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Abstract—Numerous tasks at the core of statistics, learning and vision areas are specific cases of ill-posed inverse problems.

Recently, learning-based (e.g., deep) iterative methods have been empirically shown to be useful for these problems. Nevertheless,

integrating learnable structures into iterations is still a laborious process, which can only be guided by intuitions or empirical insights.

Moreover, there is a lack of rigorous analysis about the convergence behaviors of these reimplemented iterations, and thus the

significance of such methods is a little bit vague. This paper moves beyond these limits and proposes Flexible Iterative Modularization

Algorithm (FIMA), a generic and provable paradigm for nonconvex inverse problems. Our theoretical analysis reveals that FIMA allows

us to generate globally convergent trajectories for learning-based iterative methods. Meanwhile, the devised scheduling policies on

flexible modules should also be beneficial for classical numerical methods in the nonconvex scenario. Extensive experiments on real

applications verify the superiority of FIMA.

Index Terms—Nonconvex optimization, learning-based iteration, convergence guarantee, image deconvolution, rain streaks removal

Ç

1 INTRODUCTION

IN applications throughout statistics, machine learning
and computer vision, one is often faced with the chal-

lenge of solving ill-posed inverse problems. In general, the
basic inverse problem leads to a discrete linear system of
the form T ðxÞ ¼ yþ n, where x 2 RD is the latent variable
to be estimated, T denotes some given linear operations on
x, and y;n 2 RD are the observation and an unknown error
term, respectively. Typically, these inverse problems can be
addressed by solving the composite minimization model

min
x

CðxÞ :¼ fðx; T ; yÞ þ gðxÞ; (1)

where f is the fidelity that captures the loss of data fitting, and
g refers to the prior that promotes desired distribution on the
solution. Recent studies illustrate that many problems (e.g.,
image deconvolution, matrix factorization and dictionary
learning) naturally require to be solved in the nonconvex sce-
nario. This trend motivates us to investigate Nonconvex
Inverse Problems (NIPs) in the form of Eq. (1) and with the
practical configuration that f is continuously differentiable, g
is nonsmooth, and both f and g are possibly nonconvex.

Over the past decades, a broad class of first-order
methods have been developed to solve special instances
of Eq. (1). For example, by integrating Nesterov’s acce-
leration [1] into the fundamental Proximal Gradient (PG)
scheme, Accelerated Proximal Gradient (APG, a.k.a.
FISTA [2]) method is initially proposed to solve convex
models in the form of Eq. (1) for different applications,
such as image restoration [2], image deblurring [3], and
sparse/low-rank learning [4], etc. While these APGs gen-
erate a sequence of objectives that may oscillate [2], [5]
developed a variant of APG that guarantees the monoto-
nicity of the sequence. For nonconvex energies in Eq. (1),
Li and Lin [6] investigated a monotone APG (mAPG) and
proved the convergence under the Kurdyka-ºojasiewicz
(Kº) constraint [7]. The work in [8] developed another
variation of APG (APGnc) for nonconvex problems, but
their original analysis only characterized the fixed-point
convergence. Recently, Li et al. [9] also proved the subse-
quence convergence of APGnc and estimated its conver-
gence rates by further exploiting Kº property.

Unfortunately, even with some theoretically proved con-
vergence properties, these classical numerical solvers may
still fail in real-world scenarios. This is mainly because that
the abstractly designed and fixed updating schemes do not
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exploit the particular structure of the problem at hand nor
the input data distribution [10].

In recent years, various learning-based strategies [11],
[12], [13], [14], [15] have been proposed to address practical
inverse problems in the form of Eq. (1). These methods first
introduced hyperparameters into the classical numerical
solvers and then performed discriminative learning on col-
lected training data to obtain some data-specific (but possi-
bly inconsistent) iteration schemes. Inspired by the success
of deep learning in different application fields, some prelim-
inary studies considered the handcrafted network architec-
tures as the implicit priors (a.k.a. deep priors) for inverse
problems. Following this perspective, various deep priors
are designed and nested into numerical iterations [16], [17],
[18]. Alternately, the works in [19] and [20] addressed the
iteration learning issues from the perspectives of deep rein-
forcement and recurrent learning, respectively.

Nevertheless, existing hyperparameters learning approa-
ches can only build iterations based on the specific energy
forms (e.g., ‘1-penalty andMRFs), so that they are inapplica-
ble for more generic inverse problems. Meanwhile, due to
severe inconstancy of parameters during iterations, rigorous
analysis on the resulted trajectories is also missing. Deep
iterative methods have been executed in many learning and
vision problems in practice. However, due to the complex
network structure, little or even to no results have been pro-
posed for the convergence behaviors of these methods. In
summary, the lack of strict theoretical investigations is one
of the most fundamental limits in prevalent learning-based
iterative methods, especially in the challenging nonconvex
scenario.

To break the limits of prevalent approaches, this paper
explores Flexible IterativeModularization Algorithm (FIMA),
a generic and convergent algorithmic framework that combines
together the learnable architecture (e.g.,mainstreamdeep net-
works) with principled knowledges (formulated by mathe-
matical models), to tackle challenging NIPs in Eq. (1).
Specifically, derived from the fundamental forward-back-
ward updating mechanism, FIMA replaces specific calcula-
tions corresponding to the fidelity and priors in Eq. (1) with
two user-specified (learnable) computational modules. A
series of theoretical investigations are established for FIMA.
For example, we first prove the subsequence convergence of
FIMA with explicit momentum policy (called eFIMA), which
is as good as thosemathematically designed nonconvex prox-
imal methods with Nesterov’s acceleration (e.g., various
APGs in [6], [8], [9]). By introducing a carefully devised error-
control policy (i.e., implicit momentum policy, called iFIMA),
we further enhance the results and obtain a globally conver-
gent Cauchy sequence for Eq. (1). We prove that this guaran-
tee can also be preserved for FIMA with multiple blocks of
unknown variables (called mFIMA). As a nontrivial byprod-
uct,we finally showhow to specifymodules in FIMA for chal-
lenging inverse problems in low-level vision area (e.g., non-
blind and blind image deconvolution). Our primary contribu-
tions are summarized as follows:

1) FIMA provides a generic framework that unifies
almost all existing learning-based iterative methods,
as well as a series of scheduling policies that make
it possible to develop theoretically convergent

learning-based iterations for challenging nonconvex
inverse problems in the form of Eq. (1).

2) Even with highly flexible (learnable) iterations, the
convergence guarantees obtained by FIMA is still as
good as (eFIMA) or better (iFIMA) than prevalent
mathematically designed nonconvex APGs. So it is
worth noting that our devised scheduling policies
together with the flexible algorithmic structures
should also be beneficial for classical nonconvex
algorithms.

3) FIMA also provides us a practical and effective
ensemble of domain knowledge and sophisticated
learned data distributions for real applications.
Thus we can bring the expressive power of knowl-
edge-based and data-driven methodologies to yield
state-of-the-art performance on challenging low-
level vision tasks.

2 RELATED WORK

2.1 Classical First-Order Numerical Solvers

We first briefly review a group of classical first-order algo-
rithms, which have been widely used to solve inverse prob-
lems. The gradient descent (GD) scheme on a differentiable
function f can be reformulated as minimizing the following
quadratic approximation of f at given point v with step size
g > 0, i.e., Qgfðx; vÞ :¼ fðvÞ þ hrfðvÞ; x� vi þ 1

2g kx� vk2.
As for the nonsmooth function g, its proximal mapping
(PM) with parameter g > 0 can be defined as proxggðvÞ ¼
argminxgðxÞ þ 1

2g kx� vk2. So it is natural to consider PG as

cascade of GD (on f) and PM (on g), or equivalently opti-
mizing the quadratic approximation of Eq. (1), i.e., xkþ1

2 argminxgðxÞ þQgkfðx; vkÞ, where vk is some calculated
variable at kth iteration. Thus most prevalent proximal
schemes can be summarized as

vk ¼ xk; (A-1)

xk þ bkðxk � xk�1Þ; (A-2)

(

xkþ1 2
proxgkg vk � gkrfðvkÞ

� �
; (B-1)

prox"
k

gkg
vk � gkrf vk þ ek

� �� �
; (B-2)

(
;

where "k and ek in (B-2) denote the errors in PM and GD
calculations, respectively [21]. Within this general scheme,
we first obtain original PG by setting vk ¼ xk (i.e., (A-1))
and computing PM in (B-1) [2]. Using Nesterov’s accelera-
tion [1] (i.e., (A-2) with bk > 0), we have the well-known
APG method [2], [6], [9]. Moreover, by introducing "k and
ek to respectively capture the inexactness of PM and GD
(i.e., (B-2)), we actually consider inexact PG and APG for
both convex [22] and nonconvex [21] problems. Notice that
in the nonconvex scenario, most classical APGs can only
guarantee the subsequence convergence to the critical
points [6], [9].

2.2 Learning-Based Iterative Methods

In [11], a trained version of FISTA (called LISTA) is intro-
duced to approximate the solution of LASSO. [10], [23]
extended LISTA for more generic sparse coding tasks and
provided an adaptive acceleration. Unfortunately, LISTA is
built on convex ‘1 regularization, thus may not be
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applicable for other complex nonconvex inverse problems
(e.g., ‘0 prior). By introducing hyperparameters in MRF and
solving the resulted variational model with different itera-
tion schemes, various learning-based iterative methods are
proposed for inverse problems in image domain (e.g.,
denoising, super-resolution, and MRI imaging). For exam-
ple, [13], [14], [15], [24], [25] have considered half-quadratic
splitting, gradient descent, Alternating Direction Method of
Multiplier (ADMM) and primal-dual method, respectively.
But their parameterizations are completely based on MRF
priors. Even worse, the original convergence properties are
lost in these resulted iterations.

To better model complex image degradations, [16], [17],
[18] considered Convolutional Neural Networks (CNNs) as
implicit priors for image restoration. Since these methods
discard the regularization term in Eq. (1), we may not
enforce principled constraints on their solutions. It is also
unclear when and where these iterative trajectories should
stop. Another group of very recent works [19], [20] directly
formulated the descent directions from reinforcement learn-
ing perspective or using recurrent networks. However, due
to the high computational budgets, they can only be applied
to relative simple tasks (e.g., linear regression). Besides, due
to the complex topological network structure, it is extremely
hard to provide strict theoretical analysis for these methods.

3 THE PROPOSED ALGORITHMS

This section develops Flexible Iterative Modularization Algo-
rithm for nonconvex inverse problems in Eq. (1). The conver-
gence behaviors are also investigated accordingly. Hereafter,
some fairly loose assumptions are enforced on Eq. (1): f is
proper and Lipschitz smooth (withmodulus L) on a bounded
set, g is proper, lower semi-continuous and proximable1 and
C is coercive. Notice that the proofs and definitions are
deferred until Supplementary Materials, which can be found
on the Computer Society Digital Library at http://doi.
ieeecomputersociety.org/10.1109/TPAMI.2019.2920591.

3.1 Abstract Iterative Modularization

As summarized in Section 2.1, a large amount of first-order
methods can be summarized as forward-backward-type
iterations. This motivates us to consider the following even
more abstract updating principle:

xkþ1 ¼ Ag � AfðxkÞ; (2)

where Af and Ag respectively stand for the user-specified
modules for f and g, and � denotes operation composition.
Building upon this formulation, it is easy to see that design-
ing a learning-based iterative method reduces to the prob-
lem of iteratively specifying and learning Af and Ag.

It is straightforward that most prevalent approaches [13],
[14], [15], [16], [17], [18], [24] naturally fall into this general
formulation. Nevertheless, currently it is still impossible to
provide any strict theoretical results for practical trajectories
of Eq. (2). This is mainly due to the lack of efficient mecha-
nisms to control the propagations generated by these

handcrafted operations. Fortunately, in the following, we
will introduce different scheduling policies to automatically
guide the iterations in Eq. (2), resulting in a series of theoreti-
cally convergent learning-based iterative methods.

3.2 Explicit Momentum: A Straightforward Strategy

The momentum of objective values is one of the most
important properties for numerical iterations. This property
is also necessary for analyzing the convergence of some
classical algorithms. Inspired by these points, we present an
explicit momentum FIMA (eFIMA) (i.e., Algorithm 1), in

which we explicitly compare CðukÞ and CðxkÞ and choose
the variable with less objective value as our monitor
(denoted as vk). Finally, a proximal refinement is performed
to adjust the learning-based updating at each stage.

Algorithm 1. Explicit Momentum FIMA (eFIMA)

Require: x0, A ¼ fAg;Afg, and f0 < gk < 1=Lg.
1: while not converged do
2: uk ¼ Ag � AfðxkÞ.
3: ifCðukÞ � CðxkÞ then
4: vk ¼ uk.
5: else
6: vk ¼ xk.
7: end if
8: xkþ1 2 proxgkg vk � gkrfðvkÞ

� �
.

9: end while

The following theorem first verifies the sufficient descent
of fCðxkÞgk2N and then proves the subsequence conver-
gence of eFIMA. It is nice to observe that these results are
not based on any specific choices of Af and Ag.

Theorem 1. Let fxkgk2N be the sequence generated by eFIMA.
Then at the kth iteration, there exists a sequence fakjak >
0gk2N, such that

C xkþ1
� �

� C vk
� �

� akkxkþ1 � vkk2; (3)

where vk is the monitor in Algorithm 1. Furthermore, fxkgk2N
is bounded and any of its accumulation points are the critical
points ofCðxÞ in Eq. (1).

Based on Theorem 1 and considering C as a semi-alge-
braic function,2 the convergence rate of eFIMA can be
straightforwardly estimated as follows.

Corollary 1. Let fðsÞ ¼ t
u
su be a desingularizing function with a

constant t > 0 and a parameter u 2 ð0; 1� [27]. Then fxkgk2N
generated by eFIMA converges after finite iterations if u ¼ 1.
The linear and sub-linear rates can be obtained if choosing
u 2 ½1=2; 1Þ and u 2 ð0; 1=2Þ, respectively.

3.3 Implicit Momentum via Error Control

Indeed, even with the explicit momentum schedule, we
may still not obtain a globally convergent iteration. This
is mainly because that there is no policy to efficiently con-
trol the inexactness of the user-specified modules (i.e., A).

1. The function g is proximable if minxgðxÞ þ g
2 kx� yk2 can be easily

solved by the given y and g > 0.

2. Indeed, a variety of functions (e.g., the indicator function of poly-
hedral set, ‘0 and rational ‘p penalties) satisfy the semi-algebraic
property [26].

LIU ETAL.: ON THE CONVERGENCE OF LEARNING-BASED ITERATIVE METHODS FOR NONCONVEX INVERSE PROBLEMS 3029

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:26:18 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2920591
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2920591


In this subsection, we show how to address this issue
by controlling the first-order optimality error during
iterations.

Specifically, we consider the auxiliary ofC at xk (denoted
asCk) and denote its sub-differential (denoted as dx

Ck )
3 as

CkðxÞ ¼ fðxÞ þ gðxÞ þ mk

2
kx� xkk2;

dx
Ck ¼ dx

g þrf xð Þ þ mkðx� xkÞ 2 @CkðxÞ;
(4)

where mk > 0 is the penalty parameter and dx
g 2 @gðxÞ.

As shown in Algorithm 2, at stage k, a variable ~uk is
obtained by proximally minimizing Ck at uk (i.e., Step 3 of
Algorithm 2). Roughly, this new variable is just an ensemble
of the last updated xk and the output uk of user-specified A
following the specific proximal structure in Eq. (1). Then the
monitor is obtained by checking the boundedness of d~u

Ck .
Notice that the constant Ck actually reveals our tolerance to
the inexactness of A at kth iteration.

Algorithm 2. Implicit Momentum FIMA (iFIMA)

Require: x0, A ¼ fAg;Afg, f0 < 2Ck < mk < 1g, and
f0 < gk < 1=Lg.

1: while not converged do
2: uk ¼ Ag � AfðxkÞ.
3: ~uk 2 proxgkg uk � gk rfðukÞ þ mkðuk � xkÞ

� �� �
.

4: if kd~uk

Ckk � Ckk~uk � xkk then
5: vk ¼ ~uk.
6: else
7: vk ¼ xk.
8: end if
9: xkþ1 2 proxgkg vk � gkrfðvkÞ

� �
.

10: end while

Proposition 1. Let fxk; ~uk; vkgk2N be the sequences generated by
Algorithm 2. Then there exist two sequences fakjak > 0gk2N
and fbkjbk > 0gk2N, such that the inequality (3) in Theorem 1

andCð~ukÞ � CðxkÞ� bkk~uk � xkk2 are respectively satisfied.

Equipped with Proposition 1, it will be straightforward
to guarantee that the objective values generated by Algo-
rithm 2 (i.e., fCðxkÞgk2N) also has sufficient descent. So we
call this version of FIMA as implicit momentum FIMA
(iFIMA). Then the global convergence of iFIMA is proved as
follows.

Theorem 2. Let fxkgk2N be the sequence generated by iFIMA.
Then fxkgk2N is bounded and any of its accumulation points
are the critical points of C. If C is semi-algebraic, we further
have that fxkgk2N is a Cauchy sequence, thus globally con-
verges to a critical point ofCðxÞ in Eq. (1).

Indeed, based on Theorem 2, it is also easy to obtain the
same convergence rate as that in Corollary 1 for iFIMA.

3.3.1 Practical Calculation of d~uk

Ck in iFIMA

Here we propose a practical calculation scheme for
d~uk

Ck 2 @Ckð~ukÞ defined in Eq. (4) and used in Algorithm 2.

In fact, it is challenging to directly calculate d~uk

Ck since the
sub-differential d~uk

g is often intractable in the non-convex
scenario [28]. Fortunately, our following analysis provides

an efficient practical calculation scheme for d~uk

Ck within

FIMA framework. Specifically, by considering ~uk as the
solution for Step 3 of Algorithm 2, we have

~uk 2 proxgkg

�
uk � gk rfðukÞ þ mkðuk � xkÞ

� ��
¼ argmin

u

1

2
u�

�
uk � gk rfðukÞ þ mkðuk � xkÞ

� ����� ���2
þ gðuÞ:

By the first-order optimality condition, we further have

0 2 @gð~ukÞ þ 1

gk
ð~uk � ðuk � gkðrfðukÞ þ mkðuk � xkÞÞÞÞ

) �
�
rfðukÞ þ mkðuk � xkÞ

�
þ 1

gk
ðuk � ~ukÞ 2 @gð~ukÞ:

Recalling the definition of dx
Ck in Eq. (4) and dx

g 2 @gðxÞ, we

finally obtain the practical calculation scheme for d~uk

Ck

d~uk

Ck ¼ d~uk

g þrfð~ukÞ þ mkð~uk � xkÞ
¼ mk � 1=gk

� �
~uk � uk

� �
� rf uk

� �
�rf ~uk

� �� �
:

3.4 Multi-Block Extension

Algorithm 3.Multi-block FIMA (mFIMA)

Require: X0,A ¼ fAg1 ; . . . ;AgN ;Afg, f0 < 2Ck
n < mk

n < 1g,
and f0 < gkn < 1=Lng.

1: while not converged do
2: for n ¼ 1 : N do
3: uk

n ¼ Agn � Af Xkþ1
½<n�;X

k
½�n�

� �
.

4: ~uk
n 2 proxgkngn

ðuk
n � gknðrnfðXkþ1

½<n�;u
k
n;X

k
½>n�Þ þ mk

nðuk
n � xknÞÞÞ:

5: if kd~ukn
Ck
n
k � Ck

nk~uk
n � xknk then

6: vkn ¼ ~uk
n.

7: else
8: vkn ¼ xkn.
9: end if
10: xkþ1

n 2 proxgkngn
vkn � gk

nrnf Xkþ1
½<n�; v

k
n;X

k
½>n�

� �� �
.

11: end for
12: end while

In order to tackle the inverse problems with blocks of
unknown variables (e.g., blind deconvolution and dictio-
nary learning), we now discuss how to extend FIMA for
multi-block NIPs, which is formulated as T ðXÞ ¼ yþ n,

where X ¼ fxngNn¼1 2 RD1 � 	 	 	 �RDN is a set of N � 2
unknown variables to be estimated. Notice that here T
should be some given linear operations on X. The inference
of such problem can be addressed by solving

min
X

CðXÞ :¼ fðX; T ; yÞ þ
XN
n¼1

gnðxnÞ; (5)

3. Strictly speaking, @CkðxÞ is the so-called limiting Frech�et sub-dif-
ferential. We state its formal definition and propose a practical compu-
tation scheme for d~u

Ck in Appendix, available in the online
supplemental material.
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where fðXÞ : RD1 � 	 	 	 �RDN ! ð�1;þ1� is still differen-
tiable and each gnðxnÞ : RDn ! ð�1;þ1� may also non-
smooth and possibly nonconvex. Here both f and block-
wise gn (xn) follow the same assumptions as that in Eq. (1)
and f should also satisfy the generalized Lipschitz smooth
property on bounded subsets of RD1 � 	 	 	 �RDN . For ease
of presentation, we denote X½<n� ¼ fxign�1

i¼1 , X½�n� ¼ fxigni¼1

and the subscripts ½> n� and ½� n� are defined in the same
manner. Then we summarize the main iterations of multi-
variable FIMA (mFIMA) as follows:4

uk
n ¼ Agn � Af Xkþ1

½<n�;X
k
½�n�

� �
;

xkþ1
n 2 proxgkgn vkn � gkrnf Xkþ1

½<n�; v
k
n;X

k
½>n�

� �� �
:

Here vkn is the monitor of xkn, obtained by the same error con-
trol strategy as that in iFIMA. Then we summarize our
multi-block FIMA in Algorithm 3 and prove the conver-
gence of mFIMA in Corollary 2.

Corollary 2. Let fXkgk2N be the sequence generated by mFIMA.
Then we have the same convergence properties as that in
Theorem 2 and Corollary 1 for fXkgk2N.

Thenwe summarize ourmulti-block FIMA inAlgorithm 3.
Notice that here we adopt the error-control policy in iFIMA to
guide the iterations ofmFIMA.

4 DISCUSSIONS

Here we would like to discuss some important aspects of
our FIMA, including the difference with traditional first
order methods, learning-based iterative methods, and exist-
ing meta-learning techniques. We also discuss the relation
between our eFIMA and iFIMA. For convenience, we spec-
ify the components in FIMA as three categories, including
the flexible modules Ag � Af , the various criteria (Steps 3-7
in Algorithm 1 and Steps 3-8 in Algorithm 2) and PG
operator.

4.1 FIMA versus Traditional First Order Methods

We first point out that by specifying the user-specified mod-
ules Af and Ag as numerical calculations, our FIMA can
reduce to some traditional first-order numerical algorithms
(e.g., PG/APG/PALM) when ignoring the criteria and PG
operator. Specifically, by respectively specifying Af and Ag

as gradient descent and proximal operator, our e/iFIMA
will be the standard PG [29]. Our e/iFIMA also can reduce
to the standard APG [2] when adopting Nesterov’s accelera-
tion and proximal gradient operator as Af and Ag, respec-
tively. Considering the two-block case in mFIMA, our
method becomes PALM [26] when configuring the same
strategy with PG. In these degradations, we can obtain the
same convergence results with existing PG/APG.

When remaining the criteria and PG operator in FIMA, e/
iFIMA will be the inexact APGs by setting Ag � Af similar
with PG. For example, eFIMA will be the monotone APG [6]
when arranging Af and Ag as Nesterov’s acceleration
and proximal gradient operator, respectively. Furthermore,

when transforming these arrangements into our iFIMA
framework, it generates a new inexact APG method. How-
ever, the convergence performance based on iFIMA is even
better than that for the prevalent nonconvex APGs [6], [8].
This actually suggests that our devised error-control policy
together with the flexible algorithmic structures should also
be beneficial for inexact nonconvex algorithms.

Moreover, our experimental results have demonstrated
that thanks to the plug-and-play architectures, FIMA can
achieve much better numerical performance and final
results than these traditional first order numerical methods,
especially in real-world applications. Indeed, FIMA pro-
vides a generic, flexible and theoretically guaranteed way to
extend standard numerical methods using plug-and-play
architectures.

4.2 FIMA versus Learning-Based Iterative Methods

As discussed above, most existing learning-based iterative
methods only replace their numerical computations by
trained architectures, which directly lead to the missing of
necessary theoretical guarantees. Fortunately, within FIMA
framework, we can prove in Corollary 1 and Theorem 2 that
our newly proposed learning-based scheme does not depend
on the particular choices of Af and Ag in general. It actually
provides us a unified methodology to analyze and improve
the convergence issues for learning-based methods. Within
FIMA, we can provide an easily-implemented and strictly
convergent way to extend almost all the learning-based
methods reviewed in Section 2.2. For example, we can
design the gradient descent operator and the encoder archi-
tecture in LISTA [11] as Af and Ag, respectively. Then we
cascade the explicit or implicit momentum in our algo-
rithms to build the convergence guaranteed iterations. Simi-
larly, we can also regard the learnable priors in MRF [24] as
Ag and the rest part as Af to generate our eFIMA or iFIMA.
When designing the solution of the subproblem about fidel-
ity as Af and exploring the data distribution by denoise
CNN [17] as Ag, we also provide the convergence guarantee
for these plug-and-play learnable iterations. The criterion in
our algorithms actually provides the guidance to judge
whether the output of each iteration in learning based meth-
ods is reasonable. Thus, almost all the learning-based meth-
ods can strictly converge with tiny assistance under our
algorithm framework.

4.3 FIMA versus Existing Meta-Learning
Techniques

Meta-learning (a.k.a. “learning to learn”) aims to design
methods that can learn how to learn new tasks by reusing
previous experience, rather than considering each new task
in isolation [30], [31], [32]. It should be noticed that FIMA
can also be categorized as a specific meta-learning technique
from the perspective of “learning to optimize”. However,
compared with existing approaches [20], [33], which just
learn all the hyperparameters in their optimization pro-
cesses in heuristic manners and thus miss solid theoretical
investigations, the main advantages of our FIMA is that we
provide a theoretically guaranteed framework to learn strict
convergence optimization schemes for meta-learning. But
please notice that to obtain these convergence results, we

4. Due to space limit, the details of mFIMA are presented in Supple-
mental Material, available online.
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have to set some algorithmic parameters following the theo-
retical guidance.

4.4 eFIMA versus iFIMA

We first clarify that the main difference between eFIMA and
iFIMA is the error-control condition. It can be seen that the
optimally-based condition in iFIMA is a little bit stricter
than the loss-based eFIMA condition. Thus we can obtain
better convergence properties but additional computations
are needed at each iterations.

As for the plug-and-play computational modules in e/
iFIMA, it will be shown in Section 6 that the choices of Af

and Ag do affect our speed and accuracy in practice. Fortu-
nately, the proposed scheduling of learnable and numerical
modules are automatically and adaptively adjusted by
error-control conditions of both eFIMA and iFIMA. So in
the specific task, FIMA actually can automatically reject
improper Af and Ag during iterations.

5 APPLICATIONS

As a nontrivial byproduct, this section illustrates how to
apply FIMA to tackle practical inverse problems in low-
level vision area, such as image deconvolution in the stan-
dard non-blind and even more challenging blind scenarios.

Non-blind Deconvolution (Uni-block) aims to restore the
latent image z from corrupted observation y with known
blur kernel b. In this part, we utilize the well-known sparse
coding formulation [2]: y ¼ Dxþ n, where x, D and n are
the sparse code, given dictionary and unknown noises,
respectively. Indeed, the form of D is given as D ¼ BW>,
where B is the matrix form of b, W> denotes the inverse of
the wavelet transform W (i.e., x ¼ Wz and z ¼ W>x). So by
defining fðx;D; yÞ ¼ ky�Dxk2 and gðxÞ ¼ �kxkp (0 � p <
1), we obtain a special case of Eq. (1) as follows

min
x

fðx;D; yÞ þ gðxÞ: (6)

Now we are ready to design iterative modules (i.e., Af

and Ag) to optimize the SC model in Eq. (6). With the well-
known imaging formulation y ¼ b
 zþ n (
 denotes the
convolution operator), we actually update z by solving
AfðzkÞ :¼ argminzky� b
 zk2 þ tkz� zkk2 to aggregate
principles of the task and information from last updated
variable, where zk ¼ W>xk and t is a positive constant.
Then Af on x can be defined as AfðxkÞ ¼ WAfðzkÞ, i.e.,

AfðxkÞ ¼ WðBTBþ tIÞ�1 BTyþ tW>xk
� �

; (7)

where I is the identity matrix. It is easy to check that Af can
be efficiently calculated by FFT [24]. As for Ag, we consider
solving AgðAfðzkÞÞ :¼ argminzgðzÞ þ tkz�AfðzkÞk2 by a
network to describe the distribution of latent image.

Blind Deconvolution (Multi-block) involves the joint esti-
mation of both the latent image z and blur kernel b, given
only an observed y. Here we formulate this problem on
image gradient domain and solve the following special case
of Eq. (5) with two unknown variables ðx;bÞ:5

min
x;b

fðx;b;ryÞ þ gxðxÞ þ gbðbÞ; (8)

where fðx;b;ryÞ ¼ kry� b
 xk2 , gxðxÞ ¼ �xkxk0, and

gbðbÞ ¼ xVb
ðbÞ. Here xVb

is the indicator function of the set

Vb :¼ fb 2 RDb : ½b�i � 0;
PDb

i¼1½b�i ¼ 1g, where ½	�i denotes

the ith element. So the proximal updating in mFIMA corre-

sponding to gx and gb can be respectively calculated by

hard-thresholding [3] and simplex projection [34]. Here we
need to specify three modules (i.e., Af , Agx and Agb ) for

miFPG. We first follow similar idea in the non-blind case to

define Afðxk;bkÞ using the aggregated deconvolution

energy

Afðxk;bkÞ :¼ argmin
x;b

kry� b
 xk2

þ txkx� xkk2 þ tbkb� bkk2;
(9)

where tb and tx are positive constants. We then train CNNs

on image gradient domain and solve minbkry� b
 xk2þ
�bkbk2 using conjugate gradient method [35] to formulate

Agx and Agb , respectively.
Rain Streaks Removal (Multi-block) is another challenging

task which focuses on removing the sporadic rain steak r
and restoring rain free background scenes z from several
types of visibility distorted observations o. The observation
o can be generated by o ¼ zþ r. Considering the different
sparsity of rain steak and background image, we formulate
the sparse coding model as to minimize the following
energy function:

min
x;c

fðx; c; oÞ þ gxðxÞ þ gcðcÞ; (10)

where fðx; c; oÞ ¼ ko�W>x�W>ck, gxðxÞ ¼ �xkxk0:8 and
gcðcÞ ¼ �ckck0. Here, W is the wavelet transform which has
explained in non-blind deconvolution. x, c are the sparse
codes of z and r, respectively (i.e., z ¼ W>x; r ¼ W>c). By
applying our multi-block FIMA to solve Eq. (10), we design
Af by the similar strategy in Eq. (9). As for Agx and Agc , we
achieve them by same network architecture but different
training data.

6 EXPERIMENTAL RESULTS

This section conducts experiments to verify our theoretical
results and compares the performance of FIMA with other
state-of-the-art learning-based iterative methods on real-
world inverse problems. All experiments are performed on
a PC with Intel Core i7 CPU at 3.4 GHz, 32 GB RAM and a
NVIDIA GeForce GTX 1050 Ti GPU. More results can also
be found in Supplemental Materials, available online.

6.1 Non-Blind Image Deconvolution

We first evaluate FIMA on solving Eq. (6) for image restora-
tion. The test images are collected by [24], [36] and different
levels of Gaussian noise are further added to generate our
corrupted observations.

Modules Evaluation. First, the influences of different
choices of A in FIMA is studied. Following Eq. (7), we adopt
At

f with varying t. As for Ag, different choices are also con-
sidered: classical PG (APG

g ), Recursive Filter [37] (ARF
g ), Total

5. Notice that in this section, x is defined with different meanings,
i.e., image gradient in Eq. (8), while sparse code in Eq. (6).
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Variation [38] (ATV
g ) and CNNs (ACNN

g ). For ACNN
g , we intro-

duce a residual structure x ¼ xþRðxÞ [39] and define R as
a cascade of 7 dilated convolution layers (with filter size
3� 3). ReLUs are added between each two linear layers and
batch normalizations are used for the 2nd to 6th linear
layers. We collect 800 images, in which 400 have been used
in [24] and the other 400 are randomly sampled from Image-
Net [40] as training data. We set the patch size as 160� 160,
and feed 10 patches in each epoch. Finally, Adam is adopted
and executed 60,000 epochs for learning rate ranging from
1e-4 to 1e-6. Here we just adopt similar strategies in [17] to
train ACNN

g with different noise levels. Thus, we only training

ACNN
g independently in our iterations. As for the algorithmic

parameters, we set gk ¼ 0:1, mk ¼ 0:2, and Ck ¼ 0:09. Fig. 1
analyzes the contributions of At

f (t 2 ½10�4; 101�) and
Ag 2 fAPG

g ;ARF
g ;ATV

g ;ACNN
g g. We observe that ATV

g is relatively

better than APG
g and ARF

g , while ACNN
g performs consistently

better and faster than other strategies. So hereafter we
always utilize ACNN

g in eFIMA and iFIMA. We also observe
that even with different Ag, relatively large t in At

f will
result in analogous quantitative results. Thus we experi-
mentally set t ¼ 10�3 for At

f in eFIMA and iFIMA for all the
experiments.

Convergence Behaviors. We then verify the convergence
properties of FIMA. The convergence behaviors of both
each module in our algorithms and other nonconvex APGs
are considered. To be fair and comprehensive, we adopt
specific iteration numbers (K ¼ 80) and iteration errors
(kxkþ1 � xkk=kxkk � 10�4) as stopping criterion in Figs. 2
and 3, respectively.

In Figs. 2a, 2b, and 2c, we plot the curves of objective
values (log CðxkÞ

� �
), reconstruction errors (log kxkþ1�

�
xkk2=kxkk2Þ) and iteration errors for FIMA with different

settings. The legends “x”, “u”, and “u-x” respectively denote
that at each iteration, we only perform classical PG (i.e., only
the last step in Algorithms 1 and 2), task-driven modules A
(i.e., only perform Eq. (2)), and their naive combination
(without any scheduling policies). It can be seen that the
function values and reconstruction errors of PG decrease
slower than our FIMA strategies, while both “u”-curve (i.e.,
naive Ag � Af ) and “u-x”-curve (i.e., A with PG refinement
but no “explicit momentum” or “error-control” policy) have
oscillations and could not converge after only 30 iterations.
Moreover, we observe that adding PG to “u” (i.e., “u-x”)
make the curve worse rather than correct it to the descent
direction. It illustrates that the pure adding strategies indeed
break the convergence guarantee. In contrast, since of the
choicemechanism in our algorithms, both eFIMA and iFIMA
can provide a reliable variable (vk) in the current iteration to
satisfy the convergence condition. We further explore the
choice mechanism of FIMA in Fig. 2d. The “circles” in each
curve represent the “explicit momentum” or “error-control”
policy is satisfied, while the “triangles” denote only perform
PG in the current stage. It can be seen that the eFIMA strategy
is more strict than iFIMA, the judgment policy fails only 20
iterations in eFIMA while remains almost 40 iterations in

Fig. 1. Comparisons of FIMA with different At
f (t 2 ½10�4; 101�) and

Ag 2 fAPG
g ;ARF

g ;ATV
g ;ACNN

g g. The bar charts in the rightmost subfigure
compares the overall iteration number and running time (in seconds,
“Time(s)” for short).

Fig. 2. The iteration curves of FIMA with different settings. The first three
subfigures express the function values, constructive errors, and iteration
errors, respectively. Subfigure (d) only plots the first 50 iterations for illus-
trate the scheduling policies of FIMA.

Fig. 3. Comparing iteration behaviors of FIMA to classical nonconvex APGs, including exact ones (mAPG, and APGnc) and inexact niAPG. The left
four subfigures compare curves of iteration errors and reconstruction errors with different noise level (1% and 1 percent), respectively. The rightmost
subfigure plot bar charts of the averaged iteration number and “Time(s)” on the dataset [24].
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iFIMA. Both eFIMA and iFIMA have better performance
than other compared schemes, thus verifies the efficiency of
our proposed scheduling policies in Section 3.

We also compare the iteration behaviors of FIMA to clas-
sical nonconvex APGs, including mAPG [6], APGnc [9])
and inexact niAPG [8] on the dataset collected by [24],
which consists of 68 images corrupted by different blur ker-
nels of the size ranging from 17 � 17 to 37 � 37. We add
1 percent and 1 percent Gaussian noise to generate our
corrupted observations, respectively. In Fig. 3, the left four
subfigures compare curves of iteration errors and recon-
struction errors on an example image and the rightmost one
illustrate the averaged iteration numbers and run time on
the whole dataset. It can be seen that our eFIMA and iFIMA
are faster and better than these abstractly designed classical
solvers under the same iteration error (� 1e� 4). Moreover,
we observe that the performance of these nonconvex APGs
is not satisfied when the noise level is bigger. The recon-
struction errors of them (Fig. 3d) ascend after dozens of
steps, while our eFIMA and iFIMA remain lower recon-
struction error and fewer iterations. It illustrates that our
strategy is more stable than traditional nonconvex APGs in
image restoration because of the flexible modules and effec-
tive choice mechanisms.

In Fig. 4, we illustrate the visual results of eFIMA and
iFIMA with comparisons to both convex image restoration
approaches, including FISTA [2] (APG) and FTVd [41])

(ADMM), and nonconvex mAPG, APGnc, and niAPG on an
example image with 1 percent noise level but large kernel
size (i.e, 75 � 75) [36]. Here FISTA and FTVd solve their
original convex models, while mAPG, APGnc, and niAPG
are based on the nonconvex model in Eq. (6). We have that
APGs outperformed the original PG. The inexact niAPG is
better than exact mAPG and APGnc. Since FTVd is specifi-
cally designed for this task, it is the best among all classical
solvers, but worse than our FIMA. Overall, iFIMA obtain
higher PSNR than eFIMA since the error-control mechanism
actually tend to perform more accurate refinements.

We also analyze the iteration behaviors of FIMA in
Table 1. We report the number of whole iterations and the
times the plug-and-play modules Ag � Af has been per-
formed by FIMA during iterations. It can be seen that
Ag � Af are performed in most of the iterations. Moreover,
thanks to these user-specified modules, FIMA only needs a
dozen or twenty iterations to obtain our desired solutions.
In contrast, there are more than 500 iterations in standard
PG method. But the practical performances of PG are still
worse than our FIMA (see Figs. 4 and 5 for comparisons).
These results verify the efficiency and effectiveness of the
mechanism of FIMA in real-world applications.

State-of-the-Art Comparisons. We compare FIMA with
state-of-the-art image restoration approaches, such as
IDDBM3D [42], EPLL [43], PPADMM [25], RTF [44] and
IRCNN [17]. Fig. 5 first compares our FIMAwith two preva-
lent learning-based iterative approaches (i.e., PPADMM
and IRCNN) on an example image with 5 percent noise.
Table 2 then reports the averaged quantitative results of all
the compared methods on the image set (collected by [24])
with different levels of Gaussian noise (i.e., 1, 2, 3 and 4 per-
cent). We have that eFIMA and iFIMA not only outperform
classical numerical solvers by a large margin in terms of
speed and accuracy, but also achieve better performance
than other state-of-the-art approaches. Within FIMA, it can
be seen that the speed of eFIMA is faster, while PSNR and
SSIM of iFIMA are relatively higher. This is mainly because
the “error control” strategy tends to perform more refine-
ments than the “explicit momentum” rule during iterations.

Fig. 4. The non-blind deconvolution performances (1 percent noise level) of eFIMA and iFIMA with comparisons to convex optimization based algo-
rithms (i.e., FISTA and FTVd), and non-convex solvers (i.e., APGnc, mAPG, and niAPG). The quantitative scores (PSNR/SSIM) are reported below
each image. The rightmost subfigure on the bottom row plots the curves of PSNR and SSIM of our methods.

TABLE 1
The Number of Iterations (Including
Plug-and-Play Modules) in FIMA

Image
eFIMA iFIMA PG

No. Iter. No. A No. Iter. No. A No. Iter.

Fig. 4 13 11 22 21 542
Fig. 5 19 15 26 25 577

“No. Iter.” reports the number of whole iterations and “No. A” denotes the
times the plug-and-play modulesAg � Af has been performed by FIMA during
iterations. We also report the number of iterations for standard PG in the
rightmost column.

3034 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 12, DECEMBER 2020

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:26:18 UTC from IEEE Xplore.  Restrictions apply. 



6.2 Blind Image Deconvolution

Blind deconvolution is known as one of the most challeng-
ing low-level vision tasks. Here we evaluate mFIAM on
solving Eq. (8) to address this fundamentally ill-posed
multi-variables inverse problem. We adopt the same CNN
module ACNN

g as that in Section 6.1 but train it on image gra-
dient domain to enhance its ability for sharp edge detection.

In Fig. 6, we show the visual performances of mFIMA in
different settings (i.e., with and without A) on an example
blurry image from [45]. We observe that mFIMA without A
almost failed on this experiment. This is not surprising since
[45], [46] have proved that standard optimization strategy is
likely to lead to degenerate global solutions like the delta ker-
nel (frequently called the no-blur solution), or many subopti-
mal local minima. In contrast, the CNN-based modules
successful avoid trivial results and significantly improve the
deconvolution performance. We also plot the curves of quan-
titative scores (i.e., PSNR for the latent image andKernel Simi-
larity (KS) for the blur kernel) on the bottom row for these two
strategies on the bottom row. As these scores are stable after
20 iterations, herewe only plot curves of the first 20 iterations.

We then compare mFIMAwith state-of-the-art deblurring
methods,6 such as Perrone et al. [47], Levin et al. [45], Sun

et al. [46], Zhang et al. [48] and Pan et al. [49] on the most
widely-used Levin et al’s benchmark [45], which consists of
32 blurred images generated by 4 clean images and 8 blur ker-
nels. Table 3 reports the averaged quantitative scores, includ-
ing PSNR, SSIM, and Error Rate (ER) for the latent image,

Fig. 5. The non-blind image deconvolution performance (5 percent noise level) of FIMA with comparisons to existing plug-and-play type methods (i.e.,
PPADMM and IRCNN). The quantitative scores (PSNR/SSIM) are reported below each image.

TABLE 2
Averaged PSNR, SSIM and Time(s) on the Benchmark Image Set [24]

s Metric
State-of-the-art Image Restoration Methods Classical Nonconvex Methods Ours

IDDBM3D EPLL PPADMM RTF IRCNN PG mAPG APGnc niAPG eFIMA iFIMA

1% PSNR 28.83 28.67 28.01 29.12 29.78 27.32 26.68 26.69 27.24 29.81 29.85
SSIM 0.81 0.81 0.78 0.83 0.84 0.71 0.67 0.67 0.73 0.85 0.85

Time(s) 193.13 112.03 293.99 249.83 2.67 20.36 13.02 7.16 5.29 1.89 2.06

2% PSNR 27.60 26.79 26.54 25.58 27.90 25.61 25.20 25.28 25.63 28.02 28.06
SSIM 0.76 0.74 0.72 0.66 0.78 0.63 0.60 0.61 0.64 0.79 0.79

Time(s) 198.66 100.52 270.45 254.26 2.68 15.43 7.70 4.66 3.30 1.90 2.07

3% PSNR 26.72 25.68 25.78 21.18 26.81 24.63 24.39 24.48 24.76 27.05 27.07
SSIM 0.72 0.69 0.68 0.42 0.73 0.57 0.55 0.56 0.61 0.74 0.75

Time(s) 191.25 96.32 257.94 252.47 2.68 13.89 6.44 5.37 2.63 1.89 2.07

4% PSNR 26.06 24.88 25.27 17.95 26.10 24.05 23.88 23.95 24.14 26.20 26.37
SSIM 0.69 0.65 0.66 0.28 0.70 0.54 0.53 0.53 0.59 0.70 0.72

Time(s) 183.44 93.82 258.45 255.84 2.67 11.99 6.01 7.82 2.35 1.89 2.07

Here s denotes the noise levels.

Fig. 6. The comparisons of mFIMA with and without the module A. The
top row compares the visual results of these different strategies. The
bottom row plots the curves of PSNR and KS scores during iterations.

6. In this and the following experiments, the widely used multi-scale
techniques are adopted for all the compared methods.
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Kernel Similarity for the blur kernel and the overall run time.
Fig. 7 further compares the visual performance of mFIMA to
Perrone et al., Sun et al. and Pan et al. (i.e., top 3 in Table 3) on
a real-world challenging blurry image collected by [36]. It can
be seen that mFIMA consistently outperforms all the com-
pared methods both quantitatively and qualitatively, which

verifies the efficiency of our proposed learning-based itera-
tionmethodology.

In Figs. 8 and 9, we further compare the blind image
deconvolution performance of mFIMA with Perrone
et al. [47], Sun et al. [46] and Pan et al. [49] (top 3 among all
the compared methods in Table 2) on example images cor-
rupted by not only unknown blur kernels, but also different
levels of Gaussian noises (1 and 3 percent in Figs. 8 and 9,
respectively). It can be seen that mFIMA is robust to these
corruptions and outperforms all the compared state-of-the-
art deblurring methods.

6.3 Rain Streaks Removal

To further verify our method can deal with various vision
tasks, we provide the performance of our mFIMA on rain
streaks removal. As we claimed in Section 5, we adopt the
same CNN architecture to train the learnable Agx and Agc . It

TABLE 3
Averaged Quantitative Scores on Levin et al.’s Benchmark

Method PSNR SSIM ER KS Time(s)

Perrone et al. 29.27 0.88 1.35 0.80 113.70
Levin et al. 29.03 0.89 1.40 0.81 41.77
Sun et al. 29.71 0.90 1.32 0.82 209.47
Zhang et al. 28.01 0.86 1.25 0.58 37.45
Pan et al. 29.78 0.89 1.33 0.80 102.60
Ours 30.37 0.91 1.20 0.83 5.65

Fig. 7. Visual comparisons between mFIMA and other competitive methods (top 3 in Table 3) on a real blurry image.

Fig. 8. The blind image deconvolution results of mFIMA with comparisons to state-of-the-art approaches on blurry image with 1 percent Gaussian
noise. The quantitative scores (i.e., PSNR / SSIM / KS) are reported below each image.

Fig. 9. The blind image deconvolution results of mFIMA with comparisons to state-of-the-art approaches on blurry facial image with 3 percent Guas-
sian noise. The quantitative scores (i.e., PSNR / SSIM / KS) are reported below each image.
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should be noticed that we feed rainy observations into net-
work and output the rain steak images to train the Agc ,
while adopting the similar strategy with deconvolution to
train Agx .

First, we reported the quantitative scores (PSNR / SSIM)
on a widely used synthetic Rain12 dataset [50] and com-
pared with state-of-the-art deraining methods including
SR [51], DSC [52], LP [50], DerainNet [53], and Detail-
Net [54], and UGSM [55]. As Table 4 shown, our mFIMA is
easily superior to all of the competitive methods. Moreover,
we also provide the visual results on the challenging real-
world rainy image from [52] in Fig. 10. As can be observed,
our proposed method can remove more rain streaks and
preserve the more detail textures than others.

7 CONCLUSION

This paper provided FIMA, a framework to analyze the con-
vergence behaviors of learning-based iterative methods for
nonconvex inverse problems. We proposed two novel

mechanisms to adaptively guide the trajectories of learning-
based iterations and proved their strict convergence. We
also showed how to apply FIMA for real-world applica-
tions, such as non-blind deconvolution, blind image decon-
volution, and rain streaks removal.
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