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Essential Tensor Learning for Multi-View
Spectral Clustering

Jianlong Wu, Zhouchen Lin , Fellow, IEEE, and Hongbin Zha , Member, IEEE

Abstract— Recently, multi-view clustering attracts much atten-
tion, which aims to take advantage of multi-view information to
improve the performance of clustering. However, most recent
work mainly focuses on the self-representation-based subspace
clustering, which is of high computation complexity. In this paper,
we focus on the Markov chain-based spectral clustering method
and propose a novel essential tensor learning method to explore
the high-order correlations for multi-view representation. We first
construct a tensor based on multi-view transition probability
matrices of the Markov chain. By incorporating the idea from
the robust principle component analysis, tensor singular value
decomposition (t-SVD)-based tensor nuclear norm is imposed to
preserve the low-rank property of the essential tensor, which
can well capture the principle information from multiple views.
We also employ the tensor rotation operator for this task
to better investigate the relationship among views as well as
reduce the computation complexity. The proposed method can
be efficiently optimized by the alternating direction method of
multipliers (ADMM). Extensive experiments on seven real-world
datasets corresponding to five different applications show that
our method achieves superior performance over other state-of-
the-art methods.

Index Terms— Multi-view spectral clustering, essential tensor
learning, tensor SVD.

I. INTRODUCTION

CLUSTERING is one of the fundamental tasks in com-
puter vision and pattern recognition, which aims to divide

samples into various groups based on their similarity without
any prior information. It is very useful, especially when the
label information is hard to acquire. There are many clustering
based applications, such as image segmentation, dimension
reduction, unsupervised classification, etc. During the past
decades, a variety of methods [1]–[9] for clustering have
been proposed. Among them, the standard spectral cluster-
ing (SPC) [3], sparse subspace clustering (SSC) [4], and low-
rank representation (LRR) [5] are the most popular methods.
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These single view clustering methods achieve good per-
formance. In practice, we often acquire data from various
domains or feature space. For example, one object can be
described with text, images or videos, and different kinds
of features can be extracted to represent each of them. In
order to make full use of multi-view information to boost the
performance, many multi-view clustering methods have been
derived from these popular single view methods.

Due to the popularity of SSC [4] and LRR [5], many
self-representation based subspace learning methods [6]–[10]
are proposed for multi-view clustering. They achieve promis-
ing performances. But they mainly focus on subspace learning
and have high computation complexity. Another important
issue is that they mainly investigate the correlations from
the aspect of pairwise matrices, and it is more natural and
effective to find comprehensive representation of multi-view
from the tensor aspect. Motivated by the robust multi-view
spectral clustering (RMSC) [8], there is a connection between
the spectral clustering and Markov chain. So we mainly focus
on the spectral clustering via Markov chain in this paper.
However, RMSC [8] only learns the shared common informa-
tion among all views. While multi-view representations also
contain view-specific information, we hope to explore the high
order correlation and find the principle components [11]–[16]
of multi-view representations from the tensor aspect based on
the Markov chain clustering.

As for tensor decomposition, we not only need to
define the rank, but also find a tight convex relax-
ation of the tensor rank as nuclear norm. The CANDE-
COMP/PARAFAC (CP) [17], [18], Tucker [19] and tensor
Singular Value Decomposition (t-SVD) [20] are three main
tensor decomposition techniques. However, CP rank is gen-
erally NP-hard to compute and its convex relaxation is
intractable. For Tucker decomposition, the commonly used
Sum of Nuclear Norms (SNN) [21] is not a tight convex
relaxation of the Tucker rank. Since t-SVD based tensor
nuclear norm has been proven to be the tightest convex
relaxation [22] to �1-norm of the tensor multi-rank, so we
adopt it. With the t-SVD based tensor nuclear norm, our
model can well capture both the consistent and view-specific
information among multiple views, which will benefit the
clustering.

In Fig. 1, we present the framework of our proposed method.
We first construct a similarity matrix and a corresponding
transition probability matrix for features of each view. Then,
we propose to collect these transition probability matrices of
multi-view into a 3-order tensor. In order to better investigate
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Fig. 1. The pipeline of our proposed essential tensor learning for multi-view spectral clustering. For multi-view data X(i)(i = 1, · · · , M), we first compute
the view-specific similarity matrix Si ∈ R

N×N and the corresponding transition probability matrix P(i) by Pi = (D(i))−1S(i) ∈ R
N×N , where N is the

total number of samples. Then we construct a transition probability matrix tensor P based on multi-view transition probability matrices. To better explore
the high order correlations, we rotate the tensor P to P̃ (please pay attention to the rotation of red edge). Under the assumption of low-rank and sparse,
we learn the essential tensor Z based on t-SVD based tensor nuclear norm minimization. The learned low-rank tensor Z will be used as input to the standard
Markov chain method for spectral clustering. (a) Multi-view data, similarity matrices, and transition probability matrices. (b) Tensor rotation. (c) Essential
tensor learning with t-SVD based tensor nuclear norm.

the correlations as well as reduce the computation complexity,
we rotate the tensor. The essential tensor can be learnt via
tensor low-rank and sparse decomposition based on tensor
nuclear norm minimization defined by the t-SVD.

Main contributions are summarized as follows:
1) We propose a novel essential tensor learning method for

the Markov chain based spectral clustering. With the
t-SVD based tensor low-rank constraint and tensor rota-
tion, our method is very effective to learn the principle
information for clustering among multiple views.

2) We present an efficient algorithm based on ADMM to
solve the proposed problem.

3) Our method achieves superior performance compared
with the state-of-the-art methods on different datasets
for various applications. In the meantime, it also has the
lowest computation complexity.

II. RELATED WORK

Multi-view clustering has been extensively studied during
the past decade. The standard spectral clustering (SPC) [3]
is the most classic method, which constructs the similarity
matrix first, and then learns the affinity matrix by exploiting
the properties of the Laplacian of graph. Most existing clus-
tering methods are derived from SPC [3], and they mainly
differ in the construction of affinity matrix, according to
which, existing work can be mainly divided into two classes,
including the graph based affinity matrix learning methods and
the self-representation based subspace learning methods. We
briefly review some related work.

The graph based methods learn affinity matrix based on
the similarity matrix. For example, [23] proposes a co-training
approach to search for the clusterings that agree across the
views. Reference [6] aims to find the complementary infor-
mation across views based on a co-regularization method.

Reference [24] tries to find a universal Laplacian embed-
ding for multi-view features using minimax optimization. The
work in [25], [26] shows that there is a natural connection
between the spectral clustering and the Markov random walk.
Then, [27] constructs a transition probability matrix of Markov
chain on each view, and then combines these matrices via
a Markov mixture. Considering that multi-view data might
be noisy, RMSC [8] hopes to recover a shared low-rank
transition probability matrix for the Markov chain based
spectral clustering. Recently, [28] proposes the structured
low-rank matrix factorization methods for multi-view spectral
clustering.

For the second class, multi-view subspace learning methods
are derived from the popular SSC [4] and LRR [5], which
aim to explore the relationships between samples based on
self-representation. Most recent work of multi-view clustering
mainly focus on self-representation based subspace learning.
For example, [29] combines the advantages of both LRR
and SSC. Reference [30] extends the LRR into multi-view
subspace clustering with generalized tensor nuclear norm.
Then [31] adopts the t-SVD based tensor nuclear norm for
better representation, and [32] proposes the tensorial t-product
representation. Zhang et al. [33] jointly learns the underlying
latent representation of features and the multi-view low-rank
representation, and then generalize it to combine with deep
neural network [34]. To explore the complementary property
of multi-view representations, [7] utilizes the Hilbert Schmidt
Independence Criterion (HSIC) as a diversity term between
views, and [9] adds an exclusivity term to the structured sparse
subspace clustering model [35] to preserve the complementary
and consistent information.

Besides the above two classes of methods, there are also
some other methods, such as the canonical correlation analy-
sis (CCA) for multi-view clustering [36], multiple kernel
learning [37], discriminative k-means [38], and so on.
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TABLE I

SUMMARY OF NOTATIONS IN THIS PAPER

III. NOTATIONS AND PRELIMINARIES

A. Notations

For convenience, we summarize the frequently used nota-
tions in Table I. In this paper, we mainly consider the
3-order tensor A ∈ R

n1×n2×n3 . Vector along the i -th mode
is called the mode-i fiber. Here, we define the �2,1-norm of
a tensor as the sum of �2-norm of each mode-3 fiber. A(i)
denote the matricization of A along the i -th mode. It can be
constructed by arranging the mode-i fibers to be the columns
of the resulting matrix. The transpose AT ∈ R

n2×n1×n3 is
obtained by transposing each frontal slice and then reversing
the order of transposed frontal slices 2 through n3. A f =
fft(A, [ ], 3) denotes the fast Fourier transformation (FFT)
of a tensor A along the 3rd dimension, and we also have
A = ifft(A f , [ ], 3).

Besides, for a tensor A ∈ R
n1×n2×n3 , we also define

the block vectorizing and its inverse operation as
bvec(A) = [A(1); A(2); · · · ; A(n3)] ∈ R

n1n3×n2 and
fold(bvec(A)) = A, respectively. The block diagonal
matrix bdiag(A) ∈ R

n1n3×n2n3 and the block circulant matrix
bcirc(A) ∈ R

n1n3×n2n3 are defined by:

bdiag(A) :=

⎡
⎢⎢⎢⎣

A(1)

A(2)

. . .

A(n3)

⎤
⎥⎥⎥⎦ ,

bcirc(A) :=

⎡
⎢⎢⎢⎣

A(1) A(n3) · · · A(2)

A(2) A(1) · · · A(3)

...
. . .

. . .
...

A(n3) A(n3−1) · · · A(1)

⎤
⎥⎥⎥⎦ .

B. Preliminaries

To help understand the definition of tensor nuclear norm,
we first introduce some related definitions [20].

Definition 1 (t-Product): Let A be n1 × n2 × n3, and B be
n2 × n4 × n3. Then the t-product A ∗ B is the n1 × n4 × n3
tensor

A ∗ B = fold(bcirc(A)bvec(B)). (1)

Fig. 2. Illustration of the t-SVD decomposition of an n1 × n2 × n3 tensor.

Definition 2 (f-Diagonal Tensor): A tensor is called
f-diagonal if each of its frontal slices is diagonal matrix.

Definition 3 (Identity Tensor): For the identity tensor I ∈
R

n×n×n3 , its first frontal slice is the identity matrix with size
n × n, and all other frontal slices are zero.

Definition 4 (Orthogonal Tensor): A tensor Q ∈ R
n×n×n3

is orthogonal if it satisfies

QT ∗ Q = Q ∗ QT = I . (2)

Definition 5 (t-SVD): For a tensor A ∈ R
n1×n2×n3 , it can

be factorized by t-SVD as

A = U ∗ S ∗ VT , (3)

where U ∈ R
n1×n1×n3 and V ∈ R

n2×n2×n3 are orthogonal,
and S ∈ R

n1×n2×n3 is f-diagonal.
Definition 6 (t-SVD Based Tensor Nuclear Norm):

The t-SVD based tensor nuclear norm ‖A‖� of a tensor
A ∈ R

n1×n2×n3 is defined by the sum of singular values of
all the frontal slices of A f :

‖A‖� =
n3∑

k=1

‖A(k)
f ‖∗ =

min(n1,n2)∑
i=1

n3∑
k=1

|S(k)
f (i, i)|, (4)

where S(k)
f is computed by the SVD A(k)

f = U (k)
f S(k)

f V(k)T
f

of frontal slices of A f .

IV. ESSENTIAL TENSOR LEARNING FOR MULTI-VIEW

SPECTRAL CLUSTERING

In this section, we first introduce the overview of spectral
clustering by Markov chain. Then we present the details
and analysis of our proposed essential tensor learning for
multi-view spectral clustering (ETLMSC).
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Algorithm 1 Spectral Clustering by Markov Chain
Input: Data points {x1, · · · , xN }.
1: Compute the similarity matrix S ∈ R

N×N with Gaussian

kernel Si j = exp(−‖xi−x j ‖2
2

σ 2 ).
2: Construct the weighted graph G = (V, E, S) and define

a random walk over G with transition probability matrix
P = D−1S ∈ R

N×N such that it has a unique stationary
distribution π satisfying π = PT π .

3: Compute eigenvalues decomposition of the normalized
Laplacian matrix L′ = (�

1
2 P�− 1

2 +�− 1
2 PT �

1
2 )/2, where

� is a diagonal matrix with �ii = π(i).
4: Adopt the k-means to cluster row vectors of U ∈ R

N×C ,
which consists of C eigenvectors corresponding to the C
largest eigenvalues of L′ in the last step, and assign each
data point into the corresponding class.

Output: Assigned class of each data point.

A. Markov Chain Based Spectral Clustering

Denote X = [x1, · · · , xN ] ∈ R
d×N as the matrix of data

vectors, where N is the number of data points and d is the
dimension of feature vectors. We first compute the similarity
matrix S, where Si j denotes the similarity between data points
xi and x j . Gaussian kernel is commonly used to define their

similarity. We have Si j = exp(−‖xi−x j ‖2
2

σ 2 ), where the �2
distance is adopted and σ is the standard deviation. Then we
can construct a weighted graph G = (V, E, S), where the
vertices set V consists of the sample points, the edges set E
denotes the connection between data points, and the similarity
S defines the weight of each edge. For spectral clustering [3],
it tries to find an optimal partition in the weighted graph G.
According to [25], [26], there is a natural connection between
spectral clustering and random walkers on the weighted graph.
We first define the transition probability matrix by P = D−1S,
where Pij denotes the probability of random walk from node
i to node j , and D is a diagonal matrix with elements Dii =∑

j Si j . For this Markov chain, we hope the random walk
over the graph converges to a unique and positive stationary
distribution π , that is π = PT π . Let � denote the diagonal
matrix with �ii = π(i), then the Laplacian matrix for the
Markov chain based spectral clustering can be computed by
L = � − (�P + PT �)/2. Denote C as the number of
clusters, the indicator function f for clustering can be solved
by computing the eigenvectors corresponding to the C small-
est eigenvalues of the generalized eigenvalue decomposition
problem Lf = λ�f , which is equivalent to the eigenvectors
corresponding to the C largest eigenvalues of the normalized
Laplacian matrix L′ = (�

1
2 P�− 1

2 + �− 1
2 PT �

1
2 )/2. Finally,

k-means algorithm [39] is adopted to cluster based on these
indicator vectors. In Algorithm 1, we briefly summarize the
outline for spectral clustering by Markov chains. For more
details, please refer to [8], [26].

B. The Proposed Method

Assume that there are M different views in total. Let
X(i) = [x(i)

1 , · · · , x(i)
N ] ∈ R

d(i)×N denote the data matrix

of the i -th view, where N is the number of samples, d(i)

is the dimension of feature vectors in the i -th view, and i
ranges from 1 to M . For multi-view spectral clustering via
Markov chain, we first compute the similarity matrix S(i) ∈
R

N×N , construct the weighted graph G(i), and compute the
transition probability matrix P(i) for each view. According
to Algorithm 1, we can see that the transition probability
matrix P plays a very important role in the clustering by
Markov chain. So we mainly focus on how to learn an essential
transition probability matrix for spectral clustering based on
the multi-view P(i), i = 1, · · · , M .

RMSC [8] hopes to capture the shared information among
multi-view transition probability matrices. It divides each Pi

into two parts: a shared probability matrix Z describing impor-
tant information for clustering, and view-specific deviation
error matrix E(i). As the number of clusters is much smaller
than the sample number, RMSC imposes low-rank constraint
on Z. It also assumes that the error matrix should be sparse.
Then the objective function for RMSC [8] is formulated as

min
Z,E(i)

‖Z‖∗+λ

M∑
i=1

‖E(i)‖1 s.t . P(i) =Z+E(i), i =1, · · · , M,

(5)

where λ is a balance parameter.
RMSC only learns the shared common information among

multiple views. However, each view also contains unique
information that is useful for clustering. Motivated by this,
we hope to explore high order correlations among multiple
views based on tensor representation.

We divide each Pi into two parts P(i) = Z(i) + E(i).
Then we construct a 3-order tensor Z by collecting all Z(i).
As multi-view features are extracted from the same objects,
different Z(i) also contains some similar information. In the
meantime, the number of clusters is much smaller than the
sample number. So the tensor Z should be low-rank. We use
the t-SVD based tensor nuclear norm ‖ · ‖� to regularize Z
and get the primary objective function for our model:

min
Z,E(i)

‖Z‖� + λ

M∑
i=1

‖E(i)‖1

s.t . P(i) = Z(i) + E(i), i = 1, · · · , M. (6)

The minimization of low-rank tensor can help us find the
essential information among different views. Specifically,
the consistent information among multiple views may be
represented by several principle components of the t-SVD, and
view-specific information can be preserved in other singular
values of the corresponding slice of the f-diagonal tensor S,
which is computed by the t-SVD.. By constructing a 3-order
transition probability tensor P ∈ R

N×N×M , where P(i) is the
i -th frontal slice of the tensor P , the above problem can be
reformulated as the tensor form:

min
Z,E

‖Z‖� + λ‖E‖1, s.t . P = Z + E. (7)

Instead of optimizing the above problem, we first rotate
the original transition probability tensor P ∈ R

N×N×M into
P̃ ∈ R

N×M×N , which can be seen in the middle part of
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Algorithm 2 Essential Transition Probability Tensor Learning
for Multi-View Spectral Clustering

Input: Multi-view data X(i) ∈ R
di×N , i = 1, 2, · · · , M .

1: Compute Si and Pi , and construct the rotated tensor P̃ .
Set k = 0, L0 = E0 = Y0 = 0, μ0 = 10−3, ρ = 2,
μmax = 108, and � = 10−6.

2: while not converged do
3: Fix Ek . Update Zk+1 by Eq. 11.
4: Fix Zk+1. Update Ek+1 by Eq. 12.
5: Update Yk+1 by Eq. 15.
6: μk+1 = min(ρμk , μmax).
7: Check the convergence conditions:

‖Zk+1 − Zk‖∞ ≤ �, ‖Ek+1 − Ek‖∞ ≤ �,
‖P̃ − Zk+1 − Ek+1‖∞ ≤ �.

8: k = k + 1.
9: end while

Output: Zk+1 and Ek+1.

Fig. 1 (please pay attention to the rotation of the red edge
of the tensor). This tensor rotation can be easily achieved
by the shi f tdim function in Matlab. There are mainly two
advantages for this operation. First, according to the definition
of t-SVD, FFT operates along the third dimension of the
tensor and then we perform SVD in each frontal slice. As
we hope to capture the essential information among all views,
SVD in each slice with the information of multi-view and
all samples is more meaningful. Moreover, FFT along the
feature dimension can preserve the relationship among views.
Second, this rotation can largely reduce the computation
complexity in optimization, which will be analyzed in the
subsection IV-D.

Besides, for the error term, if one sample contains much
noise and outliers, transition probability vectors in the tensor
related to this sample will be influenced. Noises in these
vectors are not sparse, so �2-norm regularization on vectors
is more proper. As noisy samples should be sparse, tensor
�2,1-norm works. It is more robust to outliers and noises. So
we use �2,1-norm to characterize the sparsity property. Then
the final objective function of our proposed ETLMSC method
can be reformulated as follows:

min
Z,E

‖Z‖� + λ‖E‖2,1, s.t . P̃ = Z + E, (8)

where P̃ denotes the rotated transition probability tensor. For
the tensor E after rotation, the �2,1-norm is defined as the
sum of �2-norm of each fiber along the coefficient dimension.
According to the definition of �2,1-norm and matricization
in Table I, we have ‖E‖2,1 = ‖E(3)‖2,1, which is helpful to
the optimization of E .

C. Optimization

We adopt the alternating direction method of multipli-
ers (ADMM) [40] to solve Eq. (8). The augmented Lagrangian
function can be formulated as follows:
L(Z,E) = ‖Z‖� + λ‖E‖2,1

+ 〈Y, P̃ − Z − E〉 + μk

2
‖P̃ − Z − E‖2

F

= ‖Z‖� + λ‖E‖2,1 + μk

2
‖P̃ − Z − E + Y/μk‖2

F ,

(9)

where μk > 0 is a penalty parameter at k-th iteration and
Y is a Lagrange multiplier. ADMM alternately updates each
variable as follows.

Z sub-problem:

Zk+1 =arg min
Z

‖Z‖�+ μk

2
‖Z−

(
P̃−Ek +Yk/μk

)
‖2

F , (10)

which is a t-SVD based tensor nuclear norm minimization
problem. According to [41], it has the following close-form
solution with the tensor tubal-shrinkage operator:
Zk+1 = Cμ′(P̃ − Ek + Yk/μk) = U ∗ Cμ′(S) ∗ VT , (11)

where μ′ = N · μk , P̃ − Ek + Yk/μk = U ∗ S ∗ VT and
Cμ′(S) = S ∗ J . J ∈ R

N×M×N is an f-diagonal tensor
whose diagonal element in the Fourier domain is J f (i, i, j) =
max(1 − μ′

S( j)
f (i,i)

, 0).

E sub-problem:

Ek+1 =arg min
E

λ‖E‖2,1+ μk

2
‖E−

(
P̃−Zk+1+Yk/μk

)
‖2

F .

(12)

As the �2,1-norm of the tensor E is defined as the sum of
�2-norm of each mode-3 fiber, we matricize each tensor along
the 3rd mode. So we have ‖Ek+1

(3) ‖2,1 = ‖Ek+1‖2,1. It can be
transformed into the matrix form:
Ek+1

(3) = arg min
E(3)

λ‖E(3)‖2,1

+ μk

2
‖E(3) −

(
P̃(3) − Zk+1

(3) + Yk
(3)/μ

k
)

‖2
F . (13)

Let D = P̃(3) − Zk+1
(3) + Yk

(3)/μ
k , and according to [5],

the problem in Eq. (13) has the following close-form solution:

Ek+1
(3):,i =

⎧⎪⎪⎨
⎪⎪⎩

||D:,i ||2 − λ

μk

||D:,i ||2 D:,i , if ||D:,i ||2 >
λ

μk

0, otherwise.

(14)

where D:,i represents the i -th column of the matrix D. After
we get Ek+1

(3) , we transform it into the tensor form.
Update multipliers:

Yk+1 = Yk + μk
(
P̃ − Zk+1 − Ek+1

)
. (15)

The whole optimization process is summarized in Algorithm 2.
After we learn the essential transition probability tensor Z ∈
R

N×M×N , we compute the essential transition probability
matrix Z∗ ∈ R

N×N by summing its lateral slices as Z∗ =∑M
i=1 Z(:, i, :). Then we put Z∗ into the second step of

Algorithm 1 to replace the transition probability matrix P, and
we can get the final clustering result.
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Fig. 3. Some sample images of these image datasets for various applications. (a) The UCI-Digits dataset; (b) The COIL-20 dataset; (c) The Notting-Hill
dataset; (d) The Scene-15 dataset; (e) The MITIndoor-67 dataset.

D. Convergence and Complexity

At each iteration, we can get the close-form solution
of Zk+1 and Ek+1. In [40], the convergence of ADMM
with two blocks of variables has already been proved.
Accordingly, our algorithm will converge to an optimal
solution.

For the computation complexity, at each iteration, it takes
O(M N2) to compute the close-form solution of E . As for
updating Z , on the one hand, we need to calculate the
FFT and inverse FFT of a N × M × N tensor along the
third dimension, which takes O(M N2 log(N)). On the other
hand, in the Fourier domain, we need to compute the SVD
of each frontal slice of a tensor with size N × M × N ,
which takes O(M2 N2). So we need O(M2 N2 +M N2 log(N))
in total to compute the close-form solution of Z under
tensor rotation operation. However, if we do not rotate the
tensor, we need O(M N3 + M N2 log(M)). As the number of
views M is much smaller than the number of samples N
in multi-view setting, that is M 
 N and M ≤ log(N).
Therefore, we can see that the computation complexity is
largely reduced by the tensor rotation. Denote K as the number
of iterations, the complexity to learn the essential tensor in
Algorithm 2 is O(K M N2(M + log(N))), which is relatively
efficient.

After we get the essential transition probability matrix,
we adopt the Markov chain based spectral clustering to get the
final result, which usually cost O(N3). Therefore, the overall
complexity is O(N3 + K M N2(M + log(N))).

TABLE II

STATISTICS OF DIFFERENT DATASETS

V. EXPERIMENTS

A. Experimental Settings

1) Datasets: We adopt seven commonly used real world
datasets, which cover five different applications, including
news article clustering, digit clustering, generic object clus-
tering, face clustering, and scene clustering. In Table II,
we summarize the statistic information of these seven datasets.
Some samples of these image datasets are presented in Fig 3.
We briefly introduce these datasets as follows.

BBC-Sport [42]1 contains 737 documents from the BBC
Sport website corresponding to sports news in five topical
areas, including the athletics, cricket, football, rugby, and
tennis. There are two different views in total.

1http://mlg.ucd.ie/datasets
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TABLE III

EXPERIMENTAL RESULTS ON THE BBC-SPORT AND THE UCI-DIGIT DATASETS. FOR ETLMSC, WE SET
λ = 0.03 AND λ = 0.007 FOR THESE TWO DATASETS, RESPECTIVELY

UCI-Digits [43] consists of 2, 000 digits images corre-
sponding to 10 classes. Same to [8], we extract three different
features to represent these digit images, including Fourier
coefficients, pixel averages and morphological features.

COIL-20 2 is the abbreviation of the Columbia object image
library dataset, which contains 1, 440 images of 20 object
categories. Each category contains 72 images and all images
are normalized to size 32×32. For this datasets, we also extract
three types of features (intensity, LBP [44] and Gabor [45]
features), which is same to [30], [31].

Notting-Hill [46] is a video based face dataset, which is
collected from the movie “Notting-Hill”. It contains 4, 660
faces of 5 main casts in 76 tracks. All face images are with
size 50 × 40. Intensity, LBP [44] and Gabor [45] features are
extracted for representation.

Scene-15 [47] has 15 natural scene categories with both
indoor and outdoor environments, including industrial, store,
bedroom, kitchen, and etc. There are 4, 485 images in
total. Similar to [31], we extract three kinds of image fea-
tures for representation, including PHOW [48], LBP [44], and
CENTRIST [49].

MITIndoor-67 [50] contains 15K indoor images of 67
categories. Same to [31], the training subset which has 5, 360
images is adopted for clustering. Besides the three kinds of
features for Scene-15, we also extract deep features based
on pretrained VGG-VD [51] network to improve the perfor-
mance.

Caltech-101 [52] includes 8, 677 object images of 101
categories. For each category, it has about 40 to 800 images.
This dataset is the largest dataset used in all these related
multi-view clustering methods. We adopt all these images of
101 classes to test the performance of clustering, which is
same to [31]. Besides the three kinds of features for Scene-15,
the Inception V3 [53] network is used to extract deep features.

2) Compared Methods: We compare our proposed approach
ETLMSC and UR-ETLMSC (the proposed method without
tensor rotation) with the following state-of-the-art methods,
including two single view and six multi-view methods.

SPCbest achieves the best result among all views with
standard spectral clustering [3].

2http://www.cs.columbia.edu/CAVE/software/softlib/

LRRbest achieves the best result among all views with the
low-rank representation [5].

Co-reg [6] is the co-regularization method for spectral
clustering, which co-regularizes the clustering hypothesis to
explore the complementary information.

RMSC [8] recovers a shared low-rank transition probability
matrix as input to the Markov chain based spectral clustering.

DiMSC [7] employs the HSIC as a diversity term to explore
the complementarity of multi-view representations.

LTMSC [30] adopts the low-rank tensor constraint for
multi-view subspace clustering.

ECMSC [9] consists of position-aware exclusivity term and
consistency term for regularization.

t-SVD-MSC [31] uses the t-SVD based tensor nuclear norm
to learn optimal subspace.

Among all above methods, only SPCbest , Co-reg, and
RMSC are spectral clustering methods, and other methods are
self-representation based subspace clustering methods.

3) Evaluation Metrics: To comprehensively evaluate the
performance of clustering, we adopt all six commonly used
metrics including normalized mutual information (NMI), accu-
racy (ACC), adjusted rand index (AR), F-score , precision and
recall. These six metrics favor different properties in clustering
task. For all metrics, the higher value indicates the better
performance.

B. Experimental Results and Analysis

1) Performance Comparison: We present the detailed clus-
tering results on seven datasets in Tables III-VI. All results
are measured by the average of 20 runs. In each table,
the bold values represent the best performance. To better
compare the performance of different methods, we divide
all methods into four subclasses in the table, including
single view methods, spectral clustering methods, subspace
learning methods, and tensor based methods. The opti-
mal parameters for these methods are fine-tuned by grid
searching.

On all datasets, t-SVD-MSC and the proposed ETLMSC
achieve the top two best results under nearly all these different
metrics. From Tables III-VI, we can easily see that our
proposed ETLMSC achieves the best performance on the
BBC-Sport, UCI-Digits, COIL-20, Scene-15, MITIndoor-67,
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TABLE IV

EXPERIMENTAL RESULTS ON THE COIL-20 AND THE NOTTING-HILL DATASETS. FOR ETLMSC, WE SET λ = 0.003
AND λ = 0.0008 FOR THESE TWO DATASETS, RESPECTIVELY

TABLE V

EXPERIMENTAL RESULTS ON THE SCENE-15 AND THE MITINDOOR-67 DATASETS. FOR ETLMSC, WE SET λ = 0.003 FOR BOTH TWO DATASETS

TABLE VI

EXPERIMENTAL RESULTS ON THE CALTECH-101 DATASETS.
FOR ETLMSC, WE SET λ = 0.003

and Caltech-101 datasets under all six evaluation metrics.
Especially on the BBC-Sport and MITIndoor-67 datasets, our
results are more than 10% higher than the second best results
achieved by t-SVD-MSC. There are also 2%, 2%, 6% and
3% improvement compared with the second best performance
of t-SVD-MSC on the UCI-Digits, COIL-20, Scene-15, and
Caltech-101 datasets, respectively. The Notting-Hill dataset
is a video based face dataset. According to [54], [55], facial
images have the subspace structure, and self-representation
based subspace learning method is more suitable for this task.

While t-SVD-MSC is based on subspace learning, the perfor-
mance of our method is still comparable to that achieved by
t-SVD-MSC, and much higher than those of all other methods,
which is shown in the right part of Table IV.

For single view methods, they obtain good performance. But
in general, multi-view methods work better than single view
methods. Moreover, both ECMSC and DiMSC work very well
for this task. As they both try to investigate complementary
information, it shows that it is necessary to learn view-specific
information.

Tensor based methods, including ETLMSC and
t-SVD-MSC, achieve significant improvement compared
with all other state-of-the-art methods in most cases. There is
a huge gap between tensor based methods and other methods,
which can be attributed to the effectiveness of tensor based
correlations exploration. In Fig. 4, we also present the
confusion matrices of these three tensor based methods on
the Scene-15 dataset. The row and column names correspond
to the ground-truth and predicted labels, respectively. We can
see that compared with LTMSC, our proposed ETLMSC
and t-SVD-MSC achieve much better results in almost all
classes in terms of accuracy, which can be attribute to the
effectiveness of t-SVD decomposition based tensor nuclear
norm. Compared with t-SVD-MSC, our ETLMSC improves
slightly in many categories, which can also be verified by the
accuracy.
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Fig. 4. The confusion matrices comparison among three tensor based methods on the Scene-15 dataset. (a) LTMSC. (b) t-SVD-MSC. (c) ETLMSC.

Fig. 5. Parameter tuning with respect to λ on the first six datasets. Please note that the x-axis is in log scale. (a) BBC-Sport. (b) UCI-Digits. (c) COIL-20.
(d) Notting-Hill. (e) Scene-15. (f) MITIndoor-67.

Compared with RMSC, which is also a Markov chain based
method, our proposed ETLMSC gains significant improve-
ment. The main reason is that RMSC only captures the shared
information among different view, while ETLMSC incorpo-
rates view-specific information that is useful for clustering.
Based on the t-SVD based tensor nuclear norm to regularize
the essential tensor, our method can well preserve these
principle components among multi-view representations.

Tensor rotation plays an important role in our methods.
Besides the complexity reduction, it can also largely improve
the performance, which has already been validated by t-
SVD-MSC [31]. We can see that ETLMSC achieves much
better results than UR-ETLMSC on all datasets. The main
reason is that after rotation, we can thoroughly investigate
the complementary information among different views as
the SVD is performed on each matrix composed of dif-
ferent view features after FFT. However, without rotation,
the arrangement of similarity coefficients could be destroyed
in Fourier domain, so that complementary information cannot
be effectively explored. Therefore, UR-ETLMSC only some-

time shows comparable performance with the state-of-the-art
methods.

2) Parameter Sensitivity Analysis: There are mainly two
parameters in our model, including the balance parameter λ
and the standard deviation σ of Gaussian kernel to compute
the similarity. In experiments, we find the optimal value for λ
by grid searching. As for σi for the i -th view, we directly
set it to the average Euclidean distance (AE Di ) between
all i -th view features, which is same to RMSC. We present
the evaluation results of our proposed ETLMSC method on
the first six datasets with respect to different λ and ratio
of σi/AE Di in Figs. 5 and 6, respectively. From Fig. 5,
we can observe that on these datasets, the performance of
our proposed ETLMSC is relatively stable when λ varies
in the range of [0.0008, 0.01]. λ plays an important role in
balancing the contributions of these two parts. When it is
very small (close to 0), the �2,1 norm regularization on E
will not work. ‖Z‖� will be minimized as much as possible,
which leads to rank(Z(i)) ≤ 1. So the result is very bad.
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Fig. 6. Influence of σ for Gaussian kernel based similarity on the first six datasets. (a) BBC-Sport. (b) UCI-Digits. (c) COIL-20. (d) Notting-Hill. (e) Scene-15.
(f) MITIndoor-67.

Fig. 7. Convergence results on the COIL-20, Notting-Hill, and MITIndoor-67 datasets. (a) COIL-20. (b) Notting-Hill. (c) MITIndoor-67.

Moreover, the optimal parameter for each dataset is reported
in their corresponding table.

As for σ , all results of ETLMSC presented in Tables III-VI
are based on the ratio σi/AE Di = 1. From Fig. 6, we can
see that our method is not sensitive to this parameter when it
varies in a certain large range. σ controls the discrimination of
similarity. When σ is too small (or too large), all similarities
will be close to 0 (or 1). It will be hard to distinguish the
difference, which leads to bad results. For all the results
reported in the manuscript, they are achieved with σi/AE Di =
1. We can see that with proper ratio, the performance can
be further improved, especially on the BBCSport, UCI-Digit,
COIL-20, Scene-15, and MITIndoor-67 datasets.

For the parameters μ and ρ of ADMM, we directly adopt
the suggestion of [40] and fix them as 10−5 and 1.9, respec-
tively. These two parameters mainly influence the number of
iteration for convergence.

3) Convergence Analysis: The theoretical convergence of
our algorithm has already been proved in [40]. In Fig. 7,
we show the total error of our algorithm in each iteration on
the COIL-20, Notting-Hill, and Caltech-101 datasets. Here,
the total error is defined as the maximum value of changes
in each iteration ‖Zk+1 − Zk‖∞, ‖Ek+1 − Ek‖∞, and recon-
struction error ‖P̃ − Zk+1 − Ek+1‖∞:

Error = max(‖	Z‖∞, ‖	E‖∞, ‖P̃ − Zk+1 − Ek+1‖∞).

According to Fig. 7, we can see that the error decreases with
the increasing of iteration number. Our algorithm converges
within 20 iterations, which is also true on other datasets. As
we can compute the close-form solution in each iteration with
relatively low computation complexity, our algorithm is very
efficient.

4) Complexity Comparison: In Table VII, we present com-
putation complexity and running time of the state-of-the-art
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TABLE VII

TIME COMPLEXITY AND RUNNING TIME TO COMPUTE AFFINITY MATRIX ON THESE DATASETS OF DIFFERENT METHODS. K , M, N ARE
THE NUMBER OF ITERATIONS, VIEWS, AND SAMPLES, RESPECTIVELY. ALL THE TIME ARE MEASURED BY SECONDS

Fig. 8. Visualization of learned transition probability matrices of two spectral clustering based methods on the COIL-20 dataset. (a) RMSC. (b) ETLMSC.

methods on all these datasets. Since all these methods share the
similar post-processing procedure that has the same complex-
ity, we only report the computational complexity and running
time for learning the affinity matrix. We need to mention
that the number of iteration K has an obvious affect on the
running time, and parameter selection will influence K . So
we can see that the running time of ECMSC on the UCI-Digit
dataset could be shorter than that on the COIL-20 dataset. We
can see that our method has the lowest complexity and the
shortest processing time among these related approaches on
all datasets, which demonstrates the efficiency of our proposed
method. For example, on the COIL-20 dataset, our algorithm
can finish within 20 seconds, while the second best method
RMSC needs more than 70 seconds, and t-SVD-MSC costs
more than 100 seconds. On the largest Caltech-101 dataset,
our method can save much time compared with t-SVD-MSC.

5) Representation Visualization: In Fig. 8, we show the
visualization of the learned optimal transition probability
matrix. Due to the limitation of space, we only present
the results of two Markov chain based spectral cluster-
ing methods (RMSC and our proposed ETLMSC) on the
COIL-20 dataset. For ETLMSC, the transition probability
matrix is computed by the average of lateral slices of the opti-
mal essential tensor Z . The yellow color represents the large
value. Compared with the result of RMSC in Fig. 8(a), we can

easily see that the result of ETLMSC in Fig. 8(b) is much
better as most large values concentrate on the diagonal blocks.
This can also be verified by comparing the experimental results
in Tables III-V. While RMSC only captures shared information
among different views, it is more meaningful for our ETLMSC
method to explore high order multi-view correlations based on
tensor formulation.

6) Comparison With t-SVD-MSC: t-SVD-MSC [31]
achieves very good performance for the task of multi-view
clustering. Both the proposed ETLMSC and t-SVD-MSC [31]
are based on the tensor nuclear norm defined by the t-SVD
for multi-view clustering. But there are many differences.
First, construction of affinity matrix and tensor is totally
different. We adopt the Markov chain to compute the
transition probability matrix, while t-SVD-MSC is based on
self-representation, which is of high computation complexity
and under the assumption of subspace structure. Second,
the model and optimization process are much different.
We directly divide the transition probability tensor into
two parts with low-rank and sparse constraints, while their
method need to optimize the self-representation coefficients.
So the optimization process is also different. Most importantly,
compared with t-SVD-MSC, based on the experimental results
presented above, our method achieves better performance
with much lower complexity and less processing time.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we propose a novel essential tensor learning
method for Markov chain based multi-view spectral clustering.
Based on multi-view transition probability matrices, we con-
struct a 3-order tensor. We explore the high order correlations
among multiple views by learning the essential tensor with
low-rank constraint based on t-SVD based tensor nuclear
norm. With tensor rotation operation, the proposed algorithm
can be optimized efficiently and the principle components can
be well preserved. We evaluate the performance of our method
on seven datasets with respect to different applications, and it
achieves superior performance compared with the state-of-the-
art methods.

For future work, we would like to focus on the fast and
scalable algorithms, such as the sampling technique or recover
the subspace of the whole tensor with a much smaller seed
tensor. So that the computation complexity of the proposed
model can be further reduced, which will make ETLMSC
much suitable for large-scale applications.
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