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Abstract—In this paper, we consider the Tensor Robust Principal Component Analysis (TRPCA) problem, which aims to exactly recover

the low-rank and sparse components from their sum. Ourmodel is based on the recently proposed tensor-tensor product (or t-product) [14].

Induced by the t-product, we first rigorously deduce the tensor spectral norm, tensor nuclear norm, and tensor average rank, and show that

the tensor nuclear norm is the convex envelope of the tensor average rankwithin the unit ball of the tensor spectral norm. These definitions,

their relationships and properties are consistent withmatrix cases. Equippedwith the new tensor nuclear norm, we then solve the TRPCA

problem by solving a convex program and provide the theoretical guarantee for the exact recovery. Our TRPCAmodel and recovery

guarantee includematrix RPCA as a special case. Numerical experiments verify our results, and the applications to image recovery and

backgroundmodeling problems demonstrate the effectiveness of ourmethod.

Index Terms—Tensor robust PCA, convex optimization, tensor nuclear norm, tensor singular value decomposition

Ç

1 INTRODUCTION

PRINCIPAL Component Analysis (PCA) is a fundamen-
tal approach for data analysis. It exploits low-dimen-

sional structure in high-dimensional data, which
commonly exists in different types of data, e.g., image,
text, video and bioinformatics. It is computationally effi-
cient and powerful for data instances which are mildly
corrupted by small noises. However, a major issue of
PCA is that it is brittle to be grossly corrupted or outly-
ing observations, which are ubiquitous in real-world
data. To date, a number of robust versions of PCA have
been proposed, but many of them suffer from a high
computational cost.

The Robust PCA [3] is the first polynomial-time algo-
rithm with strong recovery guarantees. Suppose that we
are given an observed matrix XX 2 Rn1�n2 , which can be
decomposed as XX ¼ LL0 þ EE0, where LL0 is low-rank and
EE0 is sparse. It is shown in [3] that if the singular vectors
of LL0 satisfy some incoherent conditions, e.g., LL0 is low-
rank and EE0 is sufficiently sparse, then LL0 and EE0 can be
exactly recovered with high probability by solving the

following convex problem

min
LL;EE

kLLk� þ �kEEk1; s.t. XX ¼ LLþEE; (1)

where kLLk� denotes the nuclear norm (sum of the singular
values of LL), and kEEk1 denotes the ‘1-norm (sum of the
absolute values of all the entries in EE). Theoretically, RPCA
is guaranteed to work even if the rank of LL0 grows almost
linearly in the dimension of the matrix, and the errors in EE0

are up to a constant fraction of all entries. The parameter �
is suggested to be set as 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðn1; n2Þ

p
which works well

in practice. Algorithmically, program (1) can be solved by
efficient algorithms, at a cost not too much higher than
PCA. RPCA and its extensions have been successfully
applied to background modeling [3], subspace clustering
[16], video compressive sensing [28], etc.

One major shortcoming of RPCA is that it can only han-
dle 2-way (matrix) data. However, real data is usually
multi-dimensional in nature-the information is stored in
multi-way arrays known as tensors [15]. For example, a
color image is a 3-way object with column, row and color
modes; a greyscale video is indexed by two spatial varia-
bles and one temporal variable. To use RPCA, one has to
first restructure the multi-way data into a matrix. Such a
preprocessing usually leads to an information loss and
would cause a performance degradation. To alleviate this
issue, it is natural to consider extending RPCA to manipu-
late the tensor data by taking advantage of its multi-dimen-
sional structure.

In this work, we are interested in the Tensor Robust
Principal Component (TRPCA) model which aims to exactly
recover a low-rank tensor corrupted by sparse errors. See
Fig. 1 for an intuitive illustration. More specifically, suppose
that we are given a data tensor XX , and know that it can be
decomposed as
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XX ¼ LL0 þ EE0; (2)

where LL0 is low-rank and EE0 is sparse, and both components
are of arbitrary magnitudes. Note that we do not know the
locations of the nonzero elements of EE0, not even how many
there are. Now we consider a similar problem to RPCA.
Can we recover the low-rank and sparse components
exactly and efficiently from XX? This is the problem of tensor
RPCA studied in this work.

The tensor extension of RPCA is not easy since the numer-
ical algebra of tensors is fraught with hardness results [5],
[8], [11]. A main issue is that the tensor rank is not well
defined with a tight convex relaxation. Several tensor rank
definitions and their convex relaxations have been proposed
but each has its limitation. For example, the CP rank [15],
defined as the smallest number of rank one tensor decompo-
sition, is generally NP-hard to compute. Also its convex
relaxation is intractable. This makes the low CP rank tensor
recovery challenging. The tractable Tucker rank [15] and its
convex relaxation are more widely used. For a k-way tensor
XX , the Tucker rank is a vector defined as ranktcðXXÞ :¼
rankðXXf1gÞ; rankðXXf2gÞ; . . . ; rankðXXfkgÞ� �

, where XXfig is the
mode-imatricization ofXX [15]. Motivated by the fact that the
nuclear norm is the convex envelope of the matrix rank
within the unit ball of the spectral norm, the Sum of Nuclear
Norms (SNN) [17], defined as

P
i kXXfigk�, is used as a convex

surrogate of
P

i rankðXXfigÞ. Then the work [23] considers the
Low-Rank Tensor Completion (LRTC)model based on SNN

min
XX

Xk
i¼1

�ikXXfigk�; s.t. PPVVðXXÞ ¼ PPVVðMMÞ; (3)

where �i > 0, and PPVVðXXÞ denotes the projection of XX on the
observed set VV. The effectiveness of this approach for image
processing has been well studied in [17], [27]. However, SNN
is not the convex envelope of

P
i rankðXXfigÞ [25]. Actually, the

above model can be substantially suboptimal [23]: reliably
recovering a k-way tensor of length n and Tucker rank
ðr; r; . . . ; rÞ from Gaussian measurements requires Oðrnk�1Þ
observations. In contrast, a certain (intractable) nonconvex
formulation needs only OðrK þ nrKÞ observations. A better
(but still suboptimal) convexification based on a more bal-
anced matricization is proposed in [23]. The work [12]
presents the recovery guarantee for the SNN based tensor
RPCAmodel

min
LL;EE

Xk
i¼1

�ikLLfigk� þ kEEk1; s.t. XX ¼ LL þ EE: (4)

A robust tensor CP decomposition problem is studied in
[6]. Though the recovery is guaranteed, the algorithm is
nonconvex.

The limitations of existing works motivate us to consider
an interesting problem: is it possible to define a new tensor
nuclear norm such that it is a tight convex surrogate of certain
tensor rank, and thus its resulting tensor RPCA enjoys a simi-
lar tight recovery guarantee to that of the matrix RPCA? This
work will provide a positive answer to this question. Our
solution is inspired by the recently proposed tensor-tensor
product (t-product) [14] which is a generalization of the
matrix-matrix product. It enjoys several similar properties to
the matrix-matrix product. For example, based on t-product,
any tensors have the tensor Singular Value Decomposition
(t-SVD) and thismotivates a new tensor rank, i.e., tensor tubal
rank [13]. To recover a tensor of low tubal rank, we propose a
new tensor nuclear norm which is rigorously induced by the
t-product. First, the tensor spectral norm can be induced
by the operator normwhen treating the t-product as an opera-
tor. Then the tensor nuclear norm is defined as the dual norm
of the tensor spectral norm. We further propose the tensor
average rank (which is closely related to the tensor tubal
rank), and prove that its convex envelope is the tensor nuclear
norm within the unit ball of the tensor spectral norm. It is
interesting that this framework, including the new tensor con-
cepts and their relationships, is consistent with the one for the
matrix cases. Equipped with these new tools, we then study
the TRPCA problemwhich aims to recover the low tubal rank
component LL0 and sparse component EE0 from noisy obser-
vations XX ¼ LL0 þ EE0 2 Rn1�n2�n3 (this work focuses on the
3-way tensor) by convex optimization

min
LL; EE

kLLk� þ �kEEk1; s.t. XX ¼ LLþ EE; (5)

where kLLk� is our new tensor nuclear norm (see the definition
in Section 3). We prove that under certain incoherence con-
ditions, the solution to (5) perfectly recovers the low-rank
and the sparse components, provided of course that the tubal
rank of LL0 is not too large, and that EE0 is reasonably sparse.
A remarkable fact, like in RPCA, is that (5) has no
tunning parameter either. Our analysis shows that � ¼
1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðn1; n2Þn3

p
guarantees the exact recovery when LL0

and EE0 satisfy certain assumptions. As a special case, if XX
reduces to a matrix (n3 ¼ 1 in this case), all the new tensor

concepts reduce to the matrix cases. Our TRPCA model (5)

reduces to RPCA in (1), and also our recovery guarantee in
Theorem4.1 reduces to Theorem1.1 in [3]. Another advantage

of (5) is that it can be solved by polynomial-time algorithms.
The contributions of this work are summarized as

follows:

1. Motivated by the t-product [14]which is a natural gen-
eralization of the matrix-matrix product, we rigor-
ously deduce a new tensor nuclear norm and some
other related tensor concepts, and they own the same
relationship as the matrix cases. This is the foundation
for the extensions of the models, optimization method
and theoretical analyzing techniques from matrix
cases to tensor cases.

Fig. 1. Illustrations of RPCA [3] (up row) and our Tensor RPCA (bottom
row). RPCA: low-rank and sparsematrix decomposition from noisymatrix
observations. Tensor RPCA: low-rank and sparse tensor decomposition
from noisy tensor observations.
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2. Equipped with the tensor nuclear norm, we theoreti-
cally show that under certain incoherence conditions,
the solution to the convex TRPCA model (5) perfectly
recovers the underlying low-rank component LL0 and
sparse component EE0. RPCA [3] and its recovery guar-
antee fall into our special cases.

3. We give a new rigorous proof of t-SVD factorization
and a more efficient way than [18] for solving TRPCA.
We further perform several simulations to corroborate
our theoretical results. Numerical experiments on
images andvideos also show the superiority of TRPCA
over RPCA and SNN.

The rest of this paper is structured as follows. Section 2
gives some notations and preliminaries. Section 3 presents
the way for defining the tensor nuclear norm induced by
the t-product. Section 4 provides the recovery guarantee of
TRPCA and the optimization details. Section 5 presents
numerical experiments conducted on synthetic and real
data. We conclude this work in Section 6.

2 NOTATIONS AND PRELIMINARIES

2.1 Notations

In this paper, we denote tensors by boldface Euler script let-
ters, e.g., AA. Matrices are denoted by boldface capital letters,
e.g., AA; vectors are denoted by boldface lowercase letters,
e.g., aa, and scalars are denoted by lowercase letters, e.g., a.
We denote IIn as the n� n identity matrix. The fields of real
numbers and complex numbers are denoted as R and C,
respectively. For a 3-way tensorAA 2 Cn1�n2�n3 , we denote its
ði; j; kÞth entry as AAijk or aijk and use the Matlab notation
AAði; :; :Þ, AAð:; i; :Þ and AAð:; :; iÞ to denote respectively the ith
horizontal, lateral and frontal slice (see definitions in [15]).
More often, the frontal slice AAð:; :; iÞ is denoted compactly as
AAðiÞ. The tube is denoted as AAði; j; :Þ. The inner product
between AA and BB in Cn1�n2 is defined as AA;BBh i ¼ TrðAA�BBÞ,
where AA� denotes the conjugate transpose of AA and Trð�Þ
denotes the matrix trace. The inner product between AA and
BB in Cn1�n2�n3 is defined as hAA;BBi ¼Pn3

i¼1hAAðiÞ; BBðiÞi. For any
AA 2 Cn1�n2�n3 , the complex conjugate of AA is denoted as
conjðAAÞ which takes the complex conjugate of each entry of
AA. We denote tb c as the nearest integer less than or equal to t
and dte as the one greater than or equal to t.

Some norms of vector, matrix and tensor are used. We
denote the ‘1-norm as kAAk1 ¼

P
ijk jaijkj, the infinity norm

as kAAk1 ¼ maxijkjaijkj and the Frobenius norm as kAAkF ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
ijk jaijkj2

q
, respectively. The above norms reduce to the

vector or matrix norms ifAA is a vector or a matrix. For vv 2 Cn,

the ‘2-norm is kvvk2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP

i jvij2
q

. The spectral norm of a

matrix AA is denoted as kAAk ¼ maxisiðAAÞ, where siðAAÞ’s are
the singular values of AA. The matrix nuclear norm is
kAAk� ¼

P
i siðAAÞ.

2.2 Discrete Fourier Transformation

The Discrete Fourier Transformation (DFT) plays a core role
in tensor-tensor product introduced later. We give some
related background knowledge and notations here. The
DFT on vv 2 Rn, denoted as �vv, is given by

�vv ¼ FFnvv 2 Cn; (6)

where FFn is the DFT matrix defined as

FFn ¼
1 1 1 � � � 1
1 v v2 � � � vn�1

..

. ..
. ..

. . .
. ..

.

1 vn�1 v2ðn�1Þ � � � vðn�1Þðn�1Þ

2
664

3
775 2 Cn�n;

where v ¼ e�
2pi
n is a primitive nth root of unity in which

i ¼ ffiffiffiffiffiffiffi�1
p

. Note that FFn=
ffiffiffi
n

p
is a unitary matrix, i.e.,

FF �
nFFn ¼ FFnFF

�
n ¼ nIIn: (7)

Thus FF�1
n ¼ FF �

n=n. The above property will be frequently
used in this paper. Computing �vv by using (6) costs
Oðn2Þ. A more widely used method is the Fast Fourier
Transform (FFT) which costs Oðn lognÞ. By using the
Matlab command fft, we have �vv ¼ fftðvvÞ. Denote the
circulant matrix of vv as

circðvvÞ ¼
v1 vn � � � v2
v2 v1 � � � v3
..
. ..

. . .
. ..

.

vn vn�1 � � � v1

2
6664

3
7775 2 Rn�n:

It is known that it can be diagonalized by the DFT
matrix, i.e.,

FFn � circðvvÞ � FF�1
n ¼ Diagð�vvÞ; (8)

where Diagð�vvÞ denotes a diagonalmatrixwith its ith diagonal
entry as �vi. The above equation implies that the columns of
FFn are the eigenvectors of ðcircðvvÞÞ> and �vi’s are the corre-
sponding eigenvalues.

Lemma 2.1 ([24]). Given any real vector vv 2 Rn, the associated
�vv satisfies

�v1 2 R and conjð�viÞ ¼ �vn�iþ2; i ¼ 2; . . . ;
nþ 1

2

� �
: (9)

Conversely, for any given complex �vv 2 Cn satisfying (9), there
exists a real block circulant matrix circðvvÞ such that (8) holds.
As will be seen later, the above properties are useful for

efficient computation and important for proofs. Now we
consider the DFT on tensors. For AA 2 Rn1�n2�n3 , we denote
�AA 2 Cn1�n2�n3 as the result of DFT on AA along the 3-rd
dimension, i.e., performing the DFT on all the tubes of AA.
By using the Matlab command fft, we have

�AA ¼ fftðAA; ½ �; 3Þ:

In a similar fashion, we can compute AA from �AA using the
inverse FFT, i.e.,

AA ¼ ifftð �AA; ½ �; 3Þ:

In particular, we denote �A�A 2 Cn1n3�n2n3 as a block diagonal
matrix with its ith block on the diagonal as the ith frontal
slice �A�A

ðiÞ
of �AA, i.e.,
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�A�A ¼ bdiagð �AAÞ ¼
�A�A
ð1Þ

�A�A
ð2Þ

. .
.

�A�A
ðn3Þ

2
6664

3
7775;

where bdiag is an operator which maps the tensor �AA to the
block diagonal matrix �A�A. Also, we define the block circulant
matrix bcircðAAÞ 2 Rn1n3�n2n3 of AA as

bcircðAAÞ ¼
AAð1Þ AAðn3Þ � � � AAð2Þ

AAð2Þ AAð1Þ � � � AAð3Þ

..

. ..
. . .

. ..
.

AAðn3Þ AAðn3�1Þ � � � AAð1Þ

2
6664

3
7775:

Just like the circulant matrix which can be diagonalized by
DFT, the block circulantmatrix can be block diagonalized, i.e.,

ðFFn3 � IIn1Þ � bcircðAAÞ � ðFF�1
n3

� IIn2Þ ¼ �A�A; (10)

where� denotes the Kronecker product and ðFFn3 � IIn1Þ=
ffiffiffiffiffi
n3

p
is unitary. By using Lemma 2.1, we have

�A�A
ð1Þ 2 Rn1�n2 ;

conjð �A�AðiÞÞ ¼ �A�A
ðn3�iþ2Þ

; i ¼ 2; . . . ; n3þ1
2

j k
:

(
(11)

Conversely, for any given �AA 2 Cn1�n2�n3 satisfying (11),
there exists a real tensor AA 2 Rn1�n2�n3 such that (10) holds.
Also, by using (7), we have the following properties which
will be used frequently:

kAAkF ¼ 1ffiffiffiffiffi
n3

p k �A�AkF ; (12)

AA;BBh i ¼ 1

n3

�A�A; �B�B
� �

: (13)

2.3 T-product and T-SVD

For AA 2 Rn1�n2�n3 , we define

unfoldðAAÞ ¼
AAð1Þ

AAð2Þ

..

.

AAðn3Þ

2
6664

3
7775; foldðunfoldðAAÞÞ ¼ AA;

where the unfold operator maps AA to a matrix of size
n1n3 � n2 and fold is its inverse operator.

Definition 2.1 ((T-product) [14]). Let AA 2 Rn1�n2�n3 and
BB 2Rn2�l�n3 . Then the t-productAA � BB is defined to be a tensor
of size n1 � l� n3,

AA � BB ¼ foldðbcircðAAÞ � unfoldðBBÞÞ: (14)

The t-product can be understood from two perspectives.
First, in the original domain, a 3-way tensor of size
n1 � n2 � n3 can be regarded as an n1 � n2 matrix with each
entry being a tube that lies in the third dimension. Thus, the
t-product is analogous to the matrix multiplication except
that the circular convolution replaces the multiplication
operation between the elements. Note that the t-product
reduces to the standard matrix multiplication when n3 ¼ 1.

This is a key observation which makes our tensor RPCA
model shown later involve the matrix RPCA as a special
case. Second, the t-product is equivalent to the matrix multi-
plication in the Fourier domain; that is, CC ¼ AA � BB is equiva-
lent to �C�C ¼ �A�A�B�B due to (10). Indeed, CC ¼ AA � BB implies

unfoldðCCÞ
¼ bcircðAAÞ � unfoldðBBÞ
¼ ðFF�1

n3
� IIn1Þ � ððFFn3 � IIn1Þ � bcircðAAÞ � ðFF�1

n3
� IIn2ÞÞ

� ððFFn3 � IIn2Þ � unfoldðBBÞÞ
¼ ðFF�1

n3
� IIn1Þ � �A�A � unfoldð�BBÞ;

(15)

where (15) uses (10). Left multiplying both sides with
ðFFn3 � IIn1Þ leads to unfoldð�CCÞ ¼ �A�A � unfoldð�BBÞ. This is
equivalent to �C�C ¼ �A�A�B�B. This property suggests an efficient
way based on FFT to compute t-product instead of using
(14). See Algorithm 1.

Algorithm 1. Tensor-Tensor Product

Input: AA 2 Rn1�n2�n3 , BB 2 Rn2�l�n3 .
Output: CC ¼ AA � BB 2 Rn1�l�n3 .
1. Compute �AA ¼ fftðAA; ½ �; 3Þ and �BB ¼ fftðBB; ½ �; 3Þ.
2. Compute each frontal slice of �CC by

�C�C
ðiÞ ¼

�A�A
ðiÞ �B�BðiÞ

; i ¼ 1; . . . ; n3þ1
2

l m
;

conjð �C�Cðn3�iþ2ÞÞ; i ¼ n3þ1
2

l m
þ 1; . . . ; n3:

8<
:

3. Compute CC ¼ ifftð�CC; ½ �; 3Þ.

The t-product enjoys many similar properties to the
matrix-matrix product. For example, the t-product is associa-
tive, i.e., AA � ðBB � CCÞ ¼ ðAA � BBÞ � CC. We also need some other
concepts on tensors extended from thematrix cases.

Definition 2.2 (Conjugate transpose). The conjugate trans-
pose of a tensor AA 2 Cn1�n2�n3 is the tensor AA� 2 Cn2�n1�n3

obtained by conjugate transposing each of the frontal slices and
then reversing the order of transposed frontal slices 2 through n3.

The tensor conjugate transpose extends the tensor
transpose [14] for complex tensors. As an example, let
AA 2 Cn1�n2�4 and its frontal slices beAA1,AA2,AA3 andAA4. Then

AA� ¼ fold

AA�
1

AA�
4

AA�
3

AA�
2

2
664

3
775

0
BB@

1
CCA:

Definition 2.3 ((Identity tensor) [14]). The identity tensor
II 2 Rn�n�n3 is the tensor with its first frontal slice being the
n� n identity matrix, and other frontal slices being all zeros.

It is clear that AA � II ¼ AA and II � AA ¼ AA given the appro-
priate dimensions. The tensor �II ¼ fftðII ; ½ �; 3Þ is a tensor
with each frontal slice being the identity matrix.

Definition 2.4 ((Orthogonal tensor) [14]). A tensor QQ 2
Rn�n�n3 is orthogonal if it satisfiesQQ� � QQ ¼ QQ � QQ� ¼ II .

Definition 2.5 ((F-diagonal Tensor) [14]). A tensor is called
f-diagonal if each of its frontal slices is a diagonal matrix.
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Theorem 2.2 (T-SVD). Let AA 2 Rn1�n2�n3 . Then it can be
factorized as

AA ¼ UU � SS � VV�; (16)

where UU 2 Rn1�n1�n3 , VV 2 Rn2�n2�n3 are orthogonal, and
SS 2 Rn1�n2�n3 is an f-diagonal tensor.

Proof. The proof is by construction. Recall that (10) holds and
�A�A
ðiÞ
’s satisfy the property (11). Then we construct the SVD

of each �A�A
ðiÞ

in the following way. For i ¼ 1; . . . ; dn3þ1
2 e,

let �A�A
ðiÞ ¼ �U�U

ðiÞ �S�SðiÞð �V�V ðiÞÞ� be the full SVD of �A�A
ðiÞ
. Here the

singular values in �S�S
ðiÞ

are real. For i ¼ dn3þ1
2 e þ 1; . . . ; n3,

let �U�U
ðiÞ ¼ conjð �U�U ðn3�iþ2ÞÞ, �S�S

ðiÞ ¼ �S�S
ðn3�iþ2Þ

and �V�V
ðiÞ ¼

conjð �V�V ðn3�iþ2ÞÞ. Then, it is easy to verify that �A�A
ðiÞ ¼

�U�U
ðiÞ �S�SðiÞð �V�V ðiÞÞ� gives the full SVD of �A�A

ðiÞ
for i ¼ dn3þ1

2 eþ
1; . . . ; n3. Then,

�A�A ¼ �U�U �S�S �V�V
�
: (17)

By the construction of �U�U , �S�S and �V�V , and Lemma 2.1, we

have that ðFF�1
n3

� IIn1Þ � �U�U � ðFFn3 � IIn1Þ, ðFF�1
n3

� IIn1Þ � �S�S �
ðFFn3 � IIn2Þ and ðFF�1

n3
� IIn2Þ � �V�V � ðFFn3 � IIn2Þ are real block

circulant matrices. Then we can obtain an expression for

bcircðAAÞ by applying the appropriate matrix ðFF�1
n3

� IIn1Þ
to the left and the appropriate matrix ðFFn3 � IIn2Þ to the
right of each of the matrices in (17), and folding up the

result. This gives a decomposition of the form UU � SS � VV�,
where UU, SS and VV are real. tu

Algorithm 2. T-SVD

Input: AA 2 Rn1�n2�n3 .
Output: T-SVD components UU , SS and VV of AA.
1. Compute �AA ¼ fftðAA; ½ �; 3Þ.
2. Compute each frontal slice of �UU, �SS and �VV from �AA by

for i ¼ 1; . . . ; dn3þ1
2 e do

½ �U�U ðiÞ
; �S�S

ðiÞ
; �V�V

ðiÞ� ¼ SVDð �A�AðiÞÞ;
end for
for i ¼ dn3þ1

2 e þ 1; . . . ; n3 do

�U�U
ðiÞ ¼ conjð �U�U ðn3�iþ2ÞÞ;

�S�S
ðiÞ ¼ �S�S

ðn3�iþ2Þ
;

�V�V
ðiÞ ¼ conjð �V�V ðn3�iþ2ÞÞ;

end for
3. Compute UU ¼ ifftð�UU; ½ �; 3Þ, SS ¼ ifftð�SS; ½ �; 3Þ, and

VV ¼ ifftð�VV; ½ �; 3Þ.

Theorem 2.2 shows that any 3 way tensor can be factor-
ized into 3 components, including 2 orthogonal tensors and
an f-diagonal tensor. See Fig. 2 for an intuitive illustration of

the t-SVD factorization. T-SVD reduces to the matrix SVD
when n3 ¼ 1. We would like to emphasize that the result of
Theorem 2.2 was given first in [14] and later in some other
related works [10], [21]. But their proof and the way for com-
puting UU and VV are not rigorous. The issue is that their
method cannot guarantee that UU and VV are real tensors. They

construct each frontal slice �U�U
ðiÞ

(or �V�V
ðiÞ
) of �UU (or �VV resp.) from

the SVD of �A�A
ðiÞ

independently for all i ¼ 1; . . . ; n3. However,

the matrix SVD is not unique. Thus, �U�U
ðiÞ
’s and �V�V

ðiÞ
’s may not

satisfy property (11) even though �A�A
ðiÞ
’s do. In this case, the

obtained UU (or VV) from the inverse DFT of �UU (or �VV resp.) may
not be real. Our proof above instead uses property (11) to
construct UU and VV and thus avoids this issue. Our proof fur-
ther leads to a more efficient way for computing t-SVD
shown in Algorithm 2.

It is known that the singular values of a matrix have the
decreasing order property. LetAA ¼ UU � SS � VV� be the t-SVD of
AA 2 Rn1�n2�n3 . The entries on the diagonal of the first frontal
slice SSð:; :; 1Þ ofSS have the same decreasing property, i.e.,

SSð1; 1; 1Þ 	 SSð2; 2; 1Þ 	 � � � 	 SSðn0; n0; 1Þ 	 0; (18)

where n0 ¼ minðn1; n2Þ. The above property holds since the
inverse DFT gives

SSði; i; 1Þ ¼ 1

n3

Xn3
j¼1

�SSði; i; jÞ; (19)

and the entries on the diagonal of �SSð:; :; jÞ are the singular
values of �AAð:; :; jÞ. As will be seen in Section 3, the tensor
nuclear norm depends only on the first frontal slice SSð:; :; 1Þ.
Thus, we call the entries on the diagonal of SSð:; :; 1Þ as the
singular values of AA.

Definition 2.6 ((Tensor tubal rank) [13], [31]). For AA 2
Rn1�n2�n3 , the tensor tubal rank, denoted as ranktðAAÞ, is defined
as the number of nonzero singular tubes of SS, where SS is from the
t-SVD ofAA ¼ UU � SS � VV�. We can write

ranktðAAÞ ¼ #fi;SSði; i; :Þ 6¼ 00g:

By using property (19), the tensor tubal rank is deter-
mined by the first frontal slice SSð:; :; 1Þ of SS, i.e.,

ranktðAAÞ ¼ #fi;SSði; i; 1Þ 6¼ 0g:
Hence, the tensor tubal rank is equivalent to the number of
nonzero singular values ofAA. This property is the same as the
matrix case. Define AAk ¼

Pk
i¼1 UUð:; i; :Þ � SSði; i; :Þ � VVð:; i; :Þ�

for some k < minðn1; n2Þ. Then AAk ¼ argminranktð ~AAÞ
kkAA �
~AAkF , soAAk is the best approximation ofAAwith the tubal rank

at most k. It is known that the real color images can be well

approximated by low-rank matrices on the three channels

independently. If we treat a color image as a three way tensor

with each channel corresponding to a frontal slice, then it can

be well approximated by a tensor of low tubal rank. A similar

observation was found in [10] with the application to facial

recognition. Fig. 3 gives an example to show that a color image
can be well approximated by a low tubal rank tensor since

most of the singular values of the corresponding tensor are

relatively small.

Fig. 2. An illustration of the t-SVD of an n1 � n2 � n3 tensor [10].
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In Section 3, we will define a new tensor nuclear norm
which is the convex surrogate of the tensor average rank
defined as follows. This rank is closely related to the tensor
tubal rank.

Definition 2.7 (Tensor average rank). For AA 2 Rn1�n2�n3 ,
the tensor average rank, denoted as rankaðAAÞ, is defined as

rankaðAAÞ ¼ 1

n3
rankðbcircðAAÞÞ: (20)

The above definition has a factor 1
n3
. Note that this factor is

crucial in this work as it guarantees that the convex envelope
of the tensor average rank within a certain set is the tensor
nuclear norm defined in Section 3. The underlying reason for
this factor is the t-product definition. Each element of AA is
repeated n3 times in the block circulant matrix bcircðAAÞ
used in the t-product. Intuitively, this factor alleviates such
an entries expansion issue.

There are some connections between different tensor ranks
and these properties imply that the low tubal rank or low
average rank assumptions are reasonable for their applica-
tions in real visual data. First, rankaðAAÞ 
 ranktðAAÞ. Indeed,

rankaðAAÞ ¼ 1

n3
rankð �A�AÞ 
 max

i¼1;...;n3
rankð �A�AðiÞÞ ¼ ranktðAAÞ;

where the first equality uses (10). This implies that a low
tubal rank tensor always has low average rank. Second,

let ranktcðAAÞ ¼ ðrankðAAf1gÞ; rankðAAf2gÞ; rankðAAf3gÞÞ, where

AAfig is the mode-i matricization of AA, be the Tucker rank of

AA. Then rankaðAAÞ 
 rankðAAf1gÞ. This implies that a tensor
with low Tucker rank has low average rank. The low Tucker

rank assumption used in some applications, e.g., image com-

pletion [17], is applicable to the low average rank assump-

tion. Third, if the CP rank of AA is r, then its tubal rank is at

most r [30]. Let AA ¼Pr
i¼1 aa

ð1Þ
i � aað2Þi � aað3Þi , where � denotes

the outer product, be the CP decomposition of AA. Then
�AA ¼Pr

i¼1 aa
ð1Þ
i � aað2Þi � �aað3Þi , where �aa

ð3Þ
i ¼ fftðaað3Þi Þ. So �AA has

the CP rank at most r, and each frontal slice of �AA is the sum

of r rank-1 matrices. Thus, the tubal rank of AA is at most r.
In summary, we show that the low average rank assumption

is weaker than the low Tucker rank and low CP rank

assumptions.

3 TENSOR NUCLEAR NORM (TNN)

In this section, we propose a new tensor nuclear norm which
is a convex surrogate of tensor average rank. Based on t-SVD,

one may have many different ways to define the tensor
nuclear norm intuitively. We give a new and rigorous way to
deduce the tensor nuclear norm from the t-product, such that
the concepts and their properties are consistent with the
matrix cases. This is important since it guarantees that the
theoretical analysis of the tensor nuclear norm based tensor
RPCA model in Section 4 can be done in a similar way to
RPCA. Fig. 4 summarizes the way for the new definitions and
their relationships. It begins with the known operator norm
[1] and t-product. First, the tensor spectral norm is induced by
the tensor operator norm by treating the t-product as an oper-
ator. Then the tensor nuclear norm is defined as the dual
norm of the tensor spectral norm. Finally, we show that the
tensor nuclear norm is the convex envelope of the tensor aver-
age rankwithin the unit ball of the tensor spectral norm.

Let us first recall the concept of operator norm [1]. Let
ðV; k � kV Þ and ðW; k � kW Þ be normed linear spaces and
L : V ! W be the bounded linear operator between them,
respectively. The operator norm of L is defined as

kLk ¼ sup
kvvkV 
1

kLðvvÞkW: (21)

Let V ¼ Cn2 , W ¼ Cn1 and LðvvÞ ¼ AAvv, vv 2 V , where
AA 2 Cn1�n2 . Based on different choices of k � kV and k � kW ,
many matrix norms can be induced by the operator norm in
(21). For example, if k � kV and k � kW are k � kF , then the
operator norm (21) reduces to the matrix spectral norm.

Now, consider the normed linear spaces ðV; k � kF Þ and
ðW; k � kF Þ, where V ¼ Rn2�1�n3 , W ¼ Rn1�1�n3 , and LL : V !
W is a bounded linear operator. In this case, (21) reduces to
the tensor operator norm

kLLk ¼ sup
kVVkF
1

kLLðVVÞkF : (22)

As a special case, if LLðVVÞ ¼ AA � VV, where AA 2 Rn1�n2�n3 and
VV 2 V , then the tensor operator norm (22) gives the tensor
spectral norm, denoted as kAAk,

Fig. 3. Color images can be approximated by low tubal rank tensors. (a) A
color image canbemodeled asa tensorMM 2 R512�512�3; (b) approximation
by a tensor with tubal rank r ¼ 50; (c) plot of the singular values ofMM.

Fig. 4. An illustration of the way to define the tensor nuclear norm and the
relationship with other tensor concepts. First, the tensor operator norm is a
special case of the known operator norm performed on the tensors. The
tensor spectral norm is induced by the tensor operator norm by treating the
tensor-tensor product as an operator. Then the tensor nuclear norm is
defined as the dual norm of the tensor spectral norm. We also define the
tensor average rank and show that its convex envelope is the tensor
nuclear norm within the unit ball of the tensor spectral norm. As detailed in
Section 3, the tensor spectral norm, tensor nuclear norm and tensor aver-
age rank are also defined on thematricization of the tensor.

930 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 42, NO. 4, APRIL 2020

Authorized licensed use limited to: Peking University. Downloaded on December 28,2020 at 03:50:12 UTC from IEEE Xplore.  Restrictions apply. 



kAAk :¼ sup
kVVkF
1

kAA � VVkF
¼ sup

kVVkF
1
kbcircðAAÞ � unfoldðVVÞkF

(23)

¼ kbcircðAAÞk; (24)

where (23) uses (14), and (24) uses the definition of matrix
spectral norm.

Definition 3.1 (Tensor spectral norm). The tensor spectral
norm of AA 2 Rn1�n2�n3 is defined as kAAk :¼ kbcircðAAÞk.
By (7) and (10), we have

kAAk ¼ kbcircðAAÞk ¼ k �A�Ak: (25)

This property is frequently used in thiswork. It is known that
the matrix nuclear norm is the dual norm of the matrix spec-
tral norm. Thus, we define the tensor nuclear norm, denoted
as kAAk�, as the dual norm of the tensor spectral norm. For
any BB 2Rn1�n2�n3 and ~B~B 2 Cn1n3�n2n3 , we have

kAAk� :¼ sup
kBBk
1

hAA;BBi (26)

¼ sup
k�B�Bk
1

1

n3
h �A�A; �B�Bi (27)


 1

n3
sup
k~B~Bk
1

jh �A�A; ~B~Bij (28)

¼ 1

n3
k �A�Ak�; (29)

¼ 1

n3
kbcircðAAÞk�; (30)

where (27) is from (13), (28) is due to the fact that �B�B is a
block diagonal matrix in Cn1n3�n2n3 while ~B~B is an arbitrary
matrix in Cn1n3�n2n3 , (29) uses the fact that the matrix
nuclear norm is the dual norm of the matrix spectral norm,
and (30) uses (10) and (7). Now we show that there exists
BB 2 Rn1�n2�n3 such that the equality (28) holds and thus
kAAk� ¼ 1

n3
kbcircðAAÞk�. Let AA ¼ UU � SS � VV� be the t-SVD of

AA and BB ¼ UU � VV�. We have

hAA;BBi ¼ hUU � SS � VV�;UU � VV�i (31)

¼ 1

n3
UU � SS � VV�;UU � VV�� �

¼ 1

n3

�U�U �S�S �V�V
�
; �U�U �V�V

�� � ¼ 1

n3
Trð �S�SÞ

¼ 1

n3
k �A�Ak� ¼

1

n3
kbcircðAAÞk�:

(32)

Combining (26), (27), (28), (29), and (30) and (31) and (32)
leads to kAAk� ¼ 1

n3
kbcircðAAÞk�. On the other hand, by (31)

and (32), we have

kAAk� ¼ hUU � SS � VV�;UU � VV�i
¼ hUU� � UU � SS;VV� � VVi

¼ hSS; IIi ¼
Xr
i¼1

SSði; i; 1Þ;
(33)

where r ¼ ranktðAAÞ is the tubal rank. Thus, we have the
following definition of tensor nuclear norm.

Definition 3.2 (Tensor nuclear norm). Let AA ¼ UU � SS � VV�

be the t-SVD of AA 2 Rn1�n2�n3 . The tensor nuclear norm of AA
is defined as

kAAk� :¼ SS; IIh i ¼
Xr
i¼1

SSði; i; 1Þ;

where r ¼ ranktðAAÞ.
From (33), it can be seen that only the information in the

first frontal slice of SS is used when defining the tensor
nuclear norm. Note that this is the first work which directly
uses the singular values SSð:; :; 1Þ of a tensor to define the ten-
sor nuclear norm. Such a definition makes it consistent with
the matrix nuclear norm. The above TNN definition is also
different from existing works [18], [26], [31].

It is known that the matrix nuclear norm kAAk� is the con-
vex envelope of the matrix rank rankðAAÞ within the set
fAAjkAAk 
 1g [9]. Now we show that the tensor average rank
and tensor nuclear norm have the same relationship.

Theorem 3.1. On the set fAA 2 Rn1�n2�n3 jkAAk 
 1g, the con-
vex envelope of the tensor average rank rankaðAAÞ is the tensor
nuclear norm kAAk�.
We would like to emphasize that the proposed tensor

spectral norm, tensor nuclear norm and tensor ranks are not
arbitrarily defined. They are rigorously induced by the
t-product and t-SVD. These concepts and their relationships
are consistent with the matrix cases. This is important for the
proofs, analysis and computation in optimization. Table 1
summarizes the parallel concepts in sparse vector, low-rank
matrix and low-rank tensor. With these elements in place,
the existing proofs of low-rank matrix recovery provide
a template for the more general case of low-rank tensor
recovery.

Also, from the above discussions, we have the property

kAAk� ¼
1

n3
kbcircðAAÞk� ¼

1

n3
k �A�Ak�: (34)

TABLE 1
Parallelism of Sparse Vector, Low-Rank Matrix and Low-Rank Tensor

Sparse vector Low-rank matrix Low-rank tensor (this work)

Degeneracy of 1-D signal xx 2 Rn 2-D correlated signalsXX 2 Rn1�n2 3-D correlated signals XX 2 Rn1�n2�n3

Parsimony concept cardinality rank tensor average ranka

Measure ‘0-norm kxxk0 rankðXXÞ rankaðXXÞ
Convex surrogate ‘1-norm kxxk1 nuclear norm kXXk� tensor nuclear norm kXXk�
Dual norm ‘1-norm kxxk1 spectral norm kXXk tensor spectral norm kXXk
aStrictly speaking, the tensor tubal rank, which bounds the tensor average rank, is also the parsimony concept of the low-rank tensor.
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It is interesting to understand the tensor nuclear norm from
the perspectives of bcircðAAÞ and �A�A. The block circulant
matrix can be regarded as a newway of matricization ofAA in
the original domain. The frontal slices ofAA are arranged in a
circulant way, which is expected to preserve more spacial
relationships across frontal slices, compared with previous
matricizations along a single dimension. Also, the block
diagonal matrix �A�A can be regarded as a matricization ofAA in
the Fourier domain. Its blocks on the diagonal are the frontal
slices of �AA, which contains the information across frontal sli-
ces of AA due to the DFT on AA along the third dimension. So
bcircðAAÞ and �A�A play a similar role to matricizations of AA in
different domains. Both of them capture the spacial informa-
tion within and across frontal slices of AA. This intuitively
supports our tensor nuclear norm definition.

LetAA ¼ UUSSVV � be the skinny SVDofAA. It is known that any
subgradient of the nuclear norm atAA is of the formUUVV � þWW ,
where UU�WW ¼ 0, WWVV ¼ 0 and kWWk 
 1 [29]. Similarly, for
AA 2 Rn1�n2�n3 with tubal rank r, we also have the skinny
t-SVD, i.e., AA ¼ UU � SS � VV�, where UU 2 Rn1�r�n3 , SS 2 Rr�r�n3 ,
and VV 2 Rn2�r�n3 , in which UU� � UU ¼ II and VV� � VV ¼ II . The
skinny t-SVDwill be used throughout this paper.With skinny
t-SVD, we introduce the subgradient of the tensor nuclear
norm,which plays an important role in the proofs.

Theorem 3.2 (Subgradient of tensor nuclear norm). Let
AA 2 Rn1�n2�n3 with ranktðAAÞ ¼ r and its skinny t-SVD
be AA ¼ UU � SS � VV�. The subdifferential (the set of subgradients)
of kAAk� is @kAAk� ¼ fUU � VV� þ WWjUU� � WW ¼ 0;WW � VV ¼
0; kWWk 
 1g.

4 EXACT RECOVERY GUARANTEE OF TRPCA

With TNN defined above, we now consider the exact recov-
ery guarantee of TRPCA in (5). The problemwe study here is
to recover a low tubal rank tensor LL0 from highly corrupted
measurements XX ¼ LL0 þ SS0. In this section, we show that
under certain assumptions, the low tubal rank part LL0 and
sparse part SS0 can be exactly recovered by solving convex
program (5). We will also give the optimization detail for
solving (5).

4.1 Tensor Incoherence Conditions

Recovering the low-rank and sparse components from their
sum suffers from an identifiability issue. For example, the ten-
sorXX , with xijk ¼ 1when i ¼ j ¼ k ¼ 1 and zeros everywhere
else, is both low-rank and sparse. One is not able to identify
the low-rank component and the sparse component in this
case. To avoid such pathological situations, we need to
assume that the low-rank component LL0 is not sparse. To this
end, we assume LL0 to satisfy some incoherence conditions.
We denote �ei as the tensor column basis, which is a tensor of
size n1 � 1� n3 with its ði; 1; 1Þth entry equaling 1 and the
rest equaling 0 [30]. We also define the tensor tube basis _ek,
which is a tensor of size 1� 1� n3 with its ð1; 1; kÞth entry
equaling 1 and the rest equaling 0.

Definition 4.1 (Tensor Incoherence Conditions). For LL0 2
Rn1�n2�n3 , assume that ranktðLL0Þ ¼ r and it has the skinny t-
SVD LL0 ¼ UU � SS � VV�, where UU 2 Rn1�r�n3 and VV 2 Rn2�r�n3

satisfy UU� � UU ¼ II and VV� � VV ¼ II , and SS 2 Rr�r�n3 is an

f-diagonal tensor. Then LL0 is said to satisfy the tensor incoher-
ence conditions with parameter m if

max
i¼1;...;n1

kUU� � �
eikF 


ffiffiffiffiffiffiffiffiffiffi
mr

n1n3

r
; (35)

max
j¼1;...;n2

kVV� � �
ejkF 


ffiffiffiffiffiffiffiffiffiffi
mr

n2n3

r
; (36)

kUU � VV�k1 

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mr

n1n2n
2
3

r
: (37)

The exact recovery guarantee of RPCA [3] also requires
some incoherence conditions. Due to property (12), conditions
(35) and (36) have equivalent matrix forms in the Fourier
domain, and they are intuitively similar to thematrix incoher-
ence conditions (1.2) in [3]. But the joint incoherence condition
(37) is more different from the matrix case (1.3) in [3], since it
does not have an equivalent matrix form in the Fourier
domain. As observed in [4], the joint incoherence condition is
not necessary for low-rank matrix completion. However, for
RPCA, it is unavoidable for polynomial-time algorithms. In
our proofs, the joint incoherence (37) condition is necessary.
Another identifiability issue arises if the sparse tensor SS0

has low tubal rank. This can be avoided by assuming that the
support ofSS0 is uniformly distributed.

4.2 Main Results

Nowwe show that the convex program (5) is able to perfectly
recover the low-rank and sparse components. We define
nð1Þ ¼ maxðn1; n2Þ and nð2Þ ¼ minðn1; n2Þ.
Theorem 4.1. Suppose that LL0 2 Rn�n�n3 obeys (35)-(37). Fix

any n� n� n3 tensorMM of signs. Suppose that the support set
VV of SS0 is uniformly distributed among all sets of cardinalitym,

and that sgn ½SS0�ijk
	 


¼ ½MM�ijk for all ði; j; kÞ 2 VV. Then, there

exist universal constants c1; c2 > 0 such that with probability at
least 1� c1ðnn3Þ�c2 (over the choice of support of SS0), ðLL0;SS0Þ
is the unique minimizer to (5) with � ¼ 1=

ffiffiffiffiffiffiffiffi
nn3

p
, provided that

ranktðLL0Þ 
 rrnn3

mðlog ðnn3ÞÞ2
and m 
 rsn

2n3; (38)

where rr and rs are positive constants. If LL0 2 Rn1�n2�n3 has
rectangular frontal slices, TRPCAwith� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þn3

p
succeeds

with probability at least 1� c1ðnð1Þn3Þ�c2 , provided that
ranktðLL0Þ 
 rrnð2Þn3

mðlog ðnð1Þn3ÞÞ2
and m 
 rsn1n2n3.

The above result shows that for incoherent LL0, the perfect
recovery is guaranteed with high probability for ranktðLL0Þ
on the order of nn3=ðmðlognn3Þ2Þ and a number of nonzero
entries in SS0 on the order of n2n3. For SS0, we make only one
assumption on the random location distribution, but no
assumption about the magnitudes or signs of the nonzero
entries. Also TRPCA is parameter free. The mathematical
analysis implies that the parameter � ¼ 1=

ffiffiffiffiffiffiffiffi
nn3

p
leads to the

correct recovery. Moreover, since the t-product of 3-way
tensors reduces to the standard matrix-matrix product
when n3 ¼ 1, the tensor nuclear norm reduces to the matrix
nuclear norm. Thus, RPCA is a special case of TRPCA and
the guarantee of RPCA in Theorem 1.1 in [3] is a special
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case of our Theorem 4.1. Both our model and theoretical
guarantee are consistent with RPCA. Compared with SNN
[12], our tensor extension of RPCA is much more simple
and elegant.

The detailed proof of Theorem 4.1 can be found in the sup-
plementary material, which can be found on the Computer
Society Digital Library at http://doi.ieeecomputersociety.
org/10.1109/TPAMI.2019.2891760. It is interesting to under-
stand our proof from the perspective of the following equiva-
lent formulation

min
LL; EE

1

n3
k �L�Lk� þ �kbcircðEEÞk1ð Þ; s.t. XX ¼ LLþ EE; (39)

where (34) is used. Program (39) is a mixed model since the
low-rank regularization is performed on the Fourier domain
while the sparse regularization is performed on the original
domain. Our proof of Theorem 4.1 is also conducted based on
the interaction between both domains. By interpreting the ten-
sor nuclear norm of LL as the matrix nuclear norm of �L�L (with a
factor 1

n3
) in the Fourier domain, we are then able to use some

existing properties of the matrix nuclear norm in the proofs.

The analysis for the sparse term is kept on the original domain
since the ‘1-norm has no equivalent form in the Fourier

domain. Though both two terms of the objective function of

(39) are given on two matrices ( �L�L and bcircðEEÞ), the analysis
for model (39) is very different from that of matrix RPCA. The

matrices �L�L and bcircðEEÞ can be regarded as two matrici-

zations of the tensor objectsLL and EE, respectively. Their struc-
tures are more complicated than those in matrix RPCA, and

thus make the proofs different from [3]. For example, our
proofs require proving several bounds of norms on random

tensors. Theses results and proofs, which have to use the

properties of block circulant matrices and the Fourier trans-

formation, are completely new. Some proofs are challenging

due to the dependent structure of bcircðEEÞ for EEwith an inde-

pendent elements assumption. Also, TRPCA is of a different

nature from the tensor completion problem [30]. The proof of

the exact recovery of TRPCA is more challenging since the
‘1-norm (and its dual norm ‘1-norm used in (37)) has no

equivalent formulation in the Fourier domain.
It is worthmentioning that this work focuses on the analy-

sis for 3-way tensors. But it is not difficult to generalize our
model in (5) and results in Theorem 4.1 to the case of order-p
(p 	 3) tensors, by using the t-SVD for order-p tensors in [21].

When considering the application of TRPCA, the way for
constructing a 3-way tensor from data is important. The rea-
son is that the t-product is orientation dependent, and so is
the tensor nuclear norm. Thus, the value of TNN may be
different if the tensor is rotated. For example, a 3-channel
color image can be formatted as 3 different sizes of tensors.
Therefore, when using TRPCA which is based on TNN, one
has to format the data into tensors in a proper way by
leveraging some priori knowledge, e.g., the low tubal rank
property of the constructed tensor.

4.3 Tensor Singular Value Thresholding

Problem (5) can be solved by the standard Alternating
Direction Method of Multiplier (ADMM) [19]. A key step is
to compute the proximal operator of TNN

min
XX2Rn1�n2�n3

tkXXk� þ
1

2
kXX � YYk2F : (40)

We show that it also has a closed-form solution as the proxi-
mal operator of the matrix nuclear norm. Let YY ¼ UU � SS � VV�

be the tensor SVDofYY 2 Rn1�n2�n3 . For each t > 0, we define
the tensor Singular Value Thresholding (t-SVT) operator as
follows

DtðYYÞ ¼ UU � SSt � VV�; (41)
where

SSt ¼ ifftðð�SS � tÞþ; ½ �; 3Þ: (42)

Note that �SS is a real tensor. Above tþ denotes the positive
part of t, i.e., tþ ¼ maxðt; 0Þ. That is, this operator simply
applies a soft-thresholding rule to the singular values �SS (not
SS) of the frontal slices of �YY, effectively shrinking these
towards zero. The t-SVT operator is the proximity operator
associated with TNN.

Theorem 4.2. For any t > 0 and YY 2 Rn1�n2�n3 , the tensor
singular value thresholding operator (41) obeys

DtðYYÞ ¼ arg min
XX2Rn1�n2�n3

tkXXk� þ
1

2
kXX � YYk2F : (43)

Proof. The required solution to (43) is a real tensor and thus
we first show that DtðYYÞ in (41) is real. Let YY ¼ UU � SS � VV�

be the tensor SVD of YY. We know that the frontal slices of
�SS satisfy the property (11) and so do the frontal slices of
ð�SS � tÞþ. By Lemma 2.1, SSt in (42) is real. Thus, DtðYYÞ in
(41) is real. Second, by using properties (34) and (12),
problem (43) is equivalent to

argmin
XX

1

n3
tk �X�Xk� þ

1

2
k �X�X � �Y�Y k2F

� �

¼ argmin
XX

1

n3

Xn3
i¼1

tk �X�X
ðiÞk� þ

1

2
k �X�X

ðiÞ � �Y�Y
ðiÞk2F

� �
:

(44)

By Theorem 2.1 in [2], we know that the ith frontal slice
of DtðYYÞ solves the ith subproblem of (44). Hence, DtðYYÞ
solves problem (43). tu

Algorithm 3.Tensor Singular Value Thresholding (t-SVT)

Input: YY 2 Rn1�n2�n3 , t > 0.
Output: DtðYYÞ as defined in (41).
1. Compute �YY ¼ fftðYY; ½ �; 3Þ.
2. Perform matrix SVT on each frontal slice of �YY by

for i ¼ 1; . . . ; dn3þ1
2 e do

½UU; SS; VV � ¼ SVDð �Y�Y ðiÞÞ;
�W�W
ðiÞ ¼ UU � ðSS � tÞþ � VV �;

end for
for i ¼ dn3þ1

2 e þ 1; . . . ; n3 do
�W�W
ðiÞ ¼ conjð �W�W

ðn3�iþ2ÞÞ;
end for

3. Compute DtðYYÞ ¼ ifftð �WW; ½ �; 3Þ.

Theorem 4.2 gives the closed-form of the t-SVT operator
DtðYYÞ, which is a natural extension of the matrix SVT [2].
Note that DtðYYÞ is real when YY is real. By using property
(11), Algorithm3 gives an efficientway for computingDtðYYÞ.

LU ET AL.: TENSOR ROBUST PRINCIPAL COMPONENT ANALYSIS WITH A NEW TENSOR NUCLEAR NORM 933

Authorized licensed use limited to: Peking University. Downloaded on December 28,2020 at 03:50:12 UTC from IEEE Xplore.  Restrictions apply. 

http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2891760
http://doi.ieeecomputersociety.org/10.1109/TPAMI.2019.2891760


With t-SVT, we now give the details of ADMM to solve
(5). The augmented Lagrangian function of (5) is

LðLL; EE;YY;mÞ ¼ kLLk� þ �kEEk1 þ YY;LL þ EE � XXh i
þ m

2
kLL þ EE � XXk2F :

Then LL and EE can be updated by minimizing the augmented
Lagrangian function L alternately. Both subproblems have
closed-form solutions. See Algorithm 4 for the whole proce-
dure. The main per-iteration cost lies in the update of LLkþ1,
which requires computing FFT and dn3þ1

2 e SVDs of n1 � n2

matrices. The per-iteration complexity is O n1n2n3 logn3þð
nð1Þn2

ð2Þn3Þ.

Algorithm 4. Solve (5) by ADMM

Input: tensor data XX , parameter �.
Initialize: LL0 ¼ SS0 ¼ YY0 ¼ 0, r ¼ 1:1, m0 ¼ 1e�3, mmax ¼ 1e10,
� ¼ 1e�8.
while not converged do
1. Update LLkþ1 by

LLkþ1 ¼ argmin
LL

kLLk� þ
mk

2
LL þ EEk � XX þ YYk

mk



2

F

;

2. Update EEkþ1 by

EEkþ1 ¼ argmin
EE

�kEEk1 þ
mk

2
LLkþ1 þ EE � XX þ YYk

mk



2

F

;

3. YYkþ1 ¼ YYk þ mkðLLkþ1 þ EEkþ1 � XXÞ;
4. Update mkþ1 by mkþ1 ¼ minðrmk;mmaxÞ;
5. Check the convergence conditions

kLLkþ1 � LLkk1 
 �; kEEkþ1 � EEkk1 
 �;

kLLkþ1 þ EEkþ1 � XXk1 
 �:

end while

5 EXPERIMENTS

In this section, we conduct numerical experiments to verify
our main results in Theorem 4.1. We first investigate the abil-
ity of the convex TRPCA model (5) to recover tensors with
varying tubal rank and different levels of sparse noises. We
then apply it for image recovery and background modeling.
As suggested by Theorem 4.1, we set � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þn3

p
in all the

experiments.1 But note that it is possible to further improve
the performance by tuning � more carefully. The suggested
value in theory provides a good guide in practice. All the sim-
ulations are conducted on a PC with an Intel Xeon E3-1270
3.60GHzCPU and 64GBmemory.

5.1 Exact Recovery from Varying Fractions of Error

We first verify the correct recovery guarantee of Theorem 4.1
on randomly generated problems. We simply consider the
tensors of size n� n� n, with varying dimension n ¼100 and
200. We generate a tensor with tubal rank r as a product
LL0 ¼ PP � QQ�, where PP and QQ are n� r� n tensors with
entries independently sampled from Nð0; 1=nÞ distribution.

The support set VV (with size m) of EE0 is chosen uniformly at
random. For all ði; j; kÞ 2 VV, let ½EE0�ijk ¼ MMijk, where MM is a
tensorwith independent Bernoulli�1 entries.

Table 2 reports the recovery results based on varying
choices of the tubal rank r of LL0 and the sparsity m of EE0. It
can be seen that our convex program (5) gives the correct
tubal rank estimation of LL0 in all cases and also the relative
errors kL̂L � LL0kF =kLL0kF are very small, less than 10�5. The
sparsity estimation of EE0 is not as exact as the rank estima-
tion, but note that the relative errors kÊE � EE0kF=kEE0kF are
all very small, less than 10�8 (actually much smaller than
the relative errors of the recovered low-rank component).
These results well verify the correct recovery phenomenon
as claimed in Theorem 4.1.

5.2 Phase Transition in Tubal Rank and Sparsity

The results in Theorem 4.1 show the perfect recovery
for incoherent tensor with ranktðLL0Þ on the order of
nn3=ðmðlognn3Þ2Þ and the sparsity of EE0 on the order of n2n3.
Now we examine the recovery phenomenon with varying
tubal rank of LL0 from varying sparsity of EE0. We consider the
tensor LL0 of size Rn�n�n3 , where n ¼ 100 and n3 ¼ 50. We
generate LL0 ¼ PP � QQ�, where PP and QQ are n� r� n3 tensors
with entries independently sampled from aNð0; 1=nÞ distri-
bution. For the sparse component EE0, we consider two cases.
In the first case, we assume a Bernoulli model for the support
of the sparse term EE0, with random signs: each entry of EE0

takes on value 0 with probability 1� r, and values �1 each
with probability r=2. The second case chooses the support
VV in accordance with the Bernoulli model, but this time
sets EE0 ¼ PPVV sgnðLL0Þ. We set r

n ¼ ½0:01 : 0:01 : 0:5� and

TABLE 2
Correct Recovery for Random Problems of Varying Sizes

r ¼ ranktðLL0Þ ¼ 0:05n,m ¼ kEE0k0 ¼ 0:05n3

n r m ranktðL̂LÞ kŜSk0 kL̂L�LL0kF
kLL0kF

kÊE�EE0kF
kEE0kF

100 5 5e4 5 50,029 2:6e�7 5:4e�10
200 10 4e5 10 400,234 5:9e�7 6:7e�10

r ¼ ranktðLL0Þ ¼ 0:05n,m ¼ kEE0k0 ¼ 0:1n3

n r m ranktðL̂LÞ kŜSk0 kL̂L�LL0kF
kLL0kF

kÊE�EE0kF
kEE0kF

100 5 1e5 5 100,117 4:1e�7 8:2e�10
200 10 8e5 10 800,901 4:4e�7 4:5e�10

r ¼ ranktðLL0Þ ¼ 0:1n,m ¼ kEE0k0 ¼ 0:1n3

n r m ranktðL̂LÞ kŜSk0 kL̂L�LL0kF
kLL0kF

kÊE�EE0kF
kEE0kF

100 10 1e5 10 101,952 4:8e�7 1:8e�9
200 20 8e5 20 815,804 4:9e�7 9:3e�10

r ¼ ranktðLL0Þ ¼ 0:1n,m ¼ kEE0k0 ¼ 0:2n3

n r m ranktðL̂LÞ kÊEk0 kL̂L�LL0kF
kLL0kF

kÊE�EE0kF
kEE0kF

100 10 2e5 10 200,056 7:7e�7 4:1e�9
200 20 16e5 20 1,601,008 1:2e�6 3:1e�9

1. Codes of our method available at https://github.com/canyilu.
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rs ¼ ½0:01 : 0:01 : 0:5�. For each ðrn ; rsÞ-pair, we simulate 10
test instances and declare a trial to be successful if the recov-
ered L̂L satisfies kL̂L � LL0kF=kLL0kF 
 10�3. Fig. 5 plots the
fraction of correct recovery for each pair ðrn ; rsÞ (black = 0%
and white = 100%). It can be seen that there is a large region
in which the recovery is correct in both cases. Intuitively, the
experiment shows that the recovery is correct when the tubal
rank of LL0 is relatively low and the errors EE0 is relatively
sparse. Fig. 5b further shows that the signs of EE0 are not
important: recovery can be guaranteed as long as its support
is chosen uniformly at random. These observations are con-
sistent with Theorem 4.1. Similar observations can be found
in thematrix RPCA case (see Fig. 1 in [3]).

5.3 Application to Image Recovery

We apply TRPCA to image recovery from the corrupted
images with random noises.The motivation is that the color
images can be approximated by low rankmatrices or tensors
[17]. We will show that the recovery performance of TRPCA
is still satisfactory with the suggested parameter in theory on
real data.

We use 100 color images from the Berkeley Segmentation
Dataset [22] for the test. The sizes of images are 321� 481 or
481� 321. For each image, we randomly set 10 percent of
pixels to random values in [0, 255], and the positions of the
corrupted pixels are unknown. All the 3 channels of the
images are corrupted at the same positions (the corruptions

are on the whole tubes). This problem is more challenging
than the corruptions on 3 channels at different positions.
See Fig. 7b for some sample images with noises. We com-
pare our TRPCA model with RPCA [3] and SNN [12] which
also own the theoretical recovery guarantee. For RPCA, we
apply it on each channel separably and combine the results
to obtain the recovered image. The parameter � is set to
� ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðn1; n2Þ

p
as suggested in theory. For SNN in (4),

we find that it does not perform well when �i’s are set to the
values suggested in theory [12]. We empirically set
�� ¼ ½15; 15; 1:5� in (4) to make SNN perform well in most
cases. For our TRPCA, we format a n1 � n2 sized image as a
tensor of size n1 � n2 � 3. We find that such a way of tensor
construction usually performs better than some other ways.
This may be due to the noises which present on the tubes.
We set � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3 maxðn1; n2Þ

p
in TRPCA. We use the Peak

Signal-to-Noise Ratio (PSNR), defined as

PSNR ¼ 10 log 10

kMMk21
1

n1n2n3
kX̂X �MMk2F

 !
;

to evaluate the recovery performance.
Fig. 6 gives the comparison of the PSNR values and run-

ning time on all 100 images. Some examples with the recov-
ered images are shown in Fig. 7. From these results, we
have the following observations. First, both SNN and
TRPCA perform much better than the matrix based RPCA.
The reason is that RPCA performs on each channel indepen-
dently, and thus is not able to use the information across
channels. The tensor methods instead take advantage of the
multi-dimensional structure of data. Second, TRPCA out-
performs SNN in most cases. This not only demonstrates
the superiority of our TRPCA, but also validates our recov-
ery guarantee in Theorem 4.1 on image data. Note that SNN
needs some additional effort to tune the weighted parame-
ters �i’s empirically. Different from SNN which is a loose
convex surrogate of the sum of Tucker rank, our TNN is a
tight convex relaxation of the tensor average rank, and the
recovery performance of the obtained optimal solutions has
the tight recovery guarantee as RPCA. Third, we use the
standard ADMM to solve RPCA, SNN and TRPCA. Fig. 6
(bottom) shows that TRPCA is as efficient as RPCA, while
SNN requires the highest cost in this experiment.

Fig. 5. Correct recovery for varying tubal ranks of LL0 and sparsities of
EE0. Fraction of correct recoveries across 10 trials, as a function of
ranktðLL0Þ (x-axis) and sparsity of EE0 (y-axis). Left: sgnðEE0Þ random.
Right: EE0 ¼ PPVV sgnðLL0Þ.

Fig. 6. Comparison of the PSNR values (top) and running time (bottom) obtained by RPCA, SNN and TRPCA on 100 images.
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5.4 Application to Background Modeling

In this section, we consider the background modeling
problem which aims to separate the foreground objects from
the background. The frames of the background are highly
correlated and thus can be modeled as a low rank tensor. The
moving foreground objects occupy only a fraction of image
pixels and thus can be treated as sparse errors. We solve this
problem by using RPCA, SNN and TRPCA.We consider four
color videos,Hall (144�176, 300),WaterSurface (128�160, 300),
ShoppingMall (256�320, 100) and ShopCorridor (144�192, 200),
where the numbers in the parentheses denote the frame size
and the frame number. For each sequence with color frame
size h� w and frame number k, we reshape it to a ð3hwÞ � k
matrix and use it in RPCA. To use SNN and TRPCA, we
reshape the video to a ðhwÞ � 3� k tensor.2 The parameter of
SNN in (4) is set to �� ¼ ½10; 0:1; 1� � 20 in this experiment.

Fig. 8 shows the performance and running time compari-
son of RPCA, SNN and TRPCA on the four sequences. It
can be seen that the low rank components identify the main
illuminations as background, while the sparse parts corre-
spond to the motion in the scene. Generally, our TRPCA
performs the best. RPCA does not perform well on the Hall
and WaterSurface sequences using the default parameter.
Also, TRPCA is as efficient as RPCA and SNN requires
much higher computational cost. The efficiency of TRPCA
is benefited from our faster way for computing tensor SVT
in Algorithm 3 which is the key step for solving TRPCA.

6 CONCLUSIONS AND FUTURE WORK

Based on the recently developed tensor-tensor product,which
is a natural extension of the matrix-matrix product, we rigor-
ously defined the tensor spectral norm, tensor nuclear norm
and tensor average rank, such that their properties and
relationships are consistent with the matrix cases. We then

Fig. 7. Recovery performance comparison on 6 example images. (a) Original image; (b) observed image; (c)-(e) recovered images by RPCA, SNN
and TRPCA, respectively; (f) and (g) show the comparison of PSNR values and running time (second) on the above 6 images.

2. We observe that this way of tensor construction performs well for
TRPCA, despite one has some other ways.
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studied the Tensor Robust Principal Component problem
which aims to recover a low tubal rank tensor and a sparse
tensor from their sum. We proved that under certain suit-
able assumptions, we can recover both the low-rank and the
sparse components exactly by simply solving a convex pro-
gramwhose objective is a weighted combination of the tensor
nuclear norm and the ‘1-norm. Benefitting from the “good”
property of tensor nuclear norm, both ourmodel and theoreti-
cal guarantee are natural extensions of RPCA. We also devel-
oped a more efficient method to compute the tensor singular
value thresholding problem which is the key for solving
TRPCA. Numerical experiments verify our theory and the
results on images and videos demonstrate the effectiveness
of ourmodel.

There have some interesting future works. The work [7]
generalizes the t-product using any invertible linear trans-
form. With a proper choice of the invertible linear transform,
it is possible to deduce a new tensor nuclear norm and solve

the TRPCA problem. Beyond the convex models, the exten-
sions to nonconvex cases are also important [20]. Finally, it is
always interesting in using the developed tensor tools for real
applications, e.g., image/video processing, web data analysis,
and bioinformatics.
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