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a b s t r a c t

Despite recent success of deep learningmodels in numerous applications, their widespread use onmobile
devices is seriously impeded by storage and computational requirements. In this paper, we propose
a novel network compression method called Adaptive Dimension Adjustment Tucker decomposition
(ADA-Tucker). With learnable core tensors and transformation matrices, ADA-Tucker performs Tucker
decomposition of arbitrary-order tensors. Furthermore, we propose that weight tensors in networks
with proper order and balanced dimension are easier to be compressed. Therefore, the high flexibility
in decomposition choice distinguishes ADA-Tucker from all previous low-rank models. To compress
more, we further extend the model to Shared Core ADA-Tucker (SCADA-Tucker) by defining a shared
core tensor for all layers. Our methods require no overhead of recording indices of non-zero elements.
Without loss of accuracy, our methods reduce the storage of LeNet-5 and LeNet-300 by ratios of 691×
and 233×, respectively, significantly outperforming state of the art. The effectiveness of our methods is
also evaluated on other three benchmarks (CIFAR-10, SVHN, ILSVRC12) andmodern newly deep networks
(ResNet, Wide-ResNet).

© 2018 Elsevier Ltd. All rights reserved.

1. Introduction

Driven by increasing computation power of GPUs and huge
amount of data, deep learning has recently made great achieve-
ments in computer vision, natural language processing and speech
recognition. In the history of neural network (He, Zhang, Ren,
& Sun, 2016; Huang, Liu, Weinberger, & van der Maaten, 2017;
Krizhevsky, Sutskever, & Hinton, 2012; LeCun, Bottou, Bengio, &
Haffner, 1998; Simonyan & Zisserman, 2014; Szegedy et al., 2015),
networks tend to have more layers and more weights. Although
deeper neural networks may achieve better results, the expense of
storage and computation is still a great challenge. Due to limits of
devices and increasing demands frommany applications, effective
network compression for convolutional (Conv) layers and fully-
connected (FC) layers is a critical research topic in deep learning.

So far, as illustrated in Fig. 1, mainstreammethods for network
compression can be categorized into four groups: reducing the bits
of weight representation, effective coding, making weights sparse
and simplifying the network structure. These four methods can
be combined together for higher compression ratio with little loss
in network performance. Han et al. have combined the first three
methods in Han, Mao, and Dally (2016).
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Reducing the bits of weight representation and effective coding.
There are two approaches for the first category: clustering and
quantization. BinaryConnect (Courbariaux, Bengio, & David, 2015)
enforces weights in neural networks to take binary values. In-
cremental network quantization (Zhou, Yao, Guo, Xu, & Chen,
2017) quantizes deep models with 5 bits incrementally. Gong, Liu,
Yang, and Bourdev, (2015) learn CNNs in advance, and then apply
k-means clustering on theweights for quantization. Ullrich,Meeds,
and Welling, (2017) cluster the weights with a Gaussian mixture
model (GMM), using only six class centers to represent all weights.
The second category, effective coding, always combines with the
first category, where the coding scheme is mainly Huffman cod-
ing. DeepCompression Han et al. (2016) first introduces Huffman
coding in network compression and improves the compression
ratios further. CNNPack (Wang, Xu, You, Tao, & Xu, 2016) also uses
Huffman coding and gets better results.

Making weights sparse. Sparsity can be induced in either the orig-
inal domain or the frequency domain. The most commonly used
sparsity method in the original domain is pruning. Han, Pool, Tran,
& Dally, (2015) recursively train a neural network and prune unim-
portant connections based on their weight magnitude. Dynamic
network surgery (Guo, Yao, & Chen, 2016) prunes and splices the
branch of the network. The frequency domain sparsity methods
benefit from discrete cosine transformation (DCT). Chen, Wilson,
Tyree,Weinberger, andChen (2016) take advantage ofDCT tomake
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Fig. 1. Four categories of mainstream compression methods, which can be combined for higher compression ratio. ‘‘a×’’ etc. means that the network is compressed by a
times.

weights sparse in the frequency domain. Wang et al. (2016) com-
bine DCT, clustering and Huffman coding for further compression.

Simplifying the network structure. A common approach of the
fourth category involves matrix and tensor decomposition, while
another rarely used approach called teacher–student model (Ba
& Caruana, 2014; Hinton, Vinyals, & Dean, 2014) tries to reduce
the depth of networks. Low-rank models were first used in the
fully-connected layer (Denil, Shakibi, Dinh, de Freitas, et al., 2013).
They utilize singular value decomposition (SVD) to reduce the
computation and storage. Tensor Train decomposition (Novikov,
Podoprikhin, Osokin, & Vetrov, 2015) is anothermodel to compress
fully-connected layer. Denton, Zaremba, Bruna, LeCun, and Fergus
(2014), Jaderberg, Vedaldi, and Zisserman (2014) and Tai, Xiao,
Zhang, Wang, and (2016) speed up CNNs with low-rank regular-
ization. Canonical Polyadic (Lebedev, Ganin, Rakhuba, Oseledets, &
Lempitsky, 2015) and Tucker decomposition (Kim et al., 2016) are
advocated to accelerate the training of CNNs.

Our model falls into the last category, and it differs from the
existing methods in two folds. First, while previous methods gen-
erally decompose weight tensors with fixed order and dimension,
our methods adaptively adjust the original weight tensor into a
new tensor with arbitrary order before Tucker decomposition. The
superiority of such flexibility will be explained and demonstrated
in the next section. Second, the proposed model can be applied
to both Conv and FC layers, requiring no definition of new layers.
In fact, previous low-rank models implemented by defining addi-
tional layers are special cases of our methods.

In principle, ourmethods can also combinewith other three cat-
egories for higher compression ratios. In the experiments section,
we combine quantization and Huffman coding for better results.

In summary, our contributions are as follows:

• We demonstrate that deep neural networks can be better
compressed using weight tensors with proper orders and
balanced dimensions of modes without performance degra-
dation.

• We propose a novel network compression method called
ADA-Tucker with flexible decomposition that drastically
compresses deep networks while learning.

• We further extend ADA-Tucker to SCADA-Tucker with a
shared core tensor for all layers, achieving even higher com-
pression ratios with negligible accuracy loss.

2. ADA-Tucker and SCADA-Tucker

Notations: Following Kolda and Bader (2009), tensors are de-
noted by boldface Euler script letters, e.g.,A, matrices are denoted
by boldface capital letters, e.g., A, vectors are denoted by boldface
lowercase letters, e.g., a, and scalars are denoted by lowercase
letters, e.g., a. A(i) represents the parameters of the ith layer and
A(i) represents the i-mode of tensor A.

2.1. Tensor decomposition on the weight tensor

Weights of a deep neural network mainly come from Conv lay-
ers and FC layers. With weights in both types of layer represented
by tensors, methods based on tensor decomposition can be applied
to reduce the weight numbers.

For a Conv layer, its weight can be represented by a fourth
order tensor W ∈ Rh×w×s×t , where h and w represent the height
and width of the kernel, respectively, and s and t represent the
channel number of input and output, respectively. Similarly, the
weight of a FC layer can be viewed as a second order tensor W ∈

Rs×t , where s and t represent the number of the layer’s input and
output units, respectively. Thus in general, the form of a weight
tensor is a dwth order (m1,m2, . . . ,mdw )-dimensional tensorW ∈

Rm1×m2×···×mdw , where mi is the dimension of the ith mode.
The weight tensor can be original if the magnitude of mi’s is

balanced. Otherwise, it can be a reshaped version of the original
tensor according to the adaptive dimension adjustment mecha-
nism described in the next subsection. Suppose thatW is reshaped
into W̃ ∈ Rn1×n2×···×ndc , where n1 × n2 × · · · × ndc = m1 × m2 ×

· · · × mdw . Then based on Tucker decomposition, we decompose
the reshaped weight tensor W̃ into a dc-mode product of a core
tensor C and a series of transformation matrices {M}:

W̃ ≈ C ×1 M1 ×2 M2 ×3 ... ×dc Mdc , (1)

where C ∈ Rk1×k2×···×kdc and Mi ∈ Rni×ki (i = 1, 2, . . . , dc) are
all learnable. They need to be stored during training in order to
reconstruct W: after the dc-mode product w.r.t. C, we reshape
W̃ into W so as to produce the output of the layer in forward
propagation and pass the gradients in backward propagation.

We define W̃(i) ∈ Rni×(n1...ni−1ni+1...ndc ) and C(i) ∈

Rki×(k1...ki−1ki+1...kdc ) as the i-mode unfolding of tensor W̃ and C,
respectively, and rewrite Eq. (1) as:

W̃(i) =

MiC(i)
(
Mdc ⊗ Mdc−1 ⊗ · · · ⊗ Mi+1 ⊗ Mi−1 ⊗ · · · ⊗ M1

)T
, (2)

where ⊗ represents the Kronecker product. The gradients of loss
L w.r.t. the core tensors and the transformation matrices are as
follows:

∂L
∂Mi

=

∂L

∂W̃(i)

(
Mdc ⊗ Mdc−1 ⊗ · · · ⊗ Mi+1 ⊗ Mi−1 ⊗ · · · ⊗ M1

)
C T
(i),

(3)

∂L
∂C(i)

=

MT
i

∂L

∂W̃(i)

(
Mdc ⊗ Mdc−1 ⊗ · · · ⊗ Mi+1 ⊗ Mi−1 ⊗ · · · ⊗ M1

)
,

(4)
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Fig. 2. Illustration of ADA-Tucker: For each layer, the order for Tucker decomposition depends on the dimensions of modes of the original tensor. For different layers, orders
and dimensions of tensors can vary.

∂L
∂C

= fold
(

∂L
∂C(i)

)
. (5)

2.2. Adaptive dimension adjustment and motivation

The tendency of network overfitting suggests that there is
always redundancy among the weights which can be approxi-
mately measured by ‘rank’. And ‘rank’ is often determined by
the smaller/smallest size of different modes (e.g., for a matrix, its
rank cannot exceed its row number or column number, whichever
smaller). If the size of a mode is much smaller than others, com-
pressing along that mode will cause significant information loss.

Changing the dimension of the weight tensors to avoid the
significant information loss in DNNs has been widely used in net-
work compression. For example, Jaderberg et al. (2014) compress
networkwith low-rank regularization. In theirmodel, theymerged
the kernel height dimension and kernel width dimension into one
dimension and got success, which suggests that there exist some
information redundancy between the kernel width dimension and
kernel height dimension. ThiNet Luo, Wu, and Lin (2017) proposed
to compress the weights through the input channel dimension and
output channel dimension, which suggests that there exist some
information redundancy between the input channel dimension
and output channel dimension. Zhang, Qi, Xiao, and Wang, (2017)
proposed interleaved group convolutions that splitting the weight
tensor into several small group tensor, which alsomeans that there
exist redundancy among the four dimensions. Here, we extend
these ideas further. We treat all four dimensions of the weight
tensor equally. So we reshape the weight tensor to any order and
any shape. Here is a toy example that can illustrate this idea.
Suppose that we have 100 parameters represented by a matrix
of size 1 × 100 or 10 × 10. Obviously, the rank of the former
matrix tends to be 1, in which case rank-based compression is
hard (compressing to a zero-rank matrix will lose all information).
In contrast, a matrix of real data in the latter form can be easily
approximated with a lower-rank matrix without losing too much
information.

As a conclusion, compression will be much less effective if a
tensor is not reshaped to one with appropriate order and balanced
dimension. Motivated by such consideration, we implement adap-
tive dimension adjustment in our model that allows reshaping
weight tensors and defining core tensors of arbitrary shape. The
illustrated explanation of ADA-Tucker is showing in Fig. 2. Exper-
iments also demonstrate that both balanced dimensions of each

mode and a proper order of the weight tensor contribute to better
performance during network compression.

In the following subsection, we will describe the principle and
process of adaptive dimension adjustment.

2.2.1. Adaptive dimension adjustment for Conv layers
For a Conv layer, the basic mechanism is to reshape the origi-

nal weight tensor into a tensor with roughly even dimensions of
modes. We take the Conv1 (first convolutional) layer of LeNet-
5 as an example. The size of its original weight tensor is 5 ×

5 × 1 × 20. Normally, a mode of dimension one is redundant
and can be simply neglected (such case usually occurs in the first
convolutional layer of a neural network). Note that dimensions of
the first twomodes aremuch smaller than that of the last one.With
20 still an acceptable dimension size,wemerge the first twomodes
and get a second order tensor of size 25 × 20. We may then define
a smaller second order core tensor accordingly for decomposition.

Generally speaking, when there are few input channels (e.g., for
the first layer of a network, s = 1 or s = 3), we merge the
input and output channels into one mode, obtaining a third order
weight tensor W̃ ∈ Rh×w×st . Similar operation is conducted for
small kernel size (e.g., 1 × 1 or 5 × 5), i.e., merging the first two
modes into one to have W̃ ∈ Rhw×s×t . If these two cases occur
simultaneously, we can reduce the original fourth order weight
tensor to a matrix W̃ ∈ Rhw×st . With the same principle in mind,
when the kernel size grows large enough, it is better to maintain
the weight tensor as a fourth order tensor or even reshape it to one
with a higher order (e.g., fifth order and sixth order). In fact, the
dimension adjustment operations are not limited to simply merging
several modes: any form of reshaping operation is valid as long as
the number of weight stays the same, which, as far as we know, is
not achieved by any previous low-rank models.

We designed experiments about adaptive dimension adjust-
ment of Conv1 and Conv2 layers in LeNet5. We conducted
these experiments by changing the order of the weight tensor
of Conv1/Conv2 layer while fixing the rest. The details of the
Conv1/Conv2’s weight tensor with different orders are listed in
Tables 4 and 5 of the appendices part. We chose proper core tensor
sizes for each order to ensure the numbers of parameters under
different settings are similar. The network performances under
different settings are showing in Fig. 4. From Fig. 4, the optimal
order for Conv1 and Conv2 layers in LeNet-5 is five and three,
respectively. Here is one more important thing to mention, the
gray and yellow bars mean we did not use adaptive dimension
adjustment on these two settings. The original order for Conv
layer’s weight is four, so our ADA-Tucker degenerates to Tucker
under these two settings. From the results, if we reshape the
tensor with proper order and balanced dimensions before Tucker
decomposition, we can get better compressed results.
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Fig. 3. Illustration of SCADA-Tucker: If all layers share the same core tensor, i.e., ∀i ∈ 1, 2, . . . , l,C(i)
= C, ADA-Tucker becomes SCADA-Tucker.

Fig. 4. Dimension adjustment of Conv layers. Bars of the same color represent
experiments with similar numbers of weight, conducted by changing the order of
the weight tensor of a specific layer while fixing the rest. The optimal order for
Conv1 and Conv2 layers in LeNet-5 is five and three, respectively (better viewed
together with Tables 4 and 5). (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

2.2.2. Adaptive dimension adjustment for FC layers
Our dimension adjustmentmechanism also applies to FC layers.

Here we present an example involving a fifth order reshaped
tensor for FC2 (second fully-connected) layer of LeNet-5, which is
originally a matrix of size 500 × 10. To balance the dimensions
of modes, we reshape the original weight tensor to a size of 5 ×

5 × 5 × 5 × 8. Note that such operation does not necessarily
indicate splitting individual mode, the decomposition is allowed
to disrupt the original sequence of dimension size (e.g., 8 is a
factor of neither 500 nor 10). With the weight tensor reshaped as a
fifth order tensor according to our adaptive dimension adjustment
principle, the network finds its best structure for the FC2 layer.
To our knowledge, previous tensor decomposition methods can
only regard FC layer’s weights as a second order tensor with fixed
dimensions of modes.

We also conducted experiments about dimension adjustment
of FC1 and FC2 layers in LeNet5. We conducted this experiments
by changing the order of the weight tensor of FC1/FC2 layer while
fixing the rest. The details of the FC1/FC2’s weight tensor with
different orders are listed in the appendices part Tables 6 and 7.
The network performances under different settings are showing in
Fig. 5. From Fig. 5, a fourth order weight tensor is optimal for FC1
layer while a fifth order weight tensor is superior to others for FC2
layer. The original orders for FC1 and FC2 are both two. Same as
previous analysis, the gray and yellow bars mean we did not use
adaptive dimension adjustment on these two settings. Our ADA-
tucker also got better results than Tuckerwithout ADAon FC layers.

Fig. 5. Dimension adjustment of FC layers. Bars with same color represent exper-
iments with similar numbers of weight, conducted by changing the order of the
weight tensor of a specific layer while fixing the rest. A fourth order weight tensor
is optimal for FC1 layer while a fifth order weight tensor is superior to others for
FC2 layer (better viewed together with Tables 6 and 7). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

In summary, the optimal order of weight tensor varies for
different layers. The results indicate that previous low-rank com-
pression methods may impair network performance by constrain-
ing a fixed form of decomposition. The flexibility of ADA-Tucker
enables networks to adaptively adjust the dimensions and orders
of weight tensor when being compressed, thus achieving better
performance.

The ADA-Tucker algorithm is summarized in Algorithm 1.

2.2.3. Influence of dimension eveness of core tensor
To explore the influence of dimension eveness of core tensor,

we change the shape of core tensor and record accuracy of each
network after training them from scratch. The details of this ex-
periment settings please refer to Table 8 in appendices part. As is
shown in Fig. 6, the network with square core tensors performs
better than the one with other core shapes. Specifically, as the
difference between the two dimensions grows larger, i.e., when
the core becomes less ‘square’, the network’s accuracy decreases
accordingly. We speculate that the mechanism behind is to evenly
distribute weights across different dimensions.

Here we give amore clear summary for the adaptive dimension
adjustment mechanism based on the experiments on dimension
adjustment of Conv layers, dimension adjustment of FC layers and
influence of dimension eveness of core tensor: The mechanism is
somewhat like factorization of the number of weights for a specific
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Algorithm 1 ADA-Tucker Algorithm
Input: X, Y: training data and labels.
Input: {n(i)

1 , n(i)
2 , ..., n(i)

dc : 1 ≤ i ≤ l}: n(i)
dc is the dimension of dc

mode of the ith layer’s reshapedweight tensor, which is denoted
by adaptive dimension adjustment mechanism.
Output: {C(i),M(i)

1 ,M(i)
2 , ...,M(i)

idc
: 1 ≤ i ≤ l}: the core tensors

and transformation matrices for every layer.
Adaptive dimension adjustment: based on the input
{n(i)

1 , n(i)
2 , ..., n(i)

dc : 1 ≤ i ≤ l}, construct W̃
(i) from W (i),

define C(i) and M(i)
j , 1 ≤ i ≤ l, 1 ≤ j ≤ idc .

for number of training iterations do
Choose a minibatch of network input from X.
for i = 1, 2, 3, ..., l do
Use Eq. (1) and reshape function to rebuildW (i), useW (i) to

get the output of the ith layer.
end for
Compute the loss function L.
for i = l, l − 1, l − 2, ..., 1 do
Follow traditional backward propagation to get ∂L

∂W(i) and
compute ∂L

∂W̃(i) from
∂L

∂W(i) .
for j = 1, 2, 3, ..., idc do

Use Eq. (3) to compute ∂L
∂M (i)

j
, then updateM (i)

j .

end for
Use Eq. (4) to compute ∂L

∂C (i)
(1)
, use Eq. (5) to construct ∂L

∂C(i) ,

then update C(i).
end for

end for

Fig. 6. Influence of dimension eveness of core tensor. Experiments are conducted
by gradually increasing the aspect ratio of the second order core tensor of Conv1
(first convolutional) layer (25 × 20) in LeNet-5 while fixing the rest of the network
architecture. We control the variation of each model’s weight number within a
negligible range and test their classification accuracy on MNIST with aspect ratio
ranging from 1:9 to 8:1 (better viewed together with Table 8).

layer. The number of factors is equal to the order after the adap-
tive dimension adjustment mechanism. From the experiments of
dimension adjustment of Conv layers (Fig. 4 for performances of
all settings. Table 4 for the detail of Conv1’s weight tensor and
Table 5 for the detail of Conv2’s weight tensor) and FC layers (Fig. 5
for performances of all settings. Table 6 for the detail of FC1’s
weight tensor and Table 7 for the detail of FC2’s weight tensor), we
found that if we make factors’ values more similar with each other
(balanced dimensions), the performance is better. The factors’
value should not be too big, otherwise it will cost vast storage for
transformation matrices and lose much information (Performance
degradation in FC1 layer when the order of core tensor is two).
From the experiments of Influence of dimension eveness of core

tensor, we learn that if the reshape tensor is balanced with proper
order, the core tensor with hypercube shape will have the best
performance.

2.3. CP is a special case of Tucker and Tucker is a special case of ADA-
Tucker

Suppose now we have a d-dimensional tensor W of size n1 ×

n2 × · · · × nd and a core tensor C of size k1 × k2 × · · · × kd, Tucker
decomposition has the following form:

W ≈ C ×1 M1 ×2 M2 ×3 ... ×d Md

=

k1∑
i1=1

k2∑
i2=1

...

kd∑
id=1

Ci1i2...idm
1
i1 ⊗ m2

i2 ⊗ · · · ⊗ md
id ,

(6)

where mj
i means the ith column of matrix Mj. While CP-

decomposition has the following form:

W ≈

r∑
i=1

λim1
i ⊗ m2

i ⊗ · · · ⊗ md
i . (7)

In the case of the core tensor being a hypercube, if its elements
are nonzero when ij = i, ∀j ∈ {1, 2, 3..., d} and are zero other-
wise, then Tucker degenerates to CP. The fact that CP is a special
case of Tucker indicates that Tucker is more powerful than CP.
In fact, Tucker encodes much more compact representation as its
core tensor is denser and smaller-sized, using the mechanism of
Adaptive Dimension Adjustment. It is obvious to learn that ADA-
Tucker degenerates to Tucker without using the mechanism of
Adaptive Dimension Adjustment. Empirically, the following exper-
imental evidence is provided for detailed comparisons for these
three methods.

2.4. Shared core ADA-Tucker

With input data passing serially through each layer in a net-
work, we believe that there exist some correspondence and invari-
ance in weights across different layers. Concretely, we think that
a weight tensor preserves two kinds of information, namely, the
first kind of information tries to construct some transformations to
extract global features (encode the same object at different layers
and different scales) and the second kind of information tries to
construct some transformations to extract local specific features
for different layers and different scales. This conjecture indicates
that theremay exist shared information for transformation in func-
tions expressed as a dc-mode product between core tensors and
transformation matrices across layers. We assume that the layer-
invariant information lies in the core tensor, as it has the majority
of weights, while the transformation matrices are responsible for
the layer-specific mapping. Therefore, as illustrated in Fig. 3, we
devise a so-called SCADA-Tucker, where all layers of a network
share one common core tensor, thus achieving higher compression
ratio.

Suppose that the network has l layers. Based on the descrip-
tion above, we need one core tensor and

∑l
i=1di transformation

matrices, where di represents the order of core tensor for the ith
layer. With SCADA-Tucker, the model contains l core tensors and
ld transformation matrices (d = max{di}, i = 1, 2, . . ., l). We can
set a specific transformation matrix M(i)

j ∈ R1×k(i)j (j = 1, 2, . . . , d)
if the reshapedweight tensor of the ith layer has a lower order than
the shared core tensor. The forward propagation is:

W̃ (i)
≈ C ×1 M (i)

1 ×2 M (i)
2 ×3 ... ×d M

(i)
d ,

W (i)
= reshape

(
W̃ (i)

)
.

(8)
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Fig. 7. SCADA-Tucker vs. ADA-Tucker comparing the number of weights and network’s performance (better viewed together with Table 9).

The backpropagation of ld transformation matrices is the same
as that in the ADA-Tucker model. The major difference lies in the
gradient w.r.t. the core tensor. We compute it as:

∂L
∂C

=

l∑
i=1

∂L
∂C(i) . (9)

We present here a detailed property comparison between SCADA-
Tucker and ADA-Tucker. We use LeNet-5 and set the core tensor of
each layer as a fourth order tensor of the same size. We examine
the performance of LeNet-5 using two compression methods by
changing the size of core tensor only while fixing the rest hyper-
parameters. The details of ADA-Tucker and SCADA-Tucker settings
for these experiments are in Table 9 of appendices part. From the
results in Fig. 7, we can see that under the same parameter setting,
SCADA-Tucker is able to significantly reduce the number of weight
in the network with only minor performance degradation com-
pared to ADA-Tucker. It is because core tensors generally account
for a major proportion of the total number of weights. When the
dimension of each mode increases to seven, SCADA-Tucker even
achieves an accuracy slightly higher than that of ADA-Tucker. Note
that the number of weight in SCADA-Tucker is less than one half of
that in ADA-Tucker under the same setting.

An alternative perspective is to view SCADA-Tucker as amodule
with properties analogous to recurrent neural networks (RNN). The
comparison of forward propagations for these two models can be
seen in Fig. 8. We all know that an RNN can be rolled out as a serial
network with shared weights and it captures the temporal rela-
tions among sequential inputs. Thus with part of weights shared
across layers, SCADA-Tucker can be regarded as an architecture
in a recurrent style. Concretely, the forward propagation of RNN
can be represented as h(t)

= σ (Ux(t) + Wh(t−1)
+ b), where x(t)

is the input at time step t , h(t) is the hidden state at time step t , b
is the bias term, σ (·) is the activation function and U ,W are the
transformation matrices shared by all time steps. In comparison,
the forward propagation of SCADA-Tucker can be represented as

h(i)
= σ (C

∏
j

×jM
(i)
j h(i−1)

+ b), i = 1, 2, 3, . . . , l. (10)

The ‘‘input’’ of each layer is a series of transformation matrices
{M} and the core tensor C is the share parameter for all layers.

Moreover, SCADA-Tucker creatively connects weights of differ-
ent layers, enabling direct gradient flow from the loss function
to earlier layers. Some modern architectures of neural networks
such as ResNet (He et al., 2016), DenseNet (Huang et al., 2017)
and CliqueNet (Yang, Zhong, Shen, & Lin, 2018) benefit from the
direct gradient flow from the loss function to earlier layers and
have achieved great success. Such a parameter reusemechanism also
addresses redundancy in common parameterized functions shared
across layers. Note that none of other compression methods involve

dimension adjustment and sharing parameters among different layers,
which are crucial to the compression performance.

Therefore, SCADA-Tucker has the potential to pass and share
some critical and common information across layers, which cannot
be achieved by ADA-Tucker. Finally, we regard SCADA-Tucker as a
promising compression method for high-ratio network compres-
sion with a negligible sacrifice in network performance.

3. Compression ratio analysis

3.1. Raw compression ratio analysis

Suppose that the network has l layers. Let W̃ (i)
∈ Rn(i)1 ×n(i)2 ···×n(i)di

and C(i)
∈ Rk(i)1 ×k(i)2 ···×k(i)di be the reshaped weight tensor and core

tensor of the ith layer, respectively. Obviously, W̃ (i) has the same
number of weights as W (i). Then the compression ratio of ADA-
Tucker is:

rA =

∑l
i=1

∏di
j=1 n

(i)
j∑l

i=1
∏di

j=1 k
(i)
j +

∑l
i=1

∑di
j=1 n

(i)
j k(i)j

≈

∑l
i=1

∏di
j=1 n

(i)
j∑l

i=1
∏di

j=1 k
(i)
j

.

(11)

For SCADA-Tucker, all layers share the same core tensor with
order d, i.e, d = di, i = 1, 2, . . . , l. Then its compression ratio is:

rSC =

∑l
i=1

∏d
j=1 n

(i)
j∏d

j=1 kj +
∑l

i=1
∑d

j=1 n
(i)
j kj

≈

∑l
i=1

∏d
j=1 n

(i)
j∏d

j=1 kj
⩾ rA.

(12)

3.2. Further compression by quantization

After being compressed by ADA-Tucker and SCADA-Tucker, the
weight distribution is close to Laplacian distribution. Since almost
all weights are in the range of [−3, 3] (Fig. 9), we can use pruning
and quantization to compress these weights further following
Han et al. (2015). In our experiments, we integrate the following
quantization into our model:

wq = −b +

⌊
(max(−b,min(w, b)) + b)Q

2b

⌋
·
2b
Q

, (13)

where Q represents the number of clusters, b represents the max–
min bound of quantization and ⌊x⌋ is the floor function. Since
weights are originally stored in the float32 format (32 bits), our
compression ratio can be further increased by this quantization
trick. After quantization, we utilize Huffman coding to compress
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Fig. 8. The comparison of forward propagations for RNN (left) and SCADA-Tucker (right).

Fig. 9. Weight distribution after compressing by ourmethods: (a) ADA-Tucker on LeNet-300. (b) ADA-Tucker on LeNet-5. (c) SCADA-Tucker on LeNet-300. (d) SCADA-Tucker
on LeNet-5.

it further. Suppose that the average length of Huffman coding is ā,
we compute the final compression ratio by:

rA+QH =
32rA
ā

, rSC+QH =
32rSC
ā

. (14)

4. Experimental results

In this section, we experimentally analyze the proposed meth-
ods. We use Adam (Kingma & Ba, 2015) as our optimizer. The
starting learning rate is set as 0.01, 0.003, 0.003 and 0.01 forMNIST,
CIFAR-10, SVHN and ImageNet, respectively. After every 10∼20
epochs, the learning rate is divided by 3. We choose 256 as the
batch size formost experiments. For initializers of core tensors and
transformation matrices, we have experimented with the Glorot
initializer (Glorot & Bengio, 2010), the Kaiming initializer (He,

Zhang, Ren, & Sun, 2015) and HOOI (De Lathauwer, De Moor, &
Vandewalle, 2000) to solve the decomposition from the original
weight tensors. These three methods have similar performances.
Note that for the following experiments, little time is spent on fine-
tuning our model.

4.1. MNIST

MNIST is a database of handwritten digits with 60,000 training
images and 10,000 testing images. It is widely used to evaluatema-
chine learning algorithms. Same as DC (Han et al., 2016), DNS (Guo
et al., 2016) and SWS (Ullrich et al., 2017), we test our methods on
two classical networks: LeNet-5 and LeNet-300-100.

The raw compression ratios of ADA-Tucker and SCADA-Tucker
in Table 1 are computed by Eq. (11) and Eq. (12), respectively.
The compression ratio of +QH is computed by Eq. (14). Because
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Table 1
Compression results on LeNet-5 and LeNet-300-100. +QH: adding quantization and Huffman coding after utilizing these
methods. #(Param.) means the total number of parameters of these methods. CR represents compression ratio.

Network Methods #(Param.) Test Error Rate [%] CR

Org. Raw +QH Raw +QH

LeNet-
300-100

DC (Han et al., 2016) 21.4K 1.64 1.57 1.58 <12 40
DNS (Guo et al., 2016) 4.8K 2.28 1.99 – <56 –
SWS (Ullrich et al., 2017) 4.3K 1.89 – 1.94 <62 64
ADA-Tucker 4.1K 1.89 1.88 1.91 =65 233
SCADA-Tucker 3.4K 1.89 2.11 2.26 =78 321

LeNet-5

DC (Han et al., 2016) 34.5K 0.80 0.77 0.74 <13 39
DNS (Guo et al., 2016) 4.0K 0.91 0.91 – <108 –
SWS (Ullrich et al., 2017) 2.2K 0.88 – 0.97 <196 162
ADA-Tucker 2.6K 0.88 0.84 0.94 =166 691
SCADA-Tucker 2.3K 0.88 0.94 1.18 =185 757

Table 2
Test error rates (in %) with compression ratio at 16× and 64× for LRD (Denil et al., 2013), HashedNet (Chen et al., 2015),
FreshNet (Chen et al., 2016) and ours. CR represents compression ratio.

Dataset CNN-ref LRD HashedNet FreshNet ADA-Tucker SCADA-Tucker

CR 16× 64× 16× 64× 16× 64× 64× 73×

CIFAR-10 14.37 23.23 34.35 24.70 43.08 21.42 30.79 17.97 20.27
SVHN 3.69 10.67 22.32 9.00 23.31 8.01 18.37 4.41 3.92

all these methods (Guo et al., 2016; Han et al., 2015; Ullrich et al.,
2017) in Table 11 need to record the indices of nonzero elements,
their actual compression ratios are smaller than the calculated
results. Our methods do not need to record the indices, so our actual
compression ratios are equal to the calculated results, suggesting
that our model has the highest compression ratio even if it has the
same number of weight with the methods mentioned above. We
set Q = 512 and b = 3 during the quantization process of LeNet-5
and get the final compression ratio of 691× with 0.94% error rate.
For LeNet-300-100, we set Q = 1500 and b = 5 to achieve a 233×
compression ratio and the final error rate is 1.91%. The value of b
can be adjusted according to the distribution of weights after ADA-
Tucker/SCADA-Tucker compression.

Tensor Train decomposition (TT) (Novikov et al., 2015) is similar
to Tucker decomposition in that they both involve a product of
matrices. With Tucker, the number of parameters can be further
reduced by sharing core tensor, which cannot be achieved by TT.
Moreover, we chose Tucker because TT has to use enormously-
sized matrices to exactly represent a tensor when its order is
greater than three. Thus compressing with TT significantly may
cause huge approximation error. Using Tucker helps strike a bet-
ter balance between compression ratio and recognition accuracy.
More importantly, TT can only be applied to FC layers despite the
fact that Conv layers are more crucial than FC layers to achieve
top performance for most of the current deep learning tasks. In
contrast, our model with Tucker decomposition is able to adjust
the order and dimension of tensors in both FC and Conv layers.
Still, for a closer examination, here we provide results of two
models in all-FC-layer network for better reference. For MNIST
we use the same network architecture as Novikov et al. (2015)
and get 98.13% test accuracy with 6824 parameters, while TT gets
98.1% test accuracy with 7698 parameters. This again proves the
strength of our methods in compressing network and preserving
information.

1 We compare our models with state of the art in 2015, 2016 and 2017 for
compressing LeNet-5 and LeNet-300. HashedNet (Chen,Wilson, Tyree,Weinberger,
& Chen, 2015) does not appear in Table 1 because it used a network different from
LeNet-5 or LeNet-300 and thus cannot be compared with other methods. Since
methods in Table 1 conducted experiments onMNIST but not on CIFAR-10 or SVHN,
these methods are not shown in Table 2.

Fig. 10. Comparison of ADA-Tucker, Tucker-decomposition and CP-decomposition
on ImageNet. (Logarithmic coordinates.)

4.2. SVHN and CIFAR-10

To prove the generalization ability of our methods, we also
conduct experiments on SVHN and CIFAR-10 datasets. The SVHN
dataset is a large collection of digits cropped from real-world
scenes, consisting of 604,388 training images and 26,032 testing
images. The CIFAR-10 dataset contains 60,000 images of 32 × 32
pixels with three color channels. With the same network architec-
tures, our compressedmodels significantly outperform (Chen et al.,
2015, 2016; Denil et al., 2013) in terms of both compression ratio
and classification accuracy. The details of network architecture
are listed in Table 10 and the setting for ADA-Tucker is shown in
Table 11 of appendices part. On the CIFAR-10 dataset, ADA-Tucker
has a higher accuracy with a compression ratio lower than SCADA-
Tucker as expected. However, on the SVHN dataset, SCADA-Tucker
surprisingly preforms much better than ADA-Tucker. Specifically,
SCADA-Tucker compresses the original network by 73× with
0.23% accuracy drop,while ADA-Tucker compresses it by 64×with
0.72% accuracy drop.
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Table 3
Compression results on ResNet-20 and WRN-28-10 on CIFAR-10 dataset. #(Param.) means the total number of param-
eters of these methods. CR represents compression ratio.

Network #(Param.) Orig. Acc. (%) ADA-Tucker Acc. (%) ∆(Acc.) CR

ResNet-20 0.27M 91.25% 90.97% −0.28% 12
WRN-28–10 36.5M 95.83% 95.06% −0.77% 58

Fig. 11. Parameters comparison of all convolutional layers in ResNet-20 (better viewed together with Table 12).

Fig. 12. Parameters comparison of all convolutional layers in Wide-ResNet-28-10 (better viewed together with Table 13).

Table 4
The details of Conv1 layer’s dimension adjustment experiment setting (In Section 2.2.1). In this experiment, we fixed the rest layers of LeNet-5.

Conv1 Orig. 2d 3d 4d 5d 6d

Shape 20 × 1 × 5 × 5 25 × 20 20 × 5 × 5 20 × 1 × 5 × 5 5 × 5 × 5 × 2 × 2 5 × 5 × 5 × 2 × 2 × 1

Core – 5 × 5 4 × 4 × 4 3 × 3 × 3 × 3 2 × 2 × 2 × 2 × 2 2 × 2 × 2 × 2 × 2 × 2

Conv2 Orig.: 50 × 20 × 5 × 5, reshape: 50 × 25 × 20, core size: 5 × 5 × 5
FC1 Orig.: 800 × 500, reshape: 40 × 25 × 20 × 20, core size: 5 × 5 × 5 × 5
FC2 Orig.: 500 × 10, reshape: 25 × 20 × 10, core size: 5 × 5 × 5

#(Param.) 3230 2980 2914 2904 2810 2834

4.3. ILSVRC12

In this subsection, we empirically compare the performances of
CP, Tucker and ADA-Tucker on ILSVRC12 dataset.

To prove this work preserves more information and easier
compress networks comparedwith CP-decomposition and Tucker-
decomposition, we follow the ILSVRC12 experiment in Lebedev
et al. (2015). We also compress the second convolutional layer
of AlexNet (Krizhevsky et al., 2012). As a baseline, we use a pre-
trained AlexNet model shipped with Pytorch, which achieves a
top-5 accuracy of 79.59%. Following (Lebedev et al., 2015), models
are evaluated by test accuracy drop when increasing compres-
sion ratio. Experimental results in Fig. 10 show that our methods
have less accuracy drop at the same compression ratio. The gap
between our method and CP-decomposition becomes larger as
the compression ratio goes higher. The same experimental phe-
nomenon also appeared when we compared our method with
Tucker-decomposition. Concretely, at the same compression ratio
equal to 18, the accuracy drop of our method is less than 4%,

while the CP-decomposition method drops about 70% and Tucker-
decomposition method drops about 6%. This result suggests that
our method has a better capacity to preserve more information
than CP and easier compress networks than Tucker.

4.4. Modern networks

Here we discuss a more recent work, ResNet (He et al., 2016)
and its variations Wide-ResNet (Xie, Girshick, Dollár, Tu, & He,
2017; Zagoruyko & Komodakis, 2016). ResNet and its variations
also have achieved promising performances in numerous com-
puter vision applications such as image classification, human face
verification, object recognition, and object detection. It is very
meaningful to be able to effectively compress these networks.

We applied our ADA-Tucker on two representative networks
ResNet-20 and Wide-ResNet-28-10 (WRN-28-10). This experi-
ment was done on CIFAR-10 dataset. The details of ADA-Tucker for
ResNet-20 and WRN-28-10 can be found in Tables 12 and 13 of
appendices part, respectively. The compression results are listed
in Table 3. From Table 3, ADA-tucker compressed ResNet-20 by
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Table 5
The details of Conv2 layer’s dimension adjustment experiment setting (In Section 2.2.1). In this experiment, we fixed the rest layers of LeNet-5.

Conv1 Orig.: 20 × 1 × 5 × 5, reshape: 25 × 20, core size: 5 × 5

Conv2 Orig. 2d 3d 4d 5d 6d

Shape 50 × 20 × 5 × 5 250 × 100 50 × 25 × 20 50 × 20 × 5 × 5 10 × 10 × 10 × 5 × 5 10 × 10 × 5 × 5 × 5 × 2

Core – 20 × 10 5 × 5 × 5 4 × 4 × 4 × 4 3 × 3 × 3 × 3 × 3 2 × 2 × 2 × 2 × 2 × 2

FC1 Orig.: 800 × 500, reshape: 40 × 25 × 20 × 20, core size: 5 × 5 × 5 × 5
FC2 Orig.: 500 × 10, reshape: 25 × 20 × 10, core size: 5 × 5 × 5

#(Param.) 27380 8580 2980 2956 2743 2518

Table 6
The details of FC1 layer’s dimension adjustment experiment setting (In Section 2.2.2). In this experiment, we fixed the rest layers of LeNet-5.

Conv1 Orig.: 20 × 1 × 5 × 5, reshape: 25 × 20, core size: 5 × 5
Conv2 Orig.: 50 × 20 × 5 × 5, reshape: 50 × 25 × 20, core size: 5 × 5 × 5

FC1 Orig. 2d 3d 4d 5d 6d

Shape 800 × 500 800 × 500 500 × 25 × 20 40 × 25 × 20 × 20 25 × 16 × 10 × 10 × 10 25 × 10 × 8 × 8 × 5 × 5

Core – 10 × 10 5 × 5 × 5 5 × 5 × 5 × 5 4 × 4 × 4 × 4 × 4 3 × 3 × 3 × 3 × 3

FC2 Orig.: 500 × 10, reshape: 25 × 20 × 10, core size: 5 × 5 × 5

#(Param.) 402K 14930 4680 2980 3138 2742

Table 7
The details of FC2 layer’s dimension adjustment experiment setting (In Section 2.2.2). In this experiment, we fixed the rest layers of LeNet-5.

Conv1 Orig.: 20 × 1 × 5 × 5, reshape: 25 × 20, core size: 5 × 5
Conv2 Orig.: 50 × 20 × 5 × 5, reshape: 50 × 25 × 20, core size: 5 × 5 × 5
FC1 Orig.: 500 × 10, reshape: 25 × 20 × 10, core size: 5 × 5 × 5

FC2 Orig. 2d 3d 4d 5d 6d

Shape 500 × 10 500 × 10 25 × 20 × 10 20 × 10 × 10 × 5 8 × 5 × 5 × 5 × 5 5 × 5 × 5 × 5 × 4 × 2

Core – 6 × 6 5 × 5 × 5 4 × 4 × 4 × 4 3 × 3 × 3 × 3 × 3 2 × 2 × 2 × 2 × 2 × 2

#(Param.) 7580 5676 2980 3016 2907 2700

Table 8
The details of Conv1 layer’s influence of dimension experiment setting (In Section 2.2.3). In this exper-
iment, we fixed the rest layers of LeNet-5.

Conv1 20 × 1 × 5 × 5

Shape 25 × 20

Core 1 × 9 2 × 8 3 × 5 4 × 4 6 × 2 8 × 1

Conv2 Orig.: 50 × 20 × 5 × 5, reshape: 50 × 25 × 20, core size: 4 × 4 × 4
FC1 Orig.: 800 × 500, reshape: 40 × 25 × 20 × 20, core size: 4 × 4 × 4 × 4
FC2 Orig.: 500 × 10, reshape: 25 × 20 × 10, core size: 4 × 4 × 4

#(Param.) 2198 2210 2175 2180 2186 2212

Table 9
The details of SCADA-Tucker vs. ADA-Tucker experiment setting (In Section 2.4). In this experiment, we fixed the size of transformation matrices for all layers. Since there
are four layers, ATA-tucker has four core tensors. c can be equal to 3, 4, 5, 6, 7.

Conv1 Conv2 FC1 FC2 #(Param.)

Original 20 × 1 × 5 × 5 50 × 20 × 5 × 5 800 × 500 500 × 10 431K

Reshape 20 × 1 × 5 × 5 50 × 20 × 5 × 5 40 × 25 × 20 × 20 25 × 20 × 5 × 2 431K

Transformation Matrices

20 × c 50 × c 40 × c 25 × c 135c
1 × c 20 × c 25 × c 20 × c 66c
5 × c 5 × c 20 × c 5 × c 35c
5 × c 5 × c 20 × c 2 × c 32c

Bias 20 50 500 10 0.58K

ADA-Tucker core c × c × c × c c × c × c × c c × c × c × c c × c × c × c 4c4

ADA-Tucker total c4+31c+20 c4+80c+50 c4+105c+500 c4+52c+10 4c4+268c+0.58K

SCADA-Tucker core c × c × c × c c4

SCADA-Tucker total c4+(31c+20)+(80c+50)+(105c+500)+(52c+10) c4+268c+0.58K

12×. Since the number of parameters of ResNet-20 is only about
0.27M, it is difficult to compress it further on CIFAR-10 datasetwith
negligible loss. The number of parameters of Wide ResNet-28-10
is about 36.5M, which is much bigger than ResNet-20’s. Showing
in Table 3, our ADA-Tucker compressed WRN-28-10 by amazing

58 times without deteriorating its performances. We also plotted
visualizations for parameters comparisons of all layers in terms
of ResNet-20 (Fig. 11) and WRN-28-10 (Fig. 12). The convincing
results on these newly large networks suggest that the proposed
method works well for modern CNN architectures.
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Table 10
The detail of network architecture used in Section 4.2. The network architecture was referred to Chen et al. (2015, 2016);
Denil et al. (2013). C: Convolution. RL: ReLU. MP: Max-pooling. DO: Dropout. FC: Fully-connected.

Layer Operation Input dim. Inputs Outputs C size MP size #(Param.)

1 C,RL 32 × 32 3 32 5 × 5 – 2K
2 C,MP,DO,RL 32 × 32 32 64 5 × 5 2 × 2 51K
3 C,RL 16 × 16 64 64 5 × 5 – 102K
4 C,MP,DO,RL 16 × 16 64 128 5 × 5 2 × 2 205K
5 C,MP,DO,RL 8 × 8 128 256 5 × 5 2 × 2 819K
6 FC,Softmax – 4096 10 – - 40K

Table 11
ADA-Tucker setting details on the network architecture used in Section 4.2.

Orig. #(Param.) Reshape Core #(Param.)

Conv1 32 × 3 × 5 × 5 2K 96 × 25 12 × 12 1.6K
Conv2 64 × 32 × 5 × 5 51K 64 × 32 × 25 9 × 9 × 9 1.9K
Conv3 64 × 64 × 5 × 5 102K 64 × 64 × 25 11 × 11 × 11 3.1K
Conv4 128 × 64 × 5 × 5 205K 128 × 64 × 25 11 × 11 × 11 3.8K
Conv5 256 × 128 × 5 × 5 819K 256 × 128 × 25 11 × 11 × 11 6.1K
FC1 4096 × 10 40K 64 × 64 × 10 9 × 9 × 9 2.0K

Table 12
ADA-Tucker setting details on ResNet-20 (In Section 4.4).

ResNet-20 Orig. #(Param.) Reshape Core #(Param.)

Block0 Conv1 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302
Conv2 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302

Block1 Conv1 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302
Conv2 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302

Block2 Conv1 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302
Conv2 16 × 16 × 3 × 3 2304 16 × 16 × 9 12 × 12 × 6 1302

Block3 Conv1 32 × 16 × 3 × 3 4608 18 × 16 × 16 12 × 10 × 10 1736
Conv2 32 × 32 × 3 × 3 9216 12 × 12 × 8 × 8 8 × 8 × 6 × 6 2592

Block4 Conv1 32 × 32 × 3 × 3 9216 12 × 12 × 8 × 8 8 × 8 × 6 × 6 2592
Conv2 32 × 32 × 3 × 3 9216 12 × 12 × 8 × 8 8 × 8 × 6 × 6 2592

Block5 Conv1 32 × 32 × 3 × 3 9216 12 × 12 × 8 × 8 8 × 8 × 6 × 6 2592
Conv2 32 × 32 × 3 × 3 9216 12 × 12 × 8 × 8 8 × 8 × 6 × 6 2592

Block6 Conv1 64 × 32 × 3 × 3 18432 32 × 24 × 24 24 × 16 × 16 7680
Conv2 64 × 64 × 3 × 3 36864 9 × 8 × 8 × 8 × 8 6 × 6 × 6 × 6 × 6 8022

Block7 Conv1 64 × 64 × 3 × 3 36864 9 × 8 × 8 × 8 × 8 6 × 6 × 6 × 6 × 6 8022
Conv2 64 × 64 × 3 × 3 36864 9 × 8 × 8 × 8 × 8 6 × 6 × 6 × 6 × 6 8022

Block8 Conv1 64 × 64 × 3 × 3 36864 9 × 8 × 8 × 8 × 8 6 × 6 × 6 × 6 × 6 8022
Conv2 64 × 64 × 3 × 3 36864 9 × 8 × 8 × 8 × 8 6 × 6 × 6 × 6 × 6 8022

5. Conclusion

In this paper, we demonstrate that deep neural networks can
be better compressed using weight tensors with proper orders and
balanced dimensions of modes without performance degradation.
We also present two methods based on our demonstration, ADA-
Tucker and SCADA-Tucker, for deep neural network compression.
Unlike previous decomposition methods, our methods adaptively
adjust the order of original weight tensors and the dimension of
each mode before Tucker decomposition. We do not need to add
new layers for implementing the Tucker decomposition as other
methods do. The advantage of our methods over those involving
the frequency domain and pruning is that we do not require
recording the indices of nonzero elements.Wedemonstrate the su-
perior compressing capacity of the proposedmodel: after applying
quantization and Huffman coding, ADA-Tucker compresses LeNet-
5 and LeNet-300-100 by 691× and 233×, respectively, outper-
forming state-of-the-art methods. The experiments on CIFAR-10
and SVHN also show our models’ overwhelming strength. The ex-
periments on ImageNet indicate that Tucker decomposition com-
bined with adaptive dimension adjustment has a great advantage
over other decomposition-based methods especially at a large

compression ratio. The convincing results on these newly large
networks also suggest that the proposed method works well for
modern CNN architectures.

In the future, we will further investigate the mechanism be-
hind our findings and summarize a detailed rule of thumb for
determining the order of weight tensor as well as dimensions
of modes. Other research directions include combining this work
with pruning techniques and exploiting its potential in accelerat-
ing computation and inference.
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Table 13
ADA-Tucker setting details on Wide ResNet-28-10 (In Section 4.4).

Wide-ResNet-
28-10

Orig. #(Param.) Reshape Core #(Param.)

Block0 Conv1 160 × 16 × 3 × 3 23K 16 × 16 × 10 × 9 10 × 10 × 6 × 6 4K
Conv2 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K

Block1 Conv1 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K
Conv2 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K

Block2 Conv1 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K
Conv2 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K

Block3 Conv1 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K
Conv2 160 × 160 × 3 × 3 230K 24 × 24 × 20 × 20 12 × 12 × 12 × 12 22K

Block4 Conv1 320 × 160 × 3 × 3 460K 80 × 80 × 72 36 × 36 × 36 55K
Conv2 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K

Block5 Conv1 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K
Conv2 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K

Block6 Conv1 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K
Conv2 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K

Block7 Conv1 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K
Conv2 320 × 320 × 3 × 3 921K 32 × 32 × 30 × 30 16 × 16 × 16 × 16 67K

Block8 Conv1 640 × 320 × 3 × 3 1843K 40 × 40 × 36 × 32 18 × 18 × 18 × 18 108K
Conv2 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K

Block9 Conv1 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K
Conv2 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K

Block10 Conv1 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K
Conv2 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K

Block11 Conv1 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K
Conv2 640 × 640 × 3 × 3 3686K 48 × 48 × 40 × 40 20 × 20 × 20 × 20 163K
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