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Lemma 1. For every C∞ curve in Rn without intersection, s : [0, T ] → Rn,
there is a differential equation dx

dt = F (x) such that:

(1) x(t) = s(t) ∀t ∈ [0, T ];

(2) F (x) is Lipschitz continuous in M,where M is a compact set containing s.

Proof. Let S denote the image of the curve s, which is a compact set in M . Since
there is no intersection point in s, s is bijective. We can define a map r : S → Rn

such that:

r(x) =
ds

dt
(s−1(x)),

which is a C∞ function. From the result of [4], there is a smooth funtion F
defined on M , satisifing

r(x) = F (x), ∀x ∈M.

So

F (s(t)) = r(s(t)) =
ds

dt
(s−1(s(t))) =

ds

dt
.

As M is a compact set, the gradient of F is bounded. As a result, F is Lipschitz
continuous.

Lemma 2. Let F and F̄ : M → Rn be Lipschitz continuous mappings and L be
a Lispschitz constant of F. Suppose that for all x ∈ D,

|F (x)− F̄ (x)| < ε.

If x(t) and y(t) are solutions to

dx

dt
= F (x), and

dy

dt
= F̄ (y),

respectively, on some [0,T], such that x(0) = y(0), then

|x(t)− y(t)| ≤ ε

L
(exp(L|t− t0|)− 1)

holds, for all t ∈M.
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The proof of Lemma 2 can be found in [2].

Theorem 1. Define a continuous function s : [0, T ]→ Rn such that s(a) = s(b)
if and only if a = b. Given any σ > 0, there always exists a Neural ODE defined
on the interval [0, T ] and its solution y(t) satisfies: |y(t)−s(t)| ≤ σ, ∀t ∈ [0, T ].

Proof. The work in [1] inspires our proof roadmap. We take the neural network
of Neural ODE in the following form:

f(x) = Aφ(Bx + θ),

where A and B are weight matrices, bmθ is bias vector and φ is a smooth
activation function.

By Stone–Weierstrass theorem, there is a smooth curve s1 : [0, T ]→ Rn such
that:

|s1(t)− s(t)| < σ

2
.

From Lemma 1, s1(t) satisfies

ds1
dt

= F (s1),

where F is Lipschitz continuous on a compact set M containing s. The Lipschitz
constant of f is L. According to the approximation theorem [3]: there is an
integer N and n×N matrix A, N × n matrix B, and θ such that

|F (x)−Aφ(Bx + θ)| < σL

2(exp(LT )− 1)
.

Let F = Aφ(Bx + θ) and y(t) be the solution of the following equation:

dy

dt
= F (y),

y(0) = s1(0).

By Lemma 2, for any t ∈ [0, T],

|s1(t)− y(t)| < σL

2(exp(LT )− 1)

exp(Lt)− 1

L
≤ σ

2
,

So

|s(t)− y(t)| < σ.
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Fig. 1. NODE-EW. Norm means group normalization, f and g are both neural net-
works where the input of f is x while the input of g is the weight θ of f . So g can be
viewed as a hypernet.
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