1 rkck
i . Similarly, we also have sK+1

i ≥
−∑K+1

k=1 rkck
i . Thus

|sK+1
i | ≤

K+1∑

k=1

rkck
i .

Define

RK+1 =
K+1∑

k=1

1

1/τ + (k − 1)(1/τ − 1)

K+1∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)
,

RK =
K∑

k=1

1

1/τ + (k − 1)(1/τ − 1)

K∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)
,

and

R1 =
1∑

k=1

1

1/τ + (k − 1)(1/τ − 1)

1∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)
= τ.

Then we have

RK+1

= 1

1/τ + K (1/τ − 1)
+

K∑

k=1

1

1/τ + (k − 1)(1/τ − 1)

K+1∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)

= 1

1/τ + K (1/τ − 1)

+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)

K∑

k=1

1

1/τ + (k − 1)(1/τ − 1)

K∏

j=k+1

j(1/τ − 1)

1/τ + ( j − 1)(1/τ − 1)

= 1

1/τ + K (1/τ − 1)
+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)
RK .

Next, we prove RK < 1,∀K ≥ 1 by induction. It can be easily checked that R1 = τ < 1.
Assume that RK < 1 holds, then

RK+1 <
1

1/τ + K (1/τ − 1)
+ (K + 1)(1/τ − 1)

1/τ + K (1/τ − 1)
= 1.

So by induction we can have RK < 1,∀K ≥ 1.
So for any K ≥ 0, we have

(sK+1
i )2 ≤

(
K+1∑

k=1

rk

)2 (∑K+1
k=1 rkck

i∑K+1
k=1 rk

)2

≤
(

K+1∑

k=1

rk

)2 ∑K+1
k=1 rk(ck

i )
2

∑K+1
k=1 rk

<

K+1∑

k=1

rk(ck
i )

2,

where we use
∑K+1

k=1 rk = RK+1 < 1 and the Jensen inequality for x2. So we have

‖SK+1‖2 =
∑

i

(sK+1
i )2 <

K+1∑

k=1

rk
∑

i

(ck
i )

2 =
K+1∑

k=1

rkc2 < c2,

where we use ‖ck‖ = c,∀k ≥ 1. So ‖∑K+1
k=1 ak‖ = ‖SK+1‖ < c,∀K ≥ 0. ��
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Based on Propositions 2 and 3, we can have the O(1/K ) nonergodic convergence rate in
Theorem 1.

Theorem 1 If the conditions in Proposition 2 hold, then for Algorithm 1 we have

− 2τC1‖λ∗‖
1 + K (1 − τ)

≤ F(xK+1) − F(x∗) ≤ C + 2τC1‖λ∗‖
1 + K (1 − τ)

,

and
∥∥∥AxK+1 − b

∥∥∥ ≤ 2τC1

1 + K (1 − τ)
,

where C1 =
√
2βC+‖λ∗−λ0‖

τβ
and C is defined in Proposition 3.

Proof From (10), (11) and Proposition 3, we can have

F(xK+1) − F(x∗) +
〈
λ∗,

2∑

i=1

Aix
K+1
i − b

〉
≤ Cθ K ,

and
√
2βC + ‖λ∗ − λ̂0‖

β

≥
∥∥∥∥∥

K∑

k=0

{∑2
i=1 Aix

k+1
i − b

θk
−
∑2

i=1 Aixk
i − b

θk−1 + τ

(
2∑

i=1

Aixk
i − b

)}∥∥∥∥∥

=
∥∥∥∥∥

∑2
i=1 Aix

K+1
i − b

θ K
−
∑2

i=1 Aix0i − b

θ−1 +
K∑

k=0

τ

(
2∑

i=1

Aixk
i − b

)∥∥∥∥∥

=
∥∥∥∥∥

∑2
i=1 Aix

K+1
i − b

θ K
+

K∑

k=1

τ

(
2∑

i=1

Aixk
i − b

)∥∥∥∥∥ , ∀K = 0, 1, 2, . . . .

where we use 1
θ−1 − τ = 1−θ0

θ0
= 0. Since 1

θk = 1
θk−1 + 1 − τ = 1

θ0
+ k(1 − τ), we have

θk = 1
1
θ0

+k(1−τ)
= 1

1+k(1−τ)
. For simplicity, let ak =∑2

i=1 Aixk
i − b. Then we can have

∥∥∥∥∥(1/τ + K (1/τ − 1))aK+1 +
K∑

k=1

ak

∥∥∥∥∥ ≤
√
2βC + ‖λ∗ − λ̂0‖

τβ
≡ C1, ∀K = 0, 1, . . . .

From Lemma 2 we have ‖∑K
k=1 a

k‖ ≤ C1,∀K = 1, 2, . . .. So ‖aK+1‖ ≤ 2C1
1/τ+K (1/τ−1) ,

∀K = 1, 2, . . .. Moreover, ‖a1‖ ≤ τC1 ≤ 2C1
1/τ+0(1/τ−1) . So

∥∥∥∥∥

2∑

i=1

Aix
K+1
i − b

∥∥∥∥∥ ≤ 2τC1

1 + K (1 − τ)
, ∀K = 0, 1, . . . ,

Thus we can have

F(xK+1) − F(x∗) ≤ Cθ K + ‖λ∗‖
∥∥∥∥∥

2∑

i=1

Aix
K+1
i − b

∥∥∥∥∥
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≤ C

1 + K (1 − τ)
+ 2τC1‖λ∗‖

1 + K (1 − τ)
,

and

F(xK+1) − F(x∗) ≥ −‖λ∗‖
∥∥∥∥∥

2∑

i=1

Aix
K+1
i − b

∥∥∥∥∥ ≥ − 2τC1‖λ∗‖
1 + K (1 − τ)

,

which is derived from (11). ��

From Theorem 1 we can see that the O(1/K ) nonergodic convergence rate exists only if
τ < 1. In fact, only when τ < 1, θk = 1

1+k(1−τ)
is in the order of O(1/k) and Nesterov’s

acceleration scheme is effective. As discussed in Sect. 3.1, ALADMM-NE reduces to the
traditional LADMM when τ = 1.

3.4 Tips on the Choice of the Algorithms

In applications where the practical performance of (L)ADMM coincides with its theoretical
convergence rate, it is guaranteed that ALADMM-NE practically outperforms (L)ADMM.
However, in the caseswhere (L)ADMMconvergesmuch faster than its theoretical rate, e.g., in
applications of Robust PCA [29] that (L)ADMM almost linearly converges, we empirically
observe that the superiority of ALADMM-NE and the accelerated ADMM in [18] is not
obvious. In fact, due to the special setting of θk which dependents on k, ALADMM-NE
and the method in [18] have exactly the O(1/K ) convergence rate measured at {xK

1 , xK
2 }

even for the strongly convex problems. So in practice, we suggest that when the problem
is complex and does not satisfy the linear convergence conditions [20–24], ALADMM-NE
and the accelerated ADMM in [18] are better choices than the traditional (L)ADMM. When
sparseness or low-rankness is required, ALADMM-NE is better than the accelerated ADMM
in [18].

Donoghue and Candès [30] proposed a restart strategy for Nesterov’s first acceleration
scheme when minimizing the unconstrained problems, in which the algorithm is restarted
after some iterations by setting θk+1 = 1 and yk+1 = xk+1. Then the linear convergence
is guaranteed even for the sublinear setting of θk [31]. A similar technique is discussed
for Nesterov’s second scheme in [32]. So we can apply the restart scheme for the acceler-
ated ADMM in [18] and ALADMM-NE. The latter is described in Algorithm 2. We restart
ALADMM-NE as long as ‖Axk+1 − b‖ increases. We set θk+1 = θk = 1 in the if-clause to
make yk+1 = xk+1 when the algorithm is restarted. We use the criterion θk+1 < ε to prevent
frequent restart and only restart when θk becomes small.

4 Tightness of the o(1/
√
K)Nonergodic Rate for the Traditional ADMM

In this section we show that the o
(

1√
K

)
rate is tight for ADMM, at least for the constraint,.

We study a special problem [9,33], on which the Alternating Projection Method (APM) and
DR splitting perform slowly. They converge arbitrarily slowly on the measure of ‖xk − x∗‖
and converge with the tight o

(
1√
k

)
rate on the measure of f (xk)− f (x∗). The discussion in

this section also suits for LADMM and the accelerated ADMM in [18] (measured at (zk
1, z

k
2))

since they are equivalent to ADMM on this special problem.
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Algorithm 2 Accelerated LADMM with NonErgodic convergence rate and
Restart(ALADMM-NER)

Initialize λ0, x0i = x−1
i , i = 1, 2, 1 > τ > 0.5, β > 0, θ0 = 1, 1 > ε > 0, θ−1 = 1/τ .

for k = 0, 1, 2, . . . do
Update yk

i , i = 1, 2 using (5a),

Update xk+1
1 and xk+1

2 serially using (6a) and (6b),

Update λ̂k+1 using (5d),
θk+1 = 1

1−τ+ 1
θk

.

if ‖∑2
i=1 Aix

k+1
i − b‖ ≥ ‖∑2

i=1 Aix
k
i − b‖ and θk+1 < ε then

θk+1 = 1, θk = 1
end if

end for

Table 2 Theoretical complexity comparisons among ALADMM-NE, ADMM, DR and APM on problem (12)

Theoretical complexity bound

APM f (xk ) − f (x∗) ≥ Ω
(

1
ka

)

DR f (xk ) − f (x∗) ≥ Ω
(

1
ka

)

ADMM f (xk ) − f (x∗) ≥ Ω
(

1
ka

)
, ‖zk − xk‖ ≥ Ω

(
1

ka

)

ALADMM-NE f (xk ) − f (x∗) ≤ O(1/k), ‖zk − xk‖ ≤ O(1/k)

a is any constant satisfying a > 0.5

Let ϑi be a sequence of angles in (0, π/2) with cos(ϑi ) =
√

i
i+1 . Let e0 = (1, 0),

eπ/2 = (0, 1) and eϑi = cos(ϑi )e0 + sin(ϑi )eπ/2. Define two lines U = span{e0} and
Vi = span{eϑi }, then U

⋂
Vi = {0}. Consider the Hilbert space H = R2⊕R2⊕ . . . and

define

U = R · e0 × R · e0 × · · · ,

V = R · eϑ0 × R · eϑ1 × · · · .

We consider problem

min
x

f (x) = h(x) + g(x), (12)

where h(x) = IU(x) is the indicator function of U, g(x) = β√
2a−1

dV(x), dV(x) =
minv∈V ‖x − v‖ and a can be any constant satisfying a > 0.5. This problem can be solved
by ADMM and ALADMM-NE by transforming it to

min
x,z

h(x) + g(z) s.t . z − x = 0. (13)

Proposition 4 says that the o
(

1√
K

)
rate is tight for ADMM. This means that the slow

o
(

1√
K

)
nonergodic convergence rate of ADMM is not due to the weakness of the proof, but

that ofADMMitself. It is difficult to establish the lower complexity bound of |h(xk)+g(zk)−
h(x∗) − g(z∗)|, so we only measure f (xk) − f (x∗) for simplicity. It should be noted that
Proposition 4 is ADMM specified and it does not suit for ALADMM-NE. As comparison, we
can establish ‖zk+1 − xk+1‖ ≤ O(1/k) and f (xk) − f (x∗) ≤ O(1/k) for ALADMM-NE,
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which establishes the superiority of ALADMM-NE with theoretical guarantee.2 We list the
comparisons in Table 2.

Proposition 4 Let x0 =
([ 1

(i+1)a

0

])

i≥1

, λ0 = 0, a > 0.5, then for ADMM with iterations

(2a)–(2c) we have ‖zk+1 − xk+1‖ ≥ Ω
(

1
(k+2)a

)
and f (xk) − f (x∗) ≥ Ω

(
β√

2a−1(k+1)a

)
.

In Proposition 4 we specialize the initialization of x0 and λ0, where ‖x0 −x∗‖ is bounded
and independent on k. This is a standard trick in the analysis of lower bound. Proposition 4
can be proved using the same proof framework in [9], so we omit the details.

One may think that the increasing penalty β

θk in ALADMM-NE is the deciding factor of
the improved convergence rate. However, this is incorrect. Empirically, large penalty speeds
up the decrease of the constraint error in ADMM [28]. But this is not guaranteed in theory.
In fact, From Proposition 4 we can see that the constraint error is independent of β, which

means that the decrease of the constraint error cannot be faster than o
(

1√
K

)
no matter how

large β is. There are two reasons for this result: 1. It is equivalent to minimizing the sum of
two indicator functions when using ADMM to solve problem (13) and β has no influence
on the projection operation; 2. x and z are updated serially, not parallel. Thus although the
gradually increasing penalty in ALADMM-NE plays an important role to cooperate with
Nesterov’s acceleration scheme, Nesterov’s scheme is indeed the critical factor to improve
the convergence rate in theory. Large penalty cannot improve the convergence rate of ADMM
even for the constraint.

5 Lower Complexity Bound

Recently, Woodworth and Srebro [34] established the O(1/K ) lower complexity bound of
the stochastic gradient methods for optimizing the finite sum problem: minx 1

m

∑m
i=1 fi (x),

where each fi is nonsmooth and non-strongly convex. In this section we use Woodworth
and Srebro’s result to analyze the general splitting scheme, and then extend it to the general
ADMM type methods, which deal with the additional linear constraint.

5.1 Splitting Scheme

We consider the following problem:

min
x∈X F1(x) + F2(x).

We call a method belonging to the general splitting scheme if it has the form of

Generate zt
1 based on {x1:t1 , x1:t2 , z1:t−1

1 , z1:t2 , F1(z
1:t−1
1 ), F2(z1:t2 )},

xt+1
1 = ProxF1/β t (zt

1),

Generate zt+1
2 based on {x1:t+1

1 , x1:t2 , z1:t1 , z1:t2 , F1(z1:t1 ), F2(z1:t2 )},
xt+1
2 = ProxF2/β t (zt+1

2 ),

(14)

2 ALADMM-NE can be applied to Hilbert spaces. Since g(z) is continuous [9], we have f (xk ) − f (x∗) ≤
|h(xk ) + g(zk ) − h(x∗) − g(z∗)| + |g(zk ) − g(xk )| ≤ O(1/k) + O(L/k) = O(1/k).
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at the t th iteration and β t is arbitrary. We denote x1:t = {x1, . . . , xt } and F(x1:t ) =
{F(x1), . . . , F(xt )} for simplicity. In this general scheme, two proximal subproblems are
solved alternatively and {zk

1, z
k+1
2 } can be generated in any way, e.g., zt

1 ∈ Span{x1:t1 , x1:t2 ,

z1:t−1
1 , z1:t2 } and zt+1

2 ∈ Span{x1:t+1
1 , x1:t2 , z1:t1 , z1:t2 }. The algorithm belonging to this scheme

accesses the objectives F1 and F2 only through the oracle of (ProxFi /β
t (x), Fi (x), i = 1, 2).

It generates the next iterates of {zt+1
1 , zt+2

2 } based on the previous responses of the oracle. This
general splitting scheme includes many famous splitting algorithms, such as DR splitting,
which consists of the following steps:

xt+1
1 = ProxF1/β(zt ),

xt+1
2 = ProxF2/β(2xt+1

1 − zt
1),

zt+1 = zt − xt+1
1 + xt+1

2 .

For this general splitting scheme, we can have the O (1/K ) lower bound, which is
described in the following proposition. Note that we do not aim to construct a counterexample
such that for all algorithms satisfying (14), they converge slowly. Instead, for any algorithm
satisfying (14), we want to construct a counterexample such that it converges slowly. The
counterexample is not algorithm independent.

Proposition 5 For any algorithm belonging to the general splitting scheme (14), there exist
convex and L-Lipschitz continuous functions F1 and F2 defined over X = {x ∈ R

6k+2 :
‖x‖ ≤ B}, such that

F1(x̂k) + F2(x̂k) ≥ L B

8(k + 1)
,

where x̂k =∑k
i=1 αi

1x
i
1 +∑k

i=1 αi
2x

i
2, ∀αi

1 and ∀αi
2, i = 1, . . . , k.

Proposition 5 can be proved using the same analysis framework in [34]. We give the proof
sketch for the reader’s convenience. For the detailed analysis, please see [34].
Proof Sketch: For any algorithm belonging to the splitting scheme (14), wewant to construct
a hard function for witch the algorithm converges slowly. For simplicity, we let L = 1 and
B = 1. Initialize z12, x

1
1, x

1
2, v

1, v0 and F1
1 = 1√

2
|b − 〈x, v0〉 | + 1

4
√

k
| 〈x, v0〉− 〈x, v1〉 | such

that ‖v1‖ = 1, ‖v0‖ = 1 and v1⊥v0. We use an adversary strategy to construct the hard
function, i.e., at the t th iteration the algorithm quires the oracle with (zt

1, z
t+1
2 , β t ) and an

adversary responses with an answer of (ProxFt
1/β

t (zt
1),ProxFt

2/β
t (zt+1

2 ), Ft
1(z

t
1), Ft

2(z
t+1
2 )).

The algorithm accesses the problem only through the oracle and it makes the decisions
based on the previous responses of the oracle. The adversary constructs the hard function
gradually based on the previous queries of the algorithm. Specifically, at the t th iteration with
t = 1, . . . , k, we perform the following steps:

Algorithm:

Generate zt
1 based on {x1:t1 , x1:t2 , z1:t−1

1 , z1:t2 , F1(z
1:t−1
1 ), F2(z1:t2 )},

xt+1
1 = ProxFt

1/β
t (zt

1), F1(zt
1) = Ft

1(z
t
1),

Adversary:

Construct v2t⊥{v0:2t−1, z1:t1 , z1:t2 , x1:t1 , x1:t2 } such that ‖v2t‖ = 1,

Construct Ft
2 = 1√

2
|b − 〈x, v0〉 | + 1

4
√

k

t∑

r=1

| 〈x, v2r−1〉− 〈x, v2r 〉 |,
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Algorithm:

Generate zt+1
2 based on {x1:t+1

1 , x1:t2 , z1:t1 , z1:t2 , F1(z1:t1 ), F2(z1:t2 )},
xt+1
2 = ProxFt

2/β
t (zt+1

2 ), F2(z
t+1
2 ) = Ft

2(z
t+1
2 ),

Adversary:

Construct v2t+1⊥{v0:2t , z1:t1 , z1:t+1
2 } such that ‖v2t+1‖ = 1,

Construct Ft+1
1 = 1√

2
|b − 〈x, v0〉 | + 1

4
√

k

t+1∑

r=1

| 〈x, v2r−2〉− 〈x, v2r−1〉 |, (15)

where Ft
1 and Ft

2 are adaptive of the history iterates, i.e., we construct Ft
1 and Ft

2 based on
the history iterates and they are different from each other at different iterations. However,
due to the orthogonality between v and z, we can prove the following relations

ProxFt
1/β

t (zt
1) = ProxFk

1 /β t (zt
1), Ft

1(z
t
1) = Fk

1 (zt
1), ∀t ≤ k,

ProxFt
2/β

t (zt+1
2 ) = ProxFk

2 /β t (zt+1
2 ), Ft

2(z
t+1
2 ) = Fk

2 (zt+1
2 ), ∀t ≤ k.

Thus we can replace Ft
1 and Ft

2 with Fk
1 and Fk

2 in (15), based on which the adversary
responses with the same answers of the queries with (zt

1, z
t+1
2 , β t ). In other words, this

replacement does not influence the behavior of the algorithm and (15) produces the same
sequence of {xk

1, x
k
2} with the following algorithm scheme, which performs

Generate zt
1 in the same way with (15),

xt+1
1 = ProxFk

1 /β t (zt
1), F1(zt

1) = Fk
1 (zt

1),

Generate zt+1
2 in the same way with (15),

xt+1
2 = ProxFk

2 /β t (zt+1
2 ), F2(z

t+1
2 ) = Fk

2 (zt+1
2 ),

(16)

at the t th iteration. In scheme (16), we use Fk
1 and Fk

2 , rather than Ft
1 and Ft

2.
We can prove that Fk

i is convex and 1-Lipschitz continuous. Fk(x) ≡ Fk
1 (x) + F2(x)

achieves the minimum at x∗ = b
∑2k

r=0 vr . If we let b = 1√
2k+1

, then ‖x∗‖ = 1. Due to the

special form of Fk(x), we can prove Fk(x̂k) − Fk(x∗) ≥ 1
8(k+1) . ��

5.2 General ADMMTypeMethods

Nowwe use Proposition 5 to establish the lower complexity bound of ADMM type methods.
Consider the following special case of problem (1):

min
x1,x2∈X

F1(x1) + F2(x2), s.t . x1 − x2 = 0. (17)

We consider the general ADMM type methods with the property of alternatingly minimizing
the augmented Lagrangian function. Specifically, define the general ADMM type methods
as
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Generate λt
2 based on {x1:t1 , x1:t2 , λ1:t1 , λ1:t−1

2 } and yt
2 based on {x1:t1 , x1:t2 },

xt+1
1 = argmin

z
L(x1, yt

2, λ
t
2, β

t ) = ProxF1/β t

(
yt
2 − λt

2

β t

)
,

Generate λt+1
1 based on {x1:t+1

1 , x1:t2 , λ1:t1 , λ1:t2 } and yt+1
1 based on {x1:t+1

1 , x1:t2 },

xt+1
2 = argmin

x
L(yt+1

1 , x2, λ
t+1
1 , β t ) = ProxF2/β t

(
yt+1
1 − λt+1

1

β t

)
,

(18)

at the t th iteration and β t can be any value. It can be checked that the traditional ADMM and
ALADMM-NE (with fi = 0 and Ai = I) belong to this general scheme.

We can see that procedure (18) belongs to (14) by letting zt
1 = yt

2 − λt
2

β t and zt+1
2 =

yt+1
1 + λt+1

1
β t . Letting x̂k

1 = ∑k
i=1 αi

1x
i
1 and x̂k

2 = ∑k
i=1 αi

2x
i
2, then from Proposition 5 we

know that there exists convex and L-continuous F1 and F2 such that F1(x̂k
2) + F2(x̂k

2) −
F1(x∗) − F2(x∗) ≥ L B

8(k+1) . Since F1 is L-continuous: |F1(x̂k
2) − F1(x̂k

1)| ≤ L‖x̂k
2 − x̂k

1‖, we
can have F1(x̂k

2) ≤ F1(x̂k
1) + L‖x̂k

2 − x̂k
1‖ and

L B

8(k + 1)
≤F1(x̂k

2) + F2(x̂k
2) − F1(x∗) − F2(x∗)

≤L‖x̂k
2 − x̂k

1‖ + F1(x̂k
1) + F2(x̂k

2) − F1(x∗) − F2(x∗)
≤L‖x̂k

2 − x̂k
1‖ + |F1(x̂k

1) + F2(x̂k
2) − F1(x∗

1) − F2(x∗
2)|

where x∗ = x∗
1 = x∗

2. Thuswe have the following lower complexity bound proposition for the
generalADMMtypemethods for both the ergodic and nonergodic case, where the nonergodic
bound can be obtained by letting αi

1 = αi
2 = 0, i = 1, . . . , k − 1, and αk

1 = αk
2 = 1.

Proposition 6 For any algorithm belonging to the general splitting scheme (18), there exists
convex and L-continuous functions F1 and F2 defined over X = {x ∈ R

6k+2 : ‖x‖ ≤ B},
such that

L‖x̂k
2 − x̂k

1‖ + |F1(x̂k
1) + F2(x̂k

2) − F1(x∗
1) − F2(x∗

2)| ≥ L B

8(k + 1)
.

where x̂k
1 =∑k

i=1 αi
1x

i
1 and x̂k

2 =∑k
i=1 αi

2x
i
2, ∀αi

1 and ∀αi
2, i = 1, . . . , k.

Since problem (17) is a special case of problem (1), we can have that O(1/K ) is the
optimal convergence rate of the general ADMM type methods (18) for problem (1). There is
no better ADMM type algorithmwhich converges faster than the O(1/K ) rate if it belongs to
the framework of (18). Moreover, (18) is general enough for the separable problem (1) while
still keeping the property of ADMM that alternately minimizes the augmented Lagrangian
function. Thus our result is general enough. Since we can easily construct some algorithms
(which may diverge) such that they can easily make one of ‖Ax − b‖ and |F(x) − F(x∗)|
small but difficult to keep both small, this is why we use the summation in Proposition 6.

6 Experiments on the Group Sparse Logistic Regression with Overlap

In this section we test the performance of ALADMM-NE and ALADMM-NER on the Group
Sparse Logistic Regression with Overlap. This problem can be deemed as a combination of
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the Group Sparse Logistic Regression [35] and the Group LASSO with Overlap [36]. Its
mathematical model is as follows:

min
w,b

1

s

s∑

i=1

log(1 + exp(−yi (wT xi + b))) + ν

t∑

j=1

‖S jw‖,

where xi and yi are the training samples and labels. w and b are the parameters for the
classifier. s is the sample size and t is the group size.S j , j = 1, . . . , t are the selectionmatrices
with only one 1 at each row and 0 for the rest entries. We consider the case that the groups
of entries may overlap each other. We can transform the problem to a linearly constrained

one by introducing S j = (S j ; 0), S =
⎛

⎜⎝
S1
...

St

⎞

⎟⎠, w =
(
w
b

)
, xi =

(
x
1

)
, z j = S jw and

z =
⎛

⎜⎝
z1
...

zt

⎞

⎟⎠:

min
w,z

1

s

s∑

i=1

log(1 + exp(−yi (wT xi ))) + ν

t∑

j=1

‖z j‖, s.t . z = Sw. (19)

We carry out the experiment on the breast cancer gene expression data set [37]. 3510
genes in 295 breast cancer tumors are considered in our experiment, which appear in 637
gene groups. Gene selection is a key purpose in this problem. The group sparsity regulariza-
tion helps to decide which groups of Genes play a central role in the cancer prediction. Thus
the group sparsity is strongly required.

We compare ALADMM-NE and ALADMM-NER with LADMM and the acceler-
ated LADMM (ALADMM) [18]. We set the initializer at 0 and run all the methods
for 2000 iterations. We set τ = 0.8 for ALADMM-NE and ALADMM-NER and
ε = 0.02 for ALADMM-NER. For ALADMM, we set the parameters following the
assumptions in Theorem 2.6 of [18]. We set β = 0.3 for LADMM, β = 0.06 for
erg-ALADMM, β = 0.4 for nerg-ALADMM, β = 0.08 for ALADMM-NE andALADMM-
NER for the best performance of each algorithm, respectively, where erg-ALADMM
(erg-LADMM) means that we use the ergodic solution xK for ALADMM (

∑K
k=1 x

k/K
for LADMM) and nerg-ALADMM (nerg-LADMM) means that we use the nonergodic
solution zK for ALADMM (xK for LADMM).Ouyang et al. [18] proposed a backtrack-
ing scheme to estimate ‖S‖2 and the Lipschitz constant L . Since ‖S‖2 and L can be
exactly computed in our problem, we do not use the backtracking scheme for simplic-
ity.

Figure 1 draws the plots of the objective function value, the constraint error, the spar-
sity and the group sparsity vs. time. We run LADMM for 100,000 iterations and use its
nonergodic output as the optimal (w∗, z∗), which is used to plot

∣∣F(wk, zk) − F(w∗, z∗)
∣∣.

We can see that both erg-LADMM and erg-ALADMM have a less favorable sparsity and
group sparsity than their nonergodic counterparts, this verifies that the nonergodic mea-
surement is required. However, Nerg-ALADMM decreases the objective function slower
than erg-ALADMM. In some practical applications, ADMM can perform better than the
theoretical bound. Thus it is not strange that nerg-LADMM converges faster than erg-
LADMM. As comparison, ALADNM-NE and ALADMM-NER not only run faster than
the compared methods but also have the sparsity and group sparsity as well as nerg-LADMM
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Fig. 1 Compare ALADMM-NE and ALADMM-NER with LADMM and ALADMM on the Group Sparse
Logistic Regression problem. We present the function value, constraint error, sparsity (percent of selected
Genes) and Group sparsity (number of non-empty groups)

and nerg-ALADMM. In ADMM type methods, the monotonicity of the objective function
and the constraint error cannot be guaranteed in theory. This leads to the oscillation in
Fig. 1.

7 Conclusions

In this paper, we modify the accelerated ADMM proposed in [18] and give an O(1/K )

nonergodic analysis in the sense of |F(xK ) − F(x∗)| ≤ O(1/K ) and ‖AxK − b‖ ≤
O(1/K ), where the nonergodic result has a more favorable sparseness and low-rankness
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than the ergodic one. This is the first O(1/K ) nonergodic convergent ADMM type
method and surpasses the o(1/

√
K ) nonergodic rate of the traditional ADMM. Moreover,

we show that the lower complexity bound of ADMM type methods is O(1/K ) when
each Fi is nonsmooth and non-strongly convex, which means that our method is opti-
mal.
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