l‘)

Check for
updates

Neural Ordinary Differential Equations
with Envolutionary Weights

Lingshen He, Xingyu Xie, and Zhouchen Lin(®®

Key Laboratory of Machine Perception, School of EECS,
Peking University, Beijing, China
zlin@pku.edu.cn

Abstract. Neural networks have been very successful in many learning
tasks, for their powerful ability to fit the data. Recently, to understand
the success of neural networks, much attention has been paid to the
relationship between differential equations and neural networks. Some
research suggests that the depth of neural networks is important for their
success. However, the understanding of neural networks from the differ-
ential equation perspective is still very preliminary. In this work, also
connecting with the differential equation, we extend the depth of neural
networks to infinity, and remove the existing constraint that parameters
of every layer have to be the same by using another ordinary differential
equation(ODE) to model the evolution of the weights. We prove that
the ODE can model any continuous evolutionary weights and validate
it by an experiment. Meanwhile, we propose a new training strategy to
overcome the inefficiency of pure adjoint method. This strategy allows us
to further understand the relationship between ResNet with finite layers
and that with infinite layers. Our experiment indicates that the former
can be a good initialization of the latter. Finally, we give a heuristic
explanation on why the new training method works better than pure
adjoint method. Further experiments show that our neural ODE with
evolutionary weights converges faster than that with fixed weights.

Keywords: Neural network -+ ODE - Adjoint method

1 Introduction

Deep neural networks have become a very powerful tool in machine learning [1].
The great success of deep neural networks mainly attributes to its ability to

extract useful features from data by end-to-end learning.

The performance of neural networks with different structures vary greatly
even on the same dataset. For example, convolutional neural networks (CNNs)

The first author is a student.

Electronic supplementary material The online version of this chapter (https://
doi.org/10.1007/978-3-030-31654-9_51) contains supplementary material, which is

available to authorized users.

© Springer Nature Switzerland AG 2019
Z. Lin et al. (Eds.): PRCV 2019, LNCS 11857, pp. 598-610, 2019.
https://doi.org/10.1007/978-3-030-31654-9_51

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-31654-9_51&domain=pdf
https://doi.org/10.1007/978-3-030-31654-9_51
https://doi.org/10.1007/978-3-030-31654-9_51
https://doi.org/10.1007/978-3-030-31654-9_51

Neural Ordinary Differential Equations with Envolutionary Weights 599

achieves the state-of-the-art results on object recognition and detection [14,24]
while the fully connected networks fail. Unfortunately, the universal structure
design rules remain unknown. Many researchers make efforts in order to better
understand deep learning structures. The works in [26] visualized the learning
procedure during training, which tried to figure out the connection between
network structures and extracted features visually. However, neural networks
visualization may not provide a theoretically sound designing guidance for good
neural networks. Another line of works focus on the landscape of deep models.
A lot of interesting theoretical results have been established to analyze the loss
surface of neural networks [15,29]. However, the current theoretical analysis is
still very preliminary as it normally imposes strong assumptions on data and
shallow neural networks. So the theoretical analysis cannot provide designing
guidance either.

One common problem of all the above investigations is that they cannot
describe the behavior of networks when the depth approaches infinity. In general,
it is hard to analyze ultra deep networks, since the instabilities will cause the
over-expansion or decline of the network output [6]. Another problem is that
the previous theoretical works cannot perfectly match the empirical success of
ResNet [10] which is one of the most successful CNN structures. To understand
the success of ResNet and its variants [25,27], the works [4,7] try to interpret
ResNet from the perspective of dynamic systems. However, their analysis is still
very preliminary, and the theoretical exploration on ResNet is still ongoing [8,11].

Recently, an interesting and theoretically sound combination of ordinary dif-
ferential equation (ODE) and neural network architecture provides a new per-
spective on understanding ultra deep ResNet [3,4,22]. It is natural to adopt a
differential equation to parameterize the continuous dynamics of hidden units in
ResNet because the residual block of ResNet can be written as:

Upi1 = un+fn(un)v (1)

where u € R"™ and f,, is a continuous function. Equation (1) is exactly one step
of forward Euler discretization in ODE. Actually, many neural networks can be
viewed as numerical ODEs [25,28,30]. Conversely, different types of numerical
schemes of ODE can also be translated as neural networks [22].

In practice, we observe that a deeper ResNet obtains better performance and
the fo-norm of f,,(u,) becomes smaller as the network goes deeper [2]. In other
words, a deeper ResNet resembles an ODE numerical scheme with a smaller time
step. Based on these observations, in this paper we propose an ODE system—
Neural Ordinary Differential Equations with Envolutionary Weights (NODE-
EW), which is a continuous version of a deep ResNet. Our NODE-EW makes
analyzing ultra deep ResNet possible. In our system, ODE is used in two places.
Besides the discrete version ODE shown in Eq. (1), we also model the 6,, as a
trajectory of ODE, where 6,, is the parameters of the function f,,. The double
using of ODE brings two advantages. Besides larger model capacity and more
representation power, the practical ResNet and its variants can be more accu-
rately modeled by our NODE-EW than by the previous ODE works [3], in which

600 L. He et al.

fn = [for all n, where f is a shared function. Moreover, we rigorously prove
that the ODE system proposed in [3] can approximate any continuous trajec-
tory, which implies that NODE-EW is very general and has more expressive
power than the ODE system in [3] since the latter uses fixed weights. In general,
numerical methods for solving ODE consume too many iteration steps. To make
a trade off between memory and efficiency, we propose a backpropagation initial-
ized training strategy to train our NODE-EW. To be specific, we discretize the
ODE system w.r.t. 8,, and first train the weights in the corresponding neural net-
works by the gradient-based method. With such an initialization, we adopt the
adjoint method to fine-tuning the weights. Notably, the speed of the proposed
training strategy is much faster than the pure adjoint method. Our training
method bridges the popular continuous and discrete training strategies and pro-
vides a new insight into solving ODEs numerically. Another notable addition of
the proposed ODE system is its memory efficiency. The consumed memory of
NODE-EW is independent of the depth, hence it allows the network depth to
go to infinity. At last, our network is reversible, which is important for mobile
devices. We summarize our contributions as follows:

1. We propose an ODE system—NODE-EW, which is a continuous version of
ResNet. Specifically, we model the learnable weights of residual blocks as a
trajectory of ODE, by which NODE-EW obtains larger model capacity and
describes the behavior of deep ResNet more accurately than the neural ODE
with fixed weights [3].

2. To address the time-consuming issue of adjoint method, we propose a
new training strategy which combines the backpropagation and the adjoint
method. Our strategy bridges the continuous and discrete training methods.

3. We prove that our ODE system is able to approximate any continuous trajec-
tory. We also validate the expressive power of our ODE system empirically.

2 Preliminaries and Related Work

2.1 ResNet and Its Variants

Resnet [10] is a deep neural network consisting of multiple residual blocks. It
contains skip-connections bypassing residual layers. It solves the gradient explo-
sion/vanishing and accuracy degradation issues [9] existing in the deep neural
networks. After the success of ResNet, lots of variants of ResNet appear. Some
adjust the structure of residual block [25], then the single convolution becomes a
multi-branch convolution. Others create novel topological structures to replace
the skip-connections [28,30].

2.2 Learning Partial Differential Equations

In the past few decades, partial differential equations (PDEs) have been very
popular in low-level image processing. However, designing the PDE systems by
hand requires a lot of tricks and prior knowledge. To deal with this problem,

Neural Ordinary Differential Equations with Envolutionary Weights 601

[19,20] proposed frameworks to learn PDEs from data. They use the differential
invariants that are invariant under rotation and translation as bases of PDE
and learn the coefficient from data using the adjoint method. [5] also indicated
that PDE systems can learn good features in face recognition. [18,21] first used
learnt PDEs with learnable boundary conditions for saliency detection and object
tracking. So far, the learning-based PDEs have been used in many image pro-
cessing tasks, such as image denoising, color to gray and demosaicing [16,17,19].

2.3 Neural ODE

Yet, the previous systems [19,20] discretize the differential equations first and
then learn the weights at each time step by the adjoint method. [3] proposed
another learning system called Neural ODE, which does not discretize the dif-
ferential equation and updates the weights by the adjoint method directly. It
reduces the memory consumption to O(1). Neural ODE can be viewed as ResNet
with infinite layers. From this perspective, the weights of ResNet at every layer
should be different, however, those of Neural ODE are the same. So Neural ODE
is not a continuous version of ResNet in a more rigorous sense.

2.3.1 Overview of Neural ODE
We introduce Neural ODE [3] in this section. Given xg and y € R™ as the input
and the output, respectively, Neural ODE reads as:

dx(t)

— = f(x(t),t,0), Vtel0,T],

where f : R™ — R" is a continuous function and @ is the parameters of f.
Starting from the input layer x(0) = xq, we can let the output layer x(T') =y
be the output of our system. The above equation is solved by a black-box ODE
solver with desired accuracy.

2.3.2 Connection with ResNet
In Neural ODE, f is chosen as a neural network. The discretized version of
Neural ODE is:

Xk+1 = Xi + At - f(Xk, kAt, 0), (2)

where At is the time step of the numerical scheme and x; means the numerical
solution at time kAt. Equation (2) is equivalent to a special type of ResNet
whose weights 0 are identical at every layer.

3 Nerual ODE with Envolutionary Weights

In this section, we provide our ODE system which is a continuous version of
the general deep ResNet. As mentioned above, although the weights of residual
function f in Neural ODE are learnable, the identical f at different layers limits
the expressive power of this ODE system and thus Neural ODE is actually not
a continuous version of ResNet in a rigorous sense.

602 L. He et al.

3.1 Formulation

To address the issue, we propose a new ODE system named Neural Ordinary
Differential Equaitons with Evolutionary Weights (NODE-EW). In NODE-EW,
the function f can vary at different time, i.e., 8 is a function of time ¢:
dx(t
O _ vy 10w, e .T)
where x(0) = x¢. In order to find the optimal function 8(t), we aim to solve a
standard optimal control problem with a loss function L. L can be an arbitrary
continuous loss such as mean squared error or cross entropy. The optimization
problem is:
in L(x(T),y). 3
min (x(T),y) 3)
In order to make the function space computable, here we use another Neural
ODE to model the evolution of 8(t). Given 8(0) = 6, we assume

de(t)
dt
where g is another neural network and 6y and 6, are the parameters to charac-
terize 6(t).

:g(o(t)at791)a (4)

3.2 Training NODE-EW

3.2.1 Adjoint Method
As mentioned in [3], the relative error of the ODE solver depends on the mag-
nitude of time step At. When there is a strict requirement on the error of the
system, there will be a lot of intermediate steps which will consume a lot of mem-
ory if the system is trained with backpropagation. So [3] proposed the adjoint
method. This method makes the systems require only memory of O(1), despite
its infinite layers. In contrast, an ordinary residual networks requires the memory
proportional to its number of layers.

The adjoint of the system is defined as: a(t) = ai(Lt) and b(t) = 827(%)' The
following ODEs are satisfied:

dt ox(t)
db(t) dg(0(t),0:)\
dt < 00(t) > b(#). 5)

According to the definition, %(LO) = a(0) and gTLO = b(0). Computing the
derivative of L with respect to 61 requires evaluation of an integral

oL ([T og(6(1).0,)\
%(/ 09600, 61))ut).

Neural Ordinary Differential Equations with Envolutionary Weights 603

If we define c(t) to satisfy the following equation:

Then ¢(0) = 39 . We can summarize the above equations in a more concise way.
Define the function aug_dynamics to be:

aug_-dynamics([x(t),a(t),b(t), c(t),t, 01])

=lf<x<t>,t,o>,—(§i)Ta<t>, (055 v () b<t>]-)

To compute the derivative of L respect to various quantities of the system,
we need to solve the following ODE terminal value problem:

%[x(t)7 a(t),b(t), c(t)] = aug_dynamics([x(t),a(t),b(t), c(t),t, 61])
x(T) =x(T), a(T) = af(LT)’ b(T) =0, ¢(T) =0.
Then we get aii(Lo) = a(0), ggL =b(0), and gTle = c(0).

The whole process of computing the derivative is summarized in Algorithm
1, Where ODESOLVE is an ODE solver.

Algorithm 1. Computing derivative of NODE-EW
Input: parameters 61, 8(7T), the final state x(T"), and loss gradient 8X(T)
so = [x(T),0(T), ax(,[)70 0]
def aug_dynamic([x(t), a(t),b(t), c(t)],t, 61)

T T
Return [f(x(t),t0),— (3) " a(), — (55%) b®),— (&) b
[x(0), ai(Lo)’ §9Lo’ 891] ODESOLVE(so, aug_dynamic, T, 0, 61)

oL oL
Return [axm)7 900" ael]

When ¢(-) = 0, NODE-EW degenerates to the original Neural ODE. So
NODE-EW is a generalization of Neural ODE. Because the computing of an
ODE system is reversible, there is no need to save the intermediate variables
for backpropagation. In other words, Algorithm 1 consumes O(1) memory for
training. Comparing to Neural ODE, computation of 6(¢) indeed brings some
extra computation. Fortunately, neural networks are usually trained in a batch
way. As the batch-size increases, the extra computation is negligible.

604 L. He et al.

3.2.2 Acceleration of Training

The problem of the adjoint method is that we have to solve an ODE in the feed
forward propagation and solve another to compute the derivative. To achieve the
required errors, we need to discreticize the interval into many time steps which is
very time consuming. On the other hand, it is not easy to tune the error tolerance
of ODE solver during training. Hence we propose a new training strategy, which
can significantly accelerate the training process when the memory requirement
can be kept low.

1. At the beginning of the training, we discretize the ODE system using the
Euler forward scheme with constant step size. Then we train the weights
of ODE system with backpropagation until the discrete system reaches a
desirable loss.

2. Fine-tune the ODE system by the adjoint method at the rest of the training
epochs.

Our strategy only requires to compute fixed steps of the Euler forward scheme
(we choose the time steps to be small), which can significantly reduce the training
time and not introduce too much memory burden. Of course, our method make
a trade off between the training speed and the memory cost depending on the
steps size we choose. As is shown in Sect. 4, our method not only reduces the
training time, but also boosts the performance on the image classification tasks.

3.3 Expressive Power of NODE-EW

In this section, we prove that our ODE system has a strong expressive power as
described in Theorem 1. The proof can be found in the supplementary material.

Theorem 1. Define a continuous function s : [0,T] — R™ such that s(a) = s(b)
if and only if a = b. Given any o > 0, there always exists a Neural ODE defined
on the interval [0,T] and its solution y(t) satisfies: |y(t) —s(t)| < o, Vt € [0,T].

Theorem 1 states that any continuous trajectory can be approximated by a
Neural ODE with an arbitrary accuracy. So it is sufficient to use a Neural ODE [3]
to model the evolution of weights 6(t).

4 Experiment Results

4.1 Verification of Theorem 1

In this section, we conduct an experiment to verify Theorem 1. In the theorem,
we have proved that any continuous trajectory can be approximated by a solution
of some Nerual ODE. We take a continuous curve in the 3-dimensional space,
such that: x(t) = [sin(t) cos(t),sin?(t) + cosh®(t),exp(t)], t € [0,1]. f in the
experiment is a two-layer neural network with 1,000 hidden units in each layer.

Neural Ordinary Differential Equations with Envolutionary Weights 605

We take ReLu to be the activation function. We discretize the interval [0,1] into
100 pieces uniformly and try to fit the curve at the 100 points. Hence we adopt
the following loss function:

100

loss = x(iAt) — 0(iAt)||?,
DI
i=1

where At = ﬁ, and 6(t) is the solution generated by Neural ODE. In our
experiment, if we use the black-box solver to solve the Neural ODE and train
the weights in f using the adjoint method, the whole process will be very time
consuming. So we adopt the training strategy introduced in Sect. 3.2.2. We first
train the weights in f using the backpropagation as initialization at first 5k
iterations, then use the adjoint method to fine tune at the rest 100 iterations.
The training time is reduced to 30 times shorter compared to the original pure
adjoint method. The experiment results are shown in the Fig. 1.

1.6y —— Original 25/ — Original —— Original

—— Generate

—— Generate —— Generate

—— Original
—— Generate

00 01 02 03 04 05 00 01 02 03 04 05 10 12 14 16
y X

y
(a) xy-plane (b) xz-plane (c) yz-plane (d) 3D space

Fig.1. The three Figs.1(a), (c) and (b) display the projection of the curve in the 3
orthogonal planes. In the 3D space 1(d), we can see the curve generated by our ODE
system approximates well to the original curve.

4.2 Supervised Learning on MNIST

To compare the accuracy of Neural ODE and NODE-EW on MNIST, we utilize
the structure mentioned in [3]. It first downsamples the input twice and then
applies the kernel model. The figure of NODE-EW is presented in the supple-
mentary material.

We train the two models under the same setting. We train both of them
300 epochs. The learning rate is set as 0.1 and it reduces by 0.1 after each 100
epochs. No data augmentation is used . The error rate on the test set for our
NODE-EW is 0.35% which is lower than that of Neural ODE, 0.38%.

Adjoint method costs too much time for solving the ODE equations during
training NODE-EW. Hence, we apply our speed-up training method proposed
in Sect. 3.2.2 to train NODE-EW in this experiment. We discretize NODE-EW
to 10 discrete steps, and we train the model by gradient-based backpropagation
method for 80 epochs with learning rate 0.01. Then, we fine-tune the backprop-
agation initialized weights with learning rate 0.001 by adjoint method for 80
epochs. For comparison, we train another model by pure adjoint method for 160
epochs.

606 L. He et al.

The result is summarized in Table 1 and the training process is displayed in
Fig.2. We can see that our NODE-EW finishes the training in less time and
obtains better accuracy on both training and testing data sets. The speed-up
training method consumes 23.18s each epoch for the first 80 epochs, while that of
the adjoint method is 88.19s. The peak of the accuracy appears after 80 epochs,
so we compare the mean accuracy for the last 80 epochs. The speed-up method
achieves 99.57% mean accuracy on the training set while pure adjoint method
only achieves 99.65%.

As is shown Fig.2, our speed-up method boosts the accuracy during the
training. The training accuracy oscillates at the first 80 epochs for our training
method. We attribute this phenomenon to that direct discretization will intro-
duce more error compared to the original ODE solver. Meanwhile, it can also
have more chance to escape the saddle points, which heuristically explain why the
speed-up method can boost accuracy. Note that at the 80th epoch, the speed-up
training method does not have accuracy degradation, which demonstrates that
discretization + backpropagation can indeed train the parameters in a continu-
ous ODE system. So, for efficiency, it is reasonable to replace the adjoint method
with backpropagation at the beginning of the training. Our observation agrees
with the results in [2] which demonstrate that shallow ResNet can be a good
initialization of deep ResNet. In our case, we can see that ResNet with finite
layers can be a good initialization of ResNet with infinite layers.

Table 1. Training results for the pure adjoint method and the out new training
strategy.

Adjoint method | BP+Adjoint method
Mean Test Acc |99.57% 99.65%
Mean Train Acc | 99.97% 99.98%
Time/epoch 89.76s 62.54s
Train Test
o o —— Adjoint
O osses O g0
© © —— BP+Adjoint
— Adjoint
—— BP+Adjoint
£ % T och R E e
(a) (b)

Fig. 2. Accuracies of supervised learning on the training set (left) and the testing set
(right) of MNIST.

Neural Ordinary Differential Equations with Envolutionary Weights 607

4.3 Normalizing Flow

The application of Neural ODE in the normalizing flow is very attractive, for
it can bring down the computational cost from computing the determinant of
Jacobian whose complexity is O(n?) to only solving a differential equation whose
computational cost is O(n).

Normalizing flow stacks many layers of invertible transformation to attain a
complex distribution from very simple distribution such as the Gaussian distri-
bution. The method has been used in variational inference [23] and generative
model [13] recently.

For a discrete model, it relys on the Change of Variable Theorem: Let h
be an invertible smooth mapping from R™ to R™, x be a random variable with
distribution p(x) and x; = h(x), then

log(p(x1)) = log(p(x)) + log (det (gﬁ)) |

—— NODE-EW
3.2 —— Neural ODE
n 3.0
(%3]
o
2.8]
2.6

0 50 100 150 200 250
epoch

Fig. 3. The training curve of the Neural ODE and the NODE-EW (where the vertical
axis represents loss and the horizontal one represents number of iterations): We can
see that the new model descent the loss faster than the original one.

If the transformation is placed by an ODE, the following theorem is proposed
by [3].

Instantaneous Change of Variables Theorem: Let x(¢) is a continuous
random variable depending on time which is described by a differential equation:
dx — f(x(t),t), then the log of its density function follows:

@
dlog(p(x(1))) of
ot =u <8x(t)) '

The proof can be found in [3].

608 L. He et al.

By an easy derivation, the above rule is also true for our NODE-EW. We
conduct an experiment to generate a target 2D distribution to compare the per-
formance of the two models. Here, we consider the maximum likelihood training,
that is to maximize E(p(z)), where the p is the density of the model, z is the
sample and F is the expectation operator. We adopt the Adam [12] optimizer
and train the model 1,000 epochs, taking 100 data points in every epoch.

We found that the training of two models can achieve the almost the same
loss ultimately. However, NODE-EW can achieve the minimum value in less
epochs, which is shown in Fig. 3.

5 Conclusions

In this work, we demonstrate that the weights a of continuous ResNet can be
modeled by an ODE system. It provides us with a new tool for the further
research about the neural networks with infinite layers. ResNet of finite layers is a
good initialization of ResNet of infinite layers, which indicates a close relationship
between them. This helps us to accelerate the pure adjoint training method. As
the experiment indicates, equipped with evolutionary weights, our NODE-EW
acquires more capacity and expressive power and it can arrive at the minimum
loss in less epochs. So our NODE-EW is a more accurate and better continuous
ODE model of the discrete ResNet.

Acknowledgments. The work of Zhouchen Lin is supported in part by 973 Program
of China under Grant 2015CB352502, in part by NSF of China under Grants 61625301
and 61731018, and in part by Beijing Academy of Artificial Intelligence (BAAI) and
Microsoft Research Asia.

References

1. Bengio, Y., et al.: Learning deep architectures for Al. Found. Trends Mach. Learn.
2(1), 1-127 (2009)

2. Chang, B., Meng, L., Haber, E., Tung, F., Begert, D.: Multi-level residual networks
from dynamical systems view. arXiv preprint arXiv:1710.10348 (2017)

3. Chen, T.Q., Rubanova, Y., Bettencourt, J., Duvenaud, D.K.: Neural ordinary dif-
ferential equations. In: Advances in Neural Information Processing Systems, pp.
6571-6583 (2018)

4. Weinan, E.: A proposal on machine learning via dynamical systems. Commun.
Math. Stat. 5(5), 1-11 (2017)

5. Fang, C., Zhao, Z., Zhou, P., Lin, Z.: Feature learning via partial differential equa-
tion with applications to face recognition. Pattern Recogn. 69, 14-25 (2017)

6. Haber, E., Ruthotto, L.: Stable architectures for deep neural networks. Inverse
Prob. 34(1), 014004 (2017)

7. Haber, E., Ruthotto, L., Holtham, E., Jun, S-H.: Learning across scales—Multiscale
methods for convolution neural networks. In: AAAT Conference on Artificial Intel-
ligence (2018)

8. Hardt, M., Ma, T.: Identity matters in deep learning. arXiv preprint
arXiv:1611.04231 (2016)

http://arxiv.org/abs/1710.10348
http://arxiv.org/abs/1611.04231

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

Neural Ordinary Differential Equations with Envolutionary Weights 609

He, K., Sun, J.: Convolutional neural networks at constrained time cost. In: Com-
puter Vision and Pattern Recognition, pp. 5353-5360 (2015)

He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition.
In: Computer Vision and Pattern Recognition, pp. 770-778 (2016)

Jastrzebski, S., Arpit, D., Ballas, N., Verma, V., Che, T., Bengio, Y.: Residual
connections encourage iterative inference. arXiv preprint arXiv:1710.04773 (2017)
Kingma, D.P.; Ba, J.: Adam: a method for stochastic optimization. arXiv preprint
arXiv:1412.6980 (2014)

Kingma, D.P., Dhariwal, P.: Glow: Generative flow with invertible 1x1 convolu-
tions. In: Advances in Neural Information Processing Systems, pp. 10215-10224
(2018)

Krizhevsky, A., Sutskever, I., Hinton, G.E.: ImageNet classification with deep con-
volutional neural networks. In: Advances in Neural Information Processing Sys-
tems, pp. 1097-1105 (2012)

Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape
of neural nets. In Advances in Neural Information Processing Systems, pp. 6389—
6399 (2018)

Lin, Z., Zhang, W., Tang, X.: Learning partial differential equations for computer
vision. MSR-TR-2008-189 (2008)

Lin, Z., Zhang, W., Tang, X.: Designing partial differential equations for image
processing by combining differential invariants. MSR-TR~2009-192 (2009)

Liu, R., Cao, J., Lin, Z., Shan, S.: Adaptive partial differential equation learning
for visual saliency detection. In: Computer Vision and Pattern Recognition, pp.
3866—-3873 (2014)

Liu, R., Lin, Z., Zhang, W., Su, Z.: Learning PDEs for image restoration via
optimal control. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010.
LNCS, vol. 6311, pp. 115-128. Springer, Heidelberg (2010). https://doi.org/10.
1007/978-3-642-15549-9_9

Liu, R., Lin, Z., Zhang, W., Tang, K., Zhixun, S.: Toward designing intelligent
PDE:s for computer vision: an optimal control approach. Image Vis. Comput. 31(1),
43-56 (2013)

Liu, R., Zhong, G., Cao, J., Lin, Z., Shan, S., Luo, Z.: Learning to diffuse: a new
perspective to design pdes for visual analysis. IEEE Trans. Pattern Anal. Mach.
Intell. 38(12), 24572471 (2016)

Lu, Y., Zhong, A., Li, Q., Dong, B.: Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations. In International Confer-
ence on Machine Learning (2017)

Rezende, D.J., Mohamed, S.: Variational inference with normalizing flows. In:
International Conference on Machine Learning, pp. 1530-1538. JMLR (2015)
Szegedy, C., et al.: Going deeper with convolutions. In: Computer Vision and Pat-
tern Recognition, pp. 1-9 (2015)

Xie, S., Girshick, R., Dollar, P., Tu, Z., He, K.: Aggregated residual transformations
for deep neural networks. In: Computer Vision and Pattern Recognition, pp. 1492—
1500 (2017)

Yosinski, J., Clune, J., Nguyen, A., Fuchs, T., Lipson, H.: Understanding neural
networks through deep visualization. arXiv preprint arXiv:1506.06579 (2015)
Zagoruyko, S., Komodakis, N.: Wide residual networks. arXiv preprint
arXiv:1605.07146 (2016)

Zagoruyko, S., Komodakis, N.: DiracNets: Training very deep neural networks
without skip-connections. arXiv preprint arXiv:1706.00388 (2017)

http://arxiv.org/abs/1710.04773
http://arxiv.org/abs/1412.6980
https://doi.org/10.1007/978-3-642-15549-9_9
https://doi.org/10.1007/978-3-642-15549-9_9
http://arxiv.org/abs/1506.06579
http://arxiv.org/abs/1605.07146
http://arxiv.org/abs/1706.00388

610 L. He et al.

29. Zhang, H., Shao, J., Salakhutdinov, R.: Deep neural networks with multi-branch
architectures are less non-convex. arXiv preprint arXiv:1806.01845 (2018)

30. Zhang, X., Li, Z., Loy, C.C., Lin, D.: PolyNet: a pursuit of structural diversity in
very deep networks. In: Computer Vision and Pattern Recognition, pp. 718-726
(2017)

http://arxiv.org/abs/1806.01845

	Neural Ordinary Differential Equations with Envolutionary Weights
	1 Introduction
	2 Preliminaries and Related Work
	2.1 ResNet and Its Variants
	2.2 Learning Partial Differential Equations
	2.3 Neural ODE

	3 Nerual ODE with Envolutionary Weights
	3.1 Formulation
	3.2 Training NODE-EW
	3.3 Expressive Power of NODE-EW

	4 Experiment Results
	4.1 Verification of Theorem 1
	4.2 Supervised Learning on MNIST
	4.3 Normalizing Flow

	5 Conclusions
	References

