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Abstract

Monocular object pose estimation is an important yet chal-
lenging computer vision problem. Depth features can pro-
vide useful information for pose estimation. However, exist-
ing methods rely on real depth images to extract depth fea-
tures, leading to its difficulty on various applications. In this
paper, we aim at extracting RGB and depth features from a
single RGB image with the help of synthetic RGB-depth im-
age pairs for object pose estimation. Specifically, a deep con-
volutional neural network is proposed with an RGB-to-Depth
Embedding module and a Synthetic-Real Adaptation module.
The embedding module is trained with synthetic pair data to
learn a depth-oriented embedding space between RGB and
depth images optimized for object pose estimation. The adap-
tation module is to further align distributions from synthetic
to real data. Compared to existing methods, our method does
not need any real depth images and can be trained easily with
large-scale synthetic data. Extensive experiments and com-
parisons show that our method achieves best performance on
a challenging public PASCAL 3D+ dataset in all the metric-
s, which substantiates the superiority of our method and the
above modules.

Introduction

3D object pose estimation is to estimate an object’s view-
point (relative pose) with respect to a camera (including
three angles: azimuth, elevation, and in-plane rotation). It is
a core problem for many computer vision applications, such
as robotics, augmented reality, autonomous driving and 3D
scene interpretation. In the last decade, it has gained increas-
ing attention and achieved promising success (Su et al. 2015;
Sundermeyer et al. 2018).

Most existing methods (Su et al. 2015; Mousavian et al.
2017; Rad and Lepetit 2017) extract RGB (appearance) fea-
tures from RGB images to estimate pose of objects. Despite
of the significant progress in recent years, a major difficul-
ty of these RGB based methods is induced by the 3D-2D
projection process, where depth features are lost. Compared
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Figure 1: Different from previous methods (a),(b),(c),(d),
our method extracts not only RGB features but also depth
features, with the help of synthetic images, from only a s-
ingle RGB image input for 3D object pose estimation (as
shown in (e)). In (c), depth features are extracted from RGB
images with the help of real depth images.

to RGB features, depth features are more invariant to illu-
mination, texture, and background clutter. This makes them
suitable to represent 3D geometry shape and thus importan-
t to infer 3D pose. Following this, depth features are ex-
tracted from real depth images for 3D object pose in depth-
only based or RGB-D based methods (Balntas et al. 2017;
Sahin and Kim 2018; Krull et al. 2015). In addition, a recen-
t work (Rad, Oberweger, and Lepetit 2018) uses only depth
features extracted from real RGB images with the help of re-
al and synthetic depth images for pose estimation. However,
real depth images are often unavailable in various real-world
scenarios, due to various practical constraints such as sensor
or computational cost limitations.

In this paper, different from previous approaches, we pro-
pose to extract RGB features and depth features from a sin-
gle RGB image with the help of paired synthetic RGB-depth
images for object pose estimation (as shown in Figure 1). E-
specially, our method does not need any real depth images
in the training process. All the depth information needed in
our task is transferred from synthetic data. This makes our
method especially suitable for the challenging pose estima-
tion in the wild task, where depth images are often unavail-
able (such as for far outdoor objects). Furthermore, collect-
ing and labeling a large-scale training data of paired RG-
B and depth images is expensive and time-consuming. In
stead of using real data, we render large-scale paired syn-
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Figure 2: The overview of our proposed synthetic depth transfer method. At the training phase, the whole network is used. At
the test phase in the grey area, only RGB-Net and PD-Net with the input of a real RGB image are utilized to estimate pose.

thetic RGB and depth images with various poses from 3D
CAD models with low cost. Despite the merits of using syn-
thetic data, we have to address the issue of the significant
domain gap between synthetic and real data, due to the dif-
ference in image formation settings, which often leads to a
large performance drop on real data when the model is only
trained with synthetic data. This requires the network de-
sign to include structures suitable to be trained with domain
adaptation.

With all these considerations, this paper proposes a new
network to extract RGB and depth features, with the help
of synthetic data, from a single RGB image for object 3D
pose estimation. Specifically, there are three streams in the
network, as shown in Figure 2. One stream (RGB-Net) is
trained to learn RGB features from RGB images for pose
estimation. Another stream (DepthNet) is trained to learn
object depth features from synthetic depth data for pose esti-
mation. The third stream (PD-Net) is trained to extract pseu-
do depth features from RGB images with the guidance of
DepthNet. The DepthNet and PD-Net jointly learn a depth
oriented embedding space between RGB and depth images
for pose estimation, which is called RGB-to-Depth Embed-
ding. To train the network, a large number of synthetic RGB
and depth image pairs are rendered with 3D CAD models.
Then RGB features of RGB-Net and pseudo depth features
of PD-Net from a same RGB image are combined to esti-
mate the final pose of an object. Furthermore, due to the
domain gap between real and synthetic RGB images, the
combined features from different domains are aligned with
a Synthetic-Real Adaptation module. In this way, synthetic
depth features are transferred from synthetic depth images to
real RGB images. At the testing phase, only RGB-Net and
PD-Net are used to infer pose with a single RGB image of
an object as input.

We evaluate the proposed method on a challenging pub-
lic PASCAL 3D+ (Xiang, Mottaghi, and Savarese 2014)
dataset. The experimental results in all the metrics show that
our method outperforms the state-of-the-art methods (Tul-
siani and Malik 2015; Su et al. 2015; Wu et al. 2016). Our
ablative study demonstrates that: (1) the depth features ex-
tracted from RGB images are effective for pose estimation;
(2) the fusion of RGB features and depth features extract-

ed by our proposed network trained with only synthetic data
still can achieve decent performance on real data; (3) the
Synthetic-Real Adaptation can further improve our pose es-
timation performance.

In summary, our contributions are as follows:

1) We propose a framework to integrate synthetic RGB-
depth image pairs to extract RGB and depth features to infer
pose from single RGB images. By using paired synthetic
data, we remove the availability obstacle of real depth image
and can obtain large-scale training set with various poses.

2) To transfer depth feature from synthetic depth images
to real RGB images for pose estimation, we propose two
modules in our framework, an RGB-to-Depth Embedding
and a Synthetic-Real Adaptation, which effectively transfers
synthetic depth to RGB images and narrows the gap between
real and synthetic RGB images.

3) Extensive experiments on the PASCAL 3D+ dataset
demonstrate that our method achieves a decent improve-
ment over state-of-the-art methods in all the metrics for 3D
pose estimation, owing to the fusion of RGB and transferred
depth features from synthetic data.

Related work

Estimation from RGB images. RGB images can provide
appearance information for pose estimation, since objects
with different poses have different appearance. Many RG-
B based pose estimation methods have been proposed. The
early works include (Xiang, Mottaghi, and Savarese 2014;
Pepik et al. 2012), which extend Deformable Part Model-
s (DPM) to perform object detection and pose estimation.
Later, CNN-based methods obtain great success for pose es-
timation from RGB images. Some methods (Su et al. 2015;
Tulsiani and Malik 2015; Wang et al. 2018) take the pose
estimation as a classification or regression problem, or a
hybrid of them and train a CNN directly to estimate pose.
For instance, a fine-grained pose classification formulation
is proposed by (Su et al. 2015), with a geometric struc-
ture aware loss function considering the strong correla-
tion of nearby views. Some methods (Pavlakos et al. 2017,
Wau et al. 2016) predict 2D keypoints first from a single RGB
image, and then predict pose with these keypoints. In addi-
tion, some methods (Li et al. 2017; Kao et al. 2018) take



keypoints as auxiliary supervision and learn more powerful
presentations for pose estimation from a single RGB image.

Estimation from Depth or RGB-D images. Depth im-
ages are effective for pose estimation, which is demonstrat-
ed by many recent works (Balntas et al. 2017; Sahin and
Kim 2018; Sock et al. 2017; Kehl et al. 2016). (Sahin and
Kim 2018) address pose estimation with only depth im-
ages and obtain promising performance. In (Sundermeyer
et al. 2018), depth images are used to refine the results in-
ferred from RGB images. The studies of (Balntas et al. 2017,
Krull et al. 2015; Li, Bai, and Hager 2018) focus on design-
ing different RGB-D based approaches to estimate objec-
t pose. For example, in (Balntas et al. 2017) a depth image
as a channel is concatenated with an RGB image and they
are fed to a triplet network to learn an embedding for both
object recognition and pose retrieval. (Krull et al. 2015) u-
tilize a CNN as a probabilistic model to perform analysis-
by-synthesis for object pose estimation based on RGB-D
images. RGB-D images are also used to learn rich features
for other tasks, such as object classification, object detection
and segmentation. Since depth images are often unavailable
in most real-world conditions, especially outdoor scenes, we
aim to extract depth features from a single RGB image and
fuse them with RGB features for pose estimation.

Estimation with Synthetic Data. Recently, many Do-
main Adaptation (DA) based methods (Ganin and Lempit-
sky 2015; Motiian et al. 2017) and various Generative Ad-
versarial Networks (GAN) (Goodfellow et al. 2014) are pro-
posed to generalize synthetic data to real data. Synthetic da-
ta have also been used for object pose estimation method-
s (Su et al. 2015; Szeto and Corso 2017; Grabner, Roth, and
Lepetit 2018; Krull et al. 2015), due to the difficulty of col-
lecting and labeling real data. These synthetic data are often
rendered with 3D CAD models of objects. Su et al. (Su et
al. 2015) render millions of synthetic RGB images togeth-
er with a small amount of real images to train a CNN for
pose estimation. Based on (Su et al. 2015), Szeto and Cor-
s0 (Szeto and Corso 2017) render millions of synthetic RGB
images with 2D keypoint information and propose a novel
CNN that integrates an RGB image and a single keypoint
map to predict viewpoint. However, they do not consider the
domain shift between real data and synthetic data. In turn,
an autoencoder for a novel 3D pose estimation in (Sunder-
meyer et al. 2018) is trained with only synthetic views of
3D models using domain randomization. (Sundermeyer et
al. 2018) want to learn representations that are invariant to
a significant domain gap between synthetic and real RGB
images.

Recently, (Rad, Oberweger, and Lepetit 2018) aim to u-
tilize synthetic depth images to extract mapped depth fea-
tures from real RGB images without annotations for pose
estimation. They make it in two steps by learning the feature
mapping from real RGB to corresponding real depth images
and bridging domain gap between real depth and synthetic
depth images. However, real depth images are often unavail-
able in various real-world scenarios. The size of real data for
network training is also small. In addition, since the paired
real RGB-Depth images are without pose annotations, they
cannot learn RGB features from real RGB images for pose

estimation and the mapped depth features for pose are only
based on synthetic depth data. The RGB features are proved
to be very important for 3D pose estimation in the wild (Su
et al. 2015; Tulsiani and Malik 2015). In comparison, our
work does not use any real depth images. We can render
virtually infinite paired synthetic RGB-Depth images with
pose annotations to learn a supervised mapping from RG-
B to depth features effectively. The useful RGB features can
also be learned and combined with transferred depth features
for pose estimation. To further align the combined features
from synthetic and real RGB images, a domain adaptation
way (Ganin and Lempitsky 2015) is adopted. All these mod-
ules contribute to the improvement of our method.

Our Method

In this paper, our goal is to extract RGB features and depth
features from a single RGB image for 3D pose estimation.
Here we denote the 3D pose of an object as («, (3, 6), where
«, (8 and 6 are azimuth, elevation and in-plane rotation re-
spectively. Following the previous works (Su et al. 2015;
Szeto and Corso 2017), we formulate the pose estimation
problem as a fine-grained classification problem, by divid-
ing each angle into N bins (/N = 360). Moreover, object
category classification is also considered.

Network Overview

Figure 2 illustrates the proposed network. It consists of
RGB-Net, PD-Net (Pseudo Depth net) and DepthNet. The
basenet of the three nets we use is VGG-16 network (Si-
monyan and Zisserman 2015) before the first fully connect-
ed layer (FC6). RGB-Net is to learn RGB features from RG-
B images for object pose estimation. DepthNet is to learn
object depth features from depth images for pose estima-
tion. PD-Net is to learn pseudo depth features from RGB
features by the RGB-to-Depth Embedding process. To in-
tegrate the complementarity of RGB features and depth fea-
tures, the two features are fused for the final pose estimation.
Since it is difficult to obtain pose annotation for large-scale
paired RGB and depth images, we render millions of syn-
thetic data for training the network. In addition, a Synthetic-
Real Adaptation is also considered to reduce the domain gap
of combined features between synthetic RGB and real RGB
images. The RGB-to-Depth Embedding and Synthetic-Real
Adaptation solve the synthetic depth transfer from synthet-
ic depth images to real RGB images. At the test phase, only
RGB-Net and PD-Net with the input of real RGB images are
used to estimate pose.

RGB-to-Depth Embedding

Depth images can provide particular shape and geometric
features under different poses. Different from RGB images,
they are also invariant to illumination, texture and environ-
ment of objects. Since depth images are often unavailable in
many practical applications, we aim to extract depth features
from RGB images.

To extract depth features from RGB images, we propose
to learn an RGB-to-Depth embedding space with synthet-
ic data. This is motivated by multiple modalities embed-
ding (Wang, Li, and Lazebnik 2016). For example, in (Wang,



Li, and Lazebnik 2016) for image and text, a joint embed-
ding space is learned, where vectors from the two different
modalities can be compared. Specifically, a two-branch net-
work is used: one branch for images, and the other for text,
which is then followed by L2 normalization at the output.
We also aim to learn an embedding space for RGB images
and depth images, where features from the two modalities
can be compared. The difference is that we focus on the
depth features for pose estimation in the embedding space.
Inspired by these, we propose to learn a depth oriented em-
bedding space between RGB and depth data with guidance
of DepthNet. In this way, pseudo depth features can be ex-
tracted from RGB images by mapping the RGB images into
the embedding space.

In detail, DepthNet with input of synthetic depth im-
ages Ly, 1s trained to learn depth features with pose
estimation and object classification loss function Lg,
where La(z5.,10,Y) = Lda(T3epins @) + Lae(Thepn, B) +
Ld”‘(‘rflepth’ 0) + de(mfiepth’ C)’ and y = {Ck, 57 9, C}'
Lda (xZEpth’ Oé), Lde (‘rZepth’ 6) and LdT(mzepth7 9) de-
note the loss functions for three angles respectively.
Lac(2 e, ¢) denotes object classification loss, where ¢ de-
notes object category. PD-Net with input of synthetic RGB
images 7, is to learn the mapping from RGB images to
depth feature space with the guidance of DepthNet. Specif-
ically, we minimize the distance of the feature maps of PD-
Net and DepthNet, Dis(fa(23.pp), fed(T; ), Where fq
denotes the feature maps from DepthNet, f.; denotes the
feature maps from PD-Net. In this paper, we use the feature
maps of layers pool3, pool4 and pool5 of VGG-Net. The
distance metric we use is Euclidean distance. The inputs of
DepthNet and PD-Net are depth and RGB image pairs with
the same pose. The final loss function for RGB-to-Depth
embedding is

Lgm = Ld(mzepthv y) + ADiS(fd(miepth), fed(migb)): (D

where A > 0 is a constant. Training DepthNet and PD-Net
with the final loss function Lg,, is to learn the RGB-to-
Depth embedding space for pose estimation.

Synthetic-Real Adaptation

Due to the difficulty of collecting and labeling real data
for object pose estimation, we render a large number of
synthetic data with pose annotations by 3D CAD models
for learning RGB-to-Depth Embedding. However, synthet-
ic RGB image 7, and real RGB image 7, (shown in
Figure 2) look obviously different. They have a significant
domain gap. In addition, when training networks, both RGB
and depth features can be extracted from real and synthetic
RGB images. Thus, we introduce a loss function of domain
adaptation to align the combined RGB and depth features
from real and synthetic RGB images,

Lpa= Da‘(xf‘gbax:gb)' @)

Domain adaptation (DA) has been widely studied in the
literature. In this work, we apply a domain adaptation ap-
proach proposed by (Ganin and Lempitsky 2015). Specifi-
cally, a domain classifier is connected to the standard feature

extractor layers (Conv_c) after feature combination via a gra-
dient reversal layer (GRL), as shown in Figure 2. Here we set
recognizing synthetic data or real data as a two-class classi-
fication problem. A softmax loss function is used. The do-
main classifier is to distinguish samples from two domains.
In the feed-forward training process, the purpose is to mini-
mize the domain classifier loss and other task losses. During
backpropagation training, the GRL multiplies the gradien-
t by a negative constant. The gradient reversal ensures that
feature distributions of the two domains are made as indis-
tinguishable as possible. In this adversarial training proce-
dure, both RGB and depth features from different domains
are adapted to be similar.

Training Objective

The loss of our whole training network includes the RGB-
to-Depth Embedding loss, Synthetic-Real Adaptation loss
and final pose estimation loss. The final pose estimation
and object classification loss function is Lygpq(Trgs, y) =
L, (x’r‘gba Oé) +Le (xrgba ﬁ) + L, (-rrgb; 9) + Lc(xrgb; C)' The
final pose estimation follows the fusion of RGB features and
depth features from the same RGB images.

Since both unsupervised domain adaption (UDA) (Moti-
ian et al. 2017) and supervised domain adaption (SDA)
(Ganin and Lempitsky 2015) are of interests to the research
community, we consider UDA and SDA respectively in our
network for different scenarios. UDA does not need target
(real) data to be labeled, thus is attractive. SDA requires la-
beled target data and can obtain much better performance.
For using UDA, real RGB images are unlabeled, only syn-
thetic data are used to train RGB-to-Depth Embedding and
final pose estimation. Our final objective loss will be

L= LEm + L'rgbd(x:gbv y) + LDA- (3)

For using SDA, real RGB images are labeled, and synthetic
data are used to train RGB-to-Depth Embedding. Both real
RGB images and synthetic RGB images are for final pose
estimation. Our final objective loss will be

L= Lgn,+ Lrgbd(xrgbv y) + LDAv 4)

where z,.g, = {2, 7;,,} denotes a sample set including
real RGB images and synthetic RGB images. For each an-
gle classification in pose estimation, we use the geometric
structure aware loss function proposed by (Su et al. 2015).

Implementation Details

Our proposed network is implemented by Caffe frame-
work (Jia et al. 2014). The training process can be divided
into three phases. 1) DepthNet and the following FC layer-
s are initialized with VGG-Net trained on ImageNet (Deng
et al. 2009) classification task (the same below). Synthetic
depth images are used to train DepthNet for pose estimation
with the loss function Lg. 2) RGB-to-Depth Embedding is
trained with paired synthetic RGB and depth images. It in-
cludes DepthNet and PD-Net with the loss function L g,,. In
this phase, we initialize DepthNet with parameters trained
in the first phase, and initialize the PD-Net with VGG-Net
trained on ImageNet. Synthetic depth images are fed into



DepthNet, and corresponding synthetic RGB images are fed
into PD-Net. We set A\ = 0.01. 3) we train the whole net-
work with the final loss L. Real and synthetic RGB images
are fed into RGB-Net, synthetic depth images are fed in-
to DepthNet, and real and synthetic RGB images are also
fed into PD-Net. We initialize DepthNet and PD-Net with
parameters trained in the second phase, and initialize the
RGB-Net with VGG-Net trained on ImageNet. To fuse the
RGB features from RGB-Net and depth features from PD-
Net, the pool5 from the two nets are concatenated and then
followed by a convolutional layer Conv_c with 512 filters
with size 3 x 3, and two fully connected layers, FC6, FC7.
FC6 and FC7 both have 4096 nodes. In addition, Synthetic-
Real Adaptation is also integrated to align the fused features
from synthetic and real RGB images. It is implemented by
connecting a GRL after layer Conv_c and being followed by
two FC layers and a domain classifier. The number of nodes
of the FC layers is set 1024 in this paper. In this way we train
the whole network. At the test phase, real RGB images are
fed into RGB-Net and PD-Net to infer the final pose.

Synthesizing Data for Training

There are two reasons for synthesizing data to train our net-
work. The first is that large-scale depth images with pose
annotations, especially companied with RGB images, are
difficult to obtain in the real world. The other is that the
most popular PASCAL 3D+ (Xiang, Mottaghi, and Savarese
2014) dataset contains about 27K object instances for object
pose estimation. It is insufficient for training our network,
even only the RGB-Net. Therefore we utilize a large num-
ber of 3D CAD models in ShapeNet (Chang et al. 2015)
to render about two millions synthetic data, including RGB
images and depth images with labeled pose. We extend the
synthetic rendering pipeline proposed by (Su et al. 2015).
Firstly, we sample lighting condition randomly and camera
extrinsics from a real image training set (here we use PAS-
CAL 3D+). Secondly, we render the CAD models to obtain
paired synthetic RGB and depth images, and then random-
ly sample an image from the SUN397 (Xiao et al. 2010)
dataset as background of the synthetic RGB image. Finally,
we crop the paired RGB image and depth image with a same
perturbed object bounding box. The cropping parameters are
also learned from the real dataset.

Experiments
Experimental setup

Dataset. We evaluate the proposed method on a public PAS-
CAL 3D+ (Xiang, Mottaghi, and Savarese 2014) dataset, in-
cluding 12 object categories. There are annotations of pose,
object classes and object bounding boxes in this dataset. The
real images in this dataset are from PASCAL VOC detection
training and validation set, and ImageNet dataset. 27,348 ob-
ject instances from PASCAL training set and ImageNet im-
ages with ground truth (GT) bounding boxes, and synthetic
images are used to train our network. We synthesize about
200K pairs of RGB images and depth images per category,
and in total 2,168,764 pairs for 12 categories. All of them
have accurate 3D pose and category annotations. The whole

PASCAL 3D+ validation set is used to evaluate our perfor-
mance.

Evaluation Metrics. To be consistent with previous
works (Xiang, Mottaghi, and Savarese 2014; Su et al. 2015;
Tulsiani and Malik 2015), we use Accr/6, MedErr and
AVP (Average Viewpoint Precision) as the evaluation met-
rics. Accrjg and MedErr (Tulsiani and Malik 2015) are
based on the geodesic distance between predicted rota-
tion matrix [, and ground truth rotation matrix Ry,
A(Ryr, Rgt) = ||10g(RL. Ryy)|| /2. Rotation matrix can
equivalently describe the three angles (azimuth, elevation,
and in-plane rotation). Accy /s is defined as the percentage
of test instances where A(R,,, Ry) < 7/6. MedErr is
median error of A(R,,, Ry) for all test instances. The two
metrics (Tulsiani and Malik 2015) are presented to evalu-
ate 3D pose estimation performance with ground truth (GT)
bounding boxes. AVP (Xiang, Mottaghi, and Savarese 2014)
is used to evaluate methods for joint detection and pose es-
timation. When computing AVP, the result is correct only
if both of detection result and viewpoint (azimuth) are cor-
rect, similar to (Tulsiani and Malik 2015; Su et al. 2015;
Xiang, Mottaghi, and Savarese 2014; Pepik et al. 2012).

Comparison with State-of-the-art Methods

To validate our method, we compare our method with state-
of-the-art methods (Tulsiani and Malik 2015; Su et al. 2015;
Kao et al. 2018; Wang et al. 2018; Mousavian et al. 2017;
Grabner, Roth, and Lepetit 2018) with only a single RG-
B image as input. The methods (Tulsiani and Malik 2015;
Kao et al. 2018; Wang et al. 2018; Mousavian et al. 2017;
Grabner, Roth, and Lepetit 2018) only use real images to
train their networks, although some of them augment the
training data by using flipped images or the jittered bound-
ing boxes. A baseline, RGB-Net (Real), which is similar to
the RGB-Net in Figure 2 and R4CNN proposed by (Su et
al. 2015), is trained only on the real RGB images. The re-
al images are flipped to augment the training data. In ad-
dition, since R4CNN (Su et al. 2015) is trained on a com-
bination of real images and synthetic (Syn) images with a
basenet AlexNet (Krizhevsky, Sutskever, and Hinton 2012),
another baseline (RGB-Net (Real+Syn)) is also implement-
ed by training RGB-Net on the combination of real images
and synthetic images with a basenet VGG-Net. The differ-
ence between RGB-Net (Real+Syn) and R4CNN is their
basenet. The differences between RGB-Net (Real+Syn) and
our method are our proposed RGB-to-Depth Embedding and
Synthetic-Real Adaptation.

Pose Estimation with Ground Truth Bounding Box.
Table 1 shows the performance of our method, baselines
and state-of-the-art methods for 3D pose estimation with GT
bounding boxes on PASCAL 3D+ dataset. Here our method
(final) in this table means the whole network trained with
SDA. We can see that our method outperforms all the state-
of-the-art methods. By comparing the two baselines, it indi-
cates that synthetic data can augment the training data effec-
tively. In addition, the comparison of RGB-Net (Real+Syn)
and our method verifies the effectiveness of our method. It
demonstrates that the proposed RGB-to-Depth Embedding



Table 1: Accy /6 (%) and MedErr of different methods for 3D pose estimation with GT bounding boxes on PASCAL 3D+.

basenet | aero bike boat bottle bus car chair table mbike sofa train  tv mean
Accy /6 (V&K (Tulsiani and Malik 2015)) VGG-Net | 81 77 59 93 98 89 80 62 88 82 80 80 81
Accy /6 (R4CNN (Su et al. 2015)) AlexNet | 74 83 52 91 91 88 86 73 78 90 86 92 82
Accy /6 (ASFnet (Kao et al. 2018) ) VGG-Net | 86.6 88.1 586 933 987 865 785 826 89.8 850 841 90.1 | 85.2
Accy 6 (HCR-Net (Wang et al. 2018) ) VGG-Net | 81 89 67 95 97 89 79 76 93 87 83 91 86
Accr /6 (MultiBin (Mousavian et al. 2017) ) VGG-Net | 78 83 57 93 94 90 80 68 86 82 82 85 | 81.03
Accy /6 ((Grabner, Roth, and Lepetit 2018) ) ResNet 83 82 64 95 97 94 80 71 88 87 80 86 | 83.92
Acc, /6 (RGB-Net (Real)) VGG-Net | 84.0 847 629 97.6 942 890 766 619 860 718 832 892 8I.8
Accy /6 (RGB-Net (Real+Syn)) VGG-Net | 858 839 634 920 896 909 852 81.0 846 949 841 932 | 857
Accy s (Ours (final)) VGG-Net | 88.0 873 672 960 968 935 869 952 919 923 850 928 | 894
MedErr (V&K (Tulsiani and Malik 2015)) VGG-Net | 138 17.7 213 129 58 9.1 148 152 147 137 87 1547 136
MedErr (R4CNN (Su et al. 2015)) AlexNet | 154 148 256 93 36 60 97 108 167 95 61 126 117
MedErr (ASFnet (Kao et al. 2018) ) VGG-Net | 74 107 185 6.1 1.8 40 82 75 9.0 8.1 3.7 97 7.9
MedErr (HCR-Net (Wang et al. 2018) ) VGG-Net | 92 120 165 62 24 45 122 8.1 11.2 82 467 112 | 89
MedErr (MultiBin (Mousavian et al. 2017) ) | VGG-Net | 13.6 12.5 228 83 31 58 119 125 123 128 63 119 11.1
MedErr ((Grabner, Roth, and Lepetit 2018) ) | ResNet | 10.0 15.6 19.1 8.6 33 51 137 118 122 135 6.7 11.0] 109
MedErr (RGB-Net (Real)) VGG-Net | 86 119 163 65 20 38 100 11.8 120 101 46 99 8.9
MedErr (RGB-Net (Real+Syn)) VGG-Net | 88 11.7 186 6.3 25 45 83 8.3 11.6 77 46 89 8.5
MedErr (Ours (final)) VGG-Net | 7.7 115 158 5.5 20 36 72 4.9 9.3 72 43 84 7.3

and Synthetic-Real Adaptation contribute to the improve-
ments from RGB-Net (Real+Syn) to our method on the two
metrics.

Joint Detection and Pose Estimation. To further vali-
date our method, we follow prior works (Xiang, Mottaghi,
and Savarese 2014; Felzenszwalb et al. 2010; Su et al. 2015;
Tulsiani and Malik 2015; Poirson et al. 2016; Wang et al.
2018) and test on the joint detection and pose estimation
task. Table 2 shows the performance of our method and
state-of-the-art methods. Firstly, we compare pose estima-
tion performance with the same detection results. One of our
methods in Table 2, Ours(final)+RCNN, uses the bounding
boxes detected from RCNN (Girshick et al. 2014). The de-
tected results are provided by (Tulsiani and Malik 2015) and
its AP (Average Precision) on the 12 object categories of
Pascal 3D+ dataset is 60.4%. HCR-Net (Wang et al. 2018)
also uses the detected results. By comparing the three meth-
ods, we can see that our pose estimation method outper-
forms the other two methods. It demonstrates the benefit
of our method. In addition, since different detection results
with the same pose estimation methods may lead to differ-
ent AVPs, we also show the pose estimation performance in
Table 2 with SSD512 detector provided by (Liu et al. 2016).
It is termed as Ours(final)+SSD512. The AP of SSD512 on
the 12 object categories of PASCAL 3D+ dataset is 89.2%,
which is much higher than RCNN. It indicates that high-
er detection performance can make higher AVP. Poirson et
al. (Poirson et al. 2016) extend a SSD500 network (Extended
SSD500) trained on PASCAL 3D+ dataset to detect object
and estimate its pose simultaneously. Table 2 shows that our
method with SSD512 detector outperforms other methods
significantly. It verifies the effectiveness of our method.

Ablative Study

To investigate the importance and effect of synthetic data,
RGB-to-Depth Embedding and Synthetic-Real Adaptation
for our method, we do an ablative study and show the re-
sults of our method with or without one or more modules
with GT bounding box in Table 3. We train 10 models. The
PD-Net (Syn) means that PD-Net and DepthNet are trained
on synthetic RGB-depth image pairs. The depth features ex-
tracted from PD-Net are used to evaluate pose estimation.

Table 3: Ablative Study of our proposed method with ground
truth bounding box on Pascal 3D+ dataset.

Model (training data) Accri6 | MedErr
PD-Net (Syn) 48.8 38.3
RGB-Net (Syn) 439 41.2
RGB-Net+UDA (Real+Syn) 79.5 12.7
RGB-Net+PD-Net (Syn) 76.1 134
RGB-Net+PD-Net+UDA (Real+Syn) 80.8 12.3
RGB-Net (Real) 81.8 8.9
RGB-Net (Real+Syn) 85.7 8.5
RGB-Net+SDA (Real+Syn) 87.2 7.3
RGB-Net+PD-Net (Real+Syn) 88.2 7.4
RGB-Net+PD-Net+SDA (Real+Syn) 89.4 7.3

Some models with SDA are trained on labeled real data and
labeled synthetic data, while some models with UDA are
trained on labeled synthetic data and unlabeled real data.

Effect of Synthetic Data. By comparing the performance
of RGB-Net (Real) and RGB-Net (Real+Syn), it demon-
strates that synthetic images can augment the training data
and improves the performance effectively, although RGB-
Net (Real+Syn) does not consider the domain gap between
synthetic and real data.

Effect of RGB-to-Depth Embedding. From the result-
s of PD-Net (Syn), RGB-Net (Syn) and RGB-Net+PD-Net
(Syn), we can see that depth features only or RGB features
only from synthetic data for pose estimation performs ordi-
narily. The fusion of the two features (RGB-Net+ PD-Net
(Syn)) outperforms PD-Net (Syn) and RGB-Net (Syn) sig-
nificantly. It demonstrates the complementarity between the
RGB features and the depth features and their effectiveness
for pose estimation. It also shows that the combination of
the two features learned with only synthetic data can stil-
1 obtain decent performance. In addition, the comparison
between RGB-Net (Real+Syn) and RGB-Net+PD-Net (Re-
al+Syn) also verifies the effectiveness of RGB-to-Depth Em-
bedding.

Effect of Synthetic-Real Adaptation. From the results of
RGB-Net (Syn) and RGB-Net (Real), we can see that there
is a significant domain gap between synthetic and real data.
Synthetic-Real Adaptation can improve the pose estimation
performance effectively, by comparing the same networks



Table 2: Joint detection and pose estimation on PASCAL 3D+ dataset. We show AVPs for four quantization cases that the
360-degree views of azimuth are discretized to 4, 8, 16, 24 bins respectively.

AVP aero bike boat bottle bus car chair table mbike sofa train tv | Avg.
VDPM-4V (Xiang, Mottaghi, and Savarese 2014) | 34.6 41.7 1.5 26.1 202 638 3.1 30.4 5.1 107 347 ] 19.5
VDPM-8V (Xiang, Mottaghi, and Savarese 2014) | 23.4 365 1.0 355 235 58 3.6 25.1 125 109 274 | 187
VDPM-16V (Xiang, Mottaghi, and Savarese 2014) | 154 184 0.5 469 18.1 6.0 2.2 16.1 100 221 163 | 15.6
VDPM-24V (Xiang, Mottaghi, and Savarese 2014) | 8.0 143 0.3 392 137 44 3.6 10.1 82 200 112 121
DPM-VOC+VP-4V (Felzenszwalb et al. 2010) 374 439 03 48.6 369 6.1 2.1 31.8  11.8 IL.I 322 238
DPM-VOC+VP-8V (Felzenszwalb et al. 2010) 28.6 403 02 38.0 366 94 2.6 320 11.0 98 286 | 215
DPM-VOC+VP-16V (Felzenszwalb et al. 2010) 159 229 03 49.0 296 6.1 23 167 71 202 199|173
DPM-VOC+VP-24V (Felzenszwalb et al. 2010) 9.7 167 22 42.1 246 42 2.1 10.5 4.1 207 129 13.6
R4CNN-4V (Su et al. 2015) 540 505 151 57.1 418 157 186 50.8 284 461 582 397
R4CNN-8V (Su et al. 2015) 445 41.1 101 480 366 137 151 399 268 39.1 465 | 329
R4CNN-16V (Su et al. 2015) 275 258 65 458 297 85 120 314 177 297 314 | 242
R4CNN-24V (Su et al. 2015) 21.5 220 4.1 386 255 74 11.0 244 150 280 19.8| 19.8
Extended SSD500-4V (Poirson et al. 2016) 64.6 62.1 268 70.0 514 113 407 627 406 659 612 507
Extended SSD500-8V (Poirson et al. 2016) 58.6 564 199 624 452 106 347 58,6 388 612 49.7 | 45.1
Extended SSD500-16V (Poirson et al. 2016) 459 39.6 140 540 354 74 264 404 292 415 358 | 336
Extended SSD500-24V (Poirson et al. 2016) 334 294 92 547 357 55 229 303 275 441 243 | 28.8
V&K(RCNN)-4V (Tulsiani and Malik 2015) 63.1 594 23 69.8 552 251 243 6l.1 438 594 5541 491
V&K(RCNN)-8V (Tulsiani and Malik 2015) 575 548 189 59.4 515 247 204 595 437 533 456 | 445
V&K(RCNN)-16V (Tulsiani and Malik 2015) 46.6 42 127 646 428 208 185 388 335 424 329 | 360
V&K(RCNN)-24V (Tulsiani and Malik 2015) 37.0 334 10.0 541 400 175 199 343 289 439 227 31.1
HCR-Net+RCNN-4V (Wang et al. 2018) 633 634 241 71.8 557 256 299 680 539 624 5941526
HCR-Net+RCNN-8V (Wang et al. 2018) 59.1 542 193 643 517 237 249 567 504 55.1 482 | 464
HCR-Net+RCNN-16V (Wang et al. 2018) 450 36.6 13.0 617 423 164 215 352 377 465 333 | 344
HCR-Net+RCNN-24V (Wang et al. 2018) 364 288 9.0 58.6 369 121 149 315 314 438 229|293
Ours(final)+RCNN-4V 649 61.7 277 728 582 289 316 660 527 632 60.0 | 534
Ours(final)+RCNN-8V 59.7 57.1 18.0 649 545 280 291 617 509 569 509 | 483
Ours(final)+RCNN-16V 494 406 139 654 452 246 220 457 369 51.6 382 | 394
Ours(final)+RCNN-24V 372 299 92 572 445 21.0 236 348 328 49.6 303 | 33.6
Ours(final)+SSD512-4V 79.6 80.2 553 875 794 631 507 812 724 769 884 | 741
Ours(final)+SSD512-8V 70.6 763 45.3 780 738 565 459 759 692 69.5 744 | 66.8
Ours(final)+SSD512-16V 59.3 491 30.0 782 60.7 459 401 566 529 618 579 | 53.8
Ours(final)+SSD512-24V 46.3 43.0 24.2 67.8 59.7 384 351 465 43.6 584 47.6 | 464

Figure 3: We show some examples whose error predicted
by our final method (the third row) A(R,,, Rg:) < 7/6,
while estimated by RGB-Net (Real+Syn)(the second row)
A(Rpr, Rgt) > 7T/6

Figure 4: Failure cases. For each image, its 3D model is ren-
dered with our predicted pose, which is opposite to GT.

with or without domain adaptation, regardless of its supervi-
sion condition. It is also demonstrated that the integration of
Synthetic-Real Adaptation and RGB-to-Depth Embedding
can further improve our pose estimation performance.

Qualitative Results

To further verify the effectiveness of our method, we show
some examples whose error predicted by our final method
A(Rpr, Rgt) < m/6 , while estimated by RGB-Net (Re-
al+Syn) A(R,,, Rg) > m/6 in Figure 3. We can see that

our method can handle instances with complex background,
low resolution (small or far objects) and unusual pose much
better. We also find that the method RGB-Net (Real+Syn)
sometimes confuses the front view and rear view for aero-
plane, bus, car, etc. Our method can correct this error for
many cases. All of these owe to the RGB-to-Depth Embed-
ding and Synthetic-Real Adaptation.

Additionally, we also analyze the error with our method
and show failure cases in Figure 4. We follow (Tulsiani and
Malik 2015) and define ‘large objects’ as the top third of in-
stances and ‘small objects’ as the bottom third of instances.
Their Accy /g °s are 92.4% and 85.3% respectively. There is
a significant difference between them. Such a phenomenon
is common in existing methods, because small (far) objects
are often with very low resolution and the poses may al-
so have ambiguities. In fact, even human can not recognize
their correct pose, such as the ‘train’ in Figure 4.

Conclusion

In this paper, we focus on 3D pose estimation from a sin-
gle RGB image. A novel network is proposed to learn RG-
B features and depth features from RGB images by train-
ing with millions of paired synthetic data. In the network,
an RGB-to-Depth Embedding method is developed to learn
depth features from RGB images effectively. A Synthetic-
Real Adaptation module is also integrated into the network
to solve the domain gap between synthetic and real data.
Experiments show that our method achieves a decent im-
provement over state-of-the-art methods in all the metrics
and superiority of transferred synthetic depth features on the
PASCAL 3D+ dataset.



References

Balntas, V.; Doumanoglou, A.; Sahin, C.; Sock, J.; Kousk-
ouridas, R.; and Kim, T.-K. 2017. Pose guided rgbd feature
learning for 3d object pose estimation. In ICCV, 3856-3864.

Chang, A. X.; Funkhouser, T.; Guibas, L.; Hanrahan, P.;
Huang, Q.; Li, Z.; Savarese, S.; Savva, M.; Song, S.; Su,
H.; et al. 2015. ShapeNet: An information-rich 3d model
repository. https://www.shapenet.org/.

Deng, J.; Dong, W.; Socher, R.; Li, L.-J.; Li, K.; and Fei-
Fei, L. 2009. ImageNet: A large-scale hierarchical image
database. In CVPR, 248-255.

Felzenszwalb, P. F.; Girshick, R. B.; McAllester, D.; and Ra-
manan, D. 2010. Object detection with discriminatively
trained part-based models. TPAMI 32(9):1627-1645.

Ganin, Y., and Lempitsky, V. 2015. Unsupervised domain
adaptation by backpropagation. In ICML, 1180-1189.

Girshick, R.; Donahue, J.; Darrell, T.; and Malik, J. 2014.
Rich feature hierarchies for accurate object detection and se-
mantic segmentation. In CVPR, 580-587.

Goodfellow, I.; Pouget-Abadie, J.; Mirza, M.; Xu, B
Warde-Farley, D.; Ozair, S.; Courville, A.; and Bengio, Y.
2014. Generative adversarial nets. In NeurIPS, 2672-2680.
Grabner, A.; Roth, P. M.; and Lepetit, V. 2018. 3d pose
estimation and 3d model retrieval for objects in the wild. In
CVPR, 3022-3031.

Jia, Y.; Shelhamer, E.; Donahue, J.; Karayev, S.; Long, J.;
Girshick, R.; Guadarrama, S.; and Darrell, T. 2014. Caffe:
Convolutional architecture for fast feature embedding. In
ACM MM, 675-678.

Kao, Y.; Li, W.; Wang, Z.; Zou, D.; He, R.; Wang, Q.; Ahn,
M.; and Hong, S. 2018. An appearance-and-structure fusion

network for object viewpoint estimation. In IJCAI, 4929—
4935.

Kehl, W.; Milletari, F.; Tombari, F.; Ilic, S.; and Navab, N.
2016. Deep learning of local RGB-D patches for 3d object
detection and 6d pose estimation. In ECCV, 205-220.
Krizhevsky, A.; Sutskever, 1.; and Hinton, G. E. 2012. Ima-
genet classification with deep convolutional neural network-
s. In NeurIPS, 1097-1105.

Krull, A.; Brachmann, E.; Michel, F.; Ying Yang, M.
Gumbhold, S.; and Rother, C. 2015. Learning analysis-by-
synthesis for 6d pose estimation in rgb-d images. In ICCV,
954-962.

Li, C.; Bai, J.; and Hager, G. D. 2018. A unified framework
for multi-view multi-class object pose estimation. In ECCV,
254-269.

Li, C.; Zia, M. Z.; Tran, Q.-H.; Yu, X.; Hager, G. D.; and
Chandraker, M. 2017. Deep supervision with shape concepts
for occlusion-aware 3d object parsing. In CVPR, 388-397.
Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu,
C.-Y.; and Berg, A. C. 2016. SSD: Single shot multibox
detector. In ECCV, 21-37.

Motiian, S.; Piccirilli, M.; Adjeroh, D. A.; and Doretto, G.
2017. Unified deep supervised domain adaptation and gen-
eralization. In ICCV, 5715-5725.

Mousavian, A.; Anguelov, D.; Flynn, J.; and Kosecka, J.
2017. 3d bounding box estimation using deep learning and
geometry. In CVPR, 7074-7082.

Pavlakos, G.; Zhou, X.; Chan, A.; Derpanis, K. G.; and
Daniilidis, K. 2017. 6-dof object pose from semantic key-
points. In ICRA, 2011 —2018.

Pepik, B.; Stark, M.; Gehler, P.; and Schiele, B. 2012. Teach-
ing 3d geometry to deformable part models. In CVPR, 3362—
3369.

Poirson, P.; Ammirato, P.; Fu, C.-Y.; Liu, W.; Kosecka, J.;
and Berg, A. C. 2016. Fast single shot detection and pose
estimation. In 3DV, 676-684.

Rad, M., and Lepetit, V. 2017. Bb8: a scalable, accurate, ro-
bust to partial occlusion method for predicting the 3d poses
of challenging objects without using depth. In ICCV, 3828—
3836.

Rad, M.; Oberweger, M.; and Lepetit, V. 2018. Domain
transfer for 3d pose estimation from color images without
manual annotations. In ACCV, 69-84.

Sahin, C., and Kim, T.-K. 2018. Category-level 6d object
pose recovery in depth images. In ECCV, 665-681.

Simonyan, K., and Zisserman, A. 2015. Very deep convolu-
tional networks for large-scale image recognition. In ICLR.

Sock, J.; Hamidreza Kasaei, S.; Seabra Lopes, L.; and Kim,
T.-K. 2017. Multi-view 6d object pose estimation and cam-
era motion planning using rgbd images. In ICCV, 2228
2235.

Su, H.; Qi, C. R.; Li, Y.; and Guibas, L. J. 2015. Render for
cnn: Viewpoint estimation in images using cnns trained with
rendered 3d model views. In ICCV, 2686-2694.

Sundermeyer, M.; Marton, Z.-C.; Durner, M.; Brucker, M.;
and Triebel, R. 2018. Implicit 3d orientation learning for 6d
object detection from RGB images. In ECCV, 699-715.

Szeto, R., and Corso, J. J. 2017. Click here: Human-
localized keypoints as guidance for viewpoint estimation. In
ICCV, 1604-1613.

Tulsiani, S., and Malik, J. 2015. Viewpoints and keypoints.
In CVPR, 1510-1519.

Wang, Z.; Li, W.; Kao, Y.; Zou, D.; Wang, Q.; Ahn, M,;
and Hong, S. 2018. HCR-Net: a hybrid of classification
and regression network for object pose estimation. In IJCAI,
1014-1020.

Wang, L.; Li, Y.; and Lazebnik, S. 2016. Learning
deep structure-preserving image-text embeddings. In CVPR,
5005-5013.

Wu, J.; Xue, T.; Lim, J. J.; Tian, Y.; Tenenbaum, J. B.; Tor-
ralba, A.; and Freeman, W. T. 2016. Single image 3d inter-
preter network. In ECCV, 365-382.

Xiang, Y.; Mottaghi, R.; and Savarese, S. 2014. Beyond
PASCAL: A benchmark for 3d object detection in the wild.
In WACV, 75-82.

Xiao, J.; Hays, J.; Ehinger, K. A.; Oliva, A.; and Torralba,
A. 2010. SUN database: Large-scale scene recognition from
abbey to zoo. In CVPR, 3485-3492.



