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Abstract

The panoptic segmentation task requires a unified result from
semantic and instance segmentation outputs that may contain
overlaps. However, current studies widely ignore modeling
overlaps. In this study, we aim to model overlap relations
among instances and resolve them for panoptic segmentation.
Inspired by scene graph representation, we formulate the over-
lapping problem as a simplified case, named scene overlap
graph. We leverage each object’s category, geometry and ap-
pearance features to perform relational embedding, and output
a relation matrix that encodes overlap relations. In order to
overcome the lack of supervision, we introduce a differentiable
module to resolve the overlap between any pair of instances.
The mask logits after removing overlaps are fed into per-pixel
instance id classification, which leverages the panoptic super-
vision to assist in the modeling of overlap relations. Besides,
we generate an approximate ground truth of overlap relations
as the weak supervision, to quantify the accuracy of overlap
relations predicted by our method. Experiments on COCO and
Cityscapes demonstrate that our method is able to accurately
predict overlap relations, and outperform the state-of-the-art
performance for panoptic segmentation. Our method also won
the Innovation Award in COCO 2019 challenge.

Introduction
Convolutional Neural Networks (CNNs) have achieved huge
success in computer vision tasks such as image recognition
(He et al. 2016; Yang et al. 2018), semantic segmentation
(Long, Shelhamer, and Darrell 2015; Chen et al. 2018), object
detection (Girshick 2015; Ren et al. 2015), and instance seg-
mentation (He et al. 2017). The semantic segmentation task
answers which background scene a pixel belongs to, while
the instance segmentation task predicts foreground object
masks. Recently, the panoptic segmentation task introduced
in (Kirillov et al. 2019b) aims to unify the results of semantic
and instance segmentation into a single pipeline. The system
performs semantic segmentation for pixels that belong to
amorphous background scenes, named stuff. For countable
foreground objects, named things, the goal is to assign each
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Figure 1: Instance segmentation has overlapping regions for
objects, while panoptic segmentation requires a unified result
for each pixel. Our study aims to explicitly predict overlap
relations and resolve overlaps for the panoptic output.

object region with the right thing class, as well as an instance
id, identifying which object it belongs to. As a result, panop-
tic segmentation cannot have overlapping segments. However,
most cutting-edge high-performance instance segmentation
methods (He et al. 2017) adopt the region-based strategy
(Girshick et al. 2014), and output overlapping segments. As
shown in Figure 1, the object pairs, such as cup-dinning table,
bottle-dinning table, and bowl-dinning table, share overlap-
ping regions from instance segmentation output. Therefore,
resolving overlaps and producing coherent segmentation re-
sults are the main challenge for the panoptic segmentation
task (Kirillov et al. 2019b).

In (Kirillov et al. 2019b), the semantic and instance seg-
mentation are trained separately, and their panoptic results
are merged by heuristic post-processing steps. Later studies
aim to unify the semantic and instance segmentation into an
end-to-end training framework (Kirillov et al. 2019a; Li et al.
2019b; Liu et al. 2019; Xiong et al. 2019; Porzi et al. 2019;
Yang et al. 2019; Li et al. 2018). The panoptic results are usu-
ally produced by fusion strategies (Kirillov et al. 2019a; Li et
al. 2019b), or predicted by a panoptic head (Liu et al. 2019;
Xiong et al. 2019). These studies do not explicitly model over-
lap relations among objects, which is especially important for
datasets with rich categories and complex scenes. However,
modeling overlap is challenging without the supervision of
object relations or depth information.

In this study, we introduce the scene overlap graph network
(SOGNet) for panoptic segmentation. The SOGNet consists
of four components: the joint segmentation, the relational
embedding module, the overlap resolving module, and the



panoptic head. The SOGNet trains semantic and instance
segmentation in an end-to-end fashion, explicitly encodes
overlap relations, resolves the overlap between any pair of
objects in a differentiable way, and outputs a unified panoptic
result in the panoptic head.

Similar to (Kirillov et al. 2019a; Li et al. 2019b; Liu et al.
2019; Xiong et al. 2019; Porzi et al. 2019; Li et al. 2018), we
also use ResNets (He et al. 2016) with feature pyramid net-
work (FPN) (Lin et al. 2017) as the shared backbone for our
semantic and instance segmentation branches. Inspired by the
relation classification in scene graph parsing tasks (Zellers
et al. 2018; Woo et al. 2018), we formulate the overlapping
problem in panoptic segmentation as a simplified scene graph
with directed edges, in which there are only three relation
types for instance i with respect to j: no overlap, covering
as a subject, and being covered as an object. We name this
representation as scene overlap graph in this study. We lever-
age the category, geometry, and appearance information of
objects to perform edge feature embedding for the scene
overlap graph, and output a matrix that explicitly encodes
overlap relations. However, different from scene graph pars-
ing tasks with the commonly used Visual Genome dataset
that has relation annotations, the panoptic segmentation task
does not offer annotations of object relations or depth in-
formation, so the overlap relations cannot be modeled with
direct supervision.

In order to overcome this problem, we develop the overlap
resolving module, which resolves the overlaps between any
pair of instances in a differentiable way. The mask logits after
removing overlaps are then used for per-pixel instance id
classification in the panoptic head with the panoptic annota-
tion. In doing so, the supervision from pixel-level classifica-
tion helps the instance-level modeling of overlap relations.

We list the contributions in this study as follows:
• We formulate the overlapping problem in panoptic segmen-

tation as a structured representation, named scene overlap
graph. Using category, geometry and appearance features,
we perform relational embedding and output a matrix that
explicitly encode overlap relations.

• In order to deal with the lack of supervision on overlap
relations, we develop an overlap resolving module that
resolves overlaps between any pair of instances in a differ-
entiable way. The supervision from per-pixel instance id
classification in the panoptic head helps to encode overlap
relations. We also generate an approximate ground truth
as weak supervision to quantify the accuracy of overlap
relations predicted by our network.

• Experiments on the COCO and Cityscapes datasets show
that, our proposed method is able to accurately predict
overlap relations, and outperform the state-of-the-art per-
formance for panoptic segmentation.

Related Work
Image Segmentation The semantic segmentation task fo-
cuses on background scenes and is based on fully convo-
lutional networks (FCNs) (Long, Shelhamer, and Darrell
2015). Because detail information is important for dense pre-
diction problems, later studies learn finer representation by

deconvolution (Noh, Hong, and Han 2015), encoder-decoder
structures (Badrinarayanan, Kendall, and Cipolla 2017), or
introducing skip connections between down-sampling and
up-sampling paths (Ronneberger, Fischer, and Brox 2015).
Other methods aim to aggregate multi-scale context (Farabet
et al. 2013; Chen et al. 2018; Zhao et al. 2017), and better
capture long-range dependencies (Zheng et al. 2015; Li et
al. 2019a). The instance segmentation task deals with fore-
ground objects. Similar to object detection (Girshick 2015;
Ren et al. 2015), many instance segmentation studies (Li et
al. 2017; He et al. 2017) also adopt the region-based strat-
egy (Girshick et al. 2014), and are able to achieve strong
performance due to accurate localization for instances. As an-
other stream, segmentation-based methods (Liang et al. 2018;
Arnab and Torr 2017) perform pixel-wise classification and
then construct object instances by grouping.

The recently proposed task, panoptic segmentation (Kir-
illov et al. 2019b), requires a unified result for background
scenes and foreground objects. A naive implementation is
to train the two sub-tasks separately, and then fuse the re-
sults by heuristic rules (Kirillov et al. 2019b). Follow-up
studies train semantic and instance segmentation in an end-
to-end network by sharing backbone (de Geus, Meletis, and
Dubbelman 2018; Kirillov et al. 2019a; Li et al. 2019b;
Liu et al. 2019; Xiong et al. 2019; Porzi et al. 2019;
Yang et al. 2019; Li et al. 2018). Most of them use fusion
heuristics to produce the final output. In (Liu et al. 2019;
Xiong et al. 2019), a panoptic head is constructed to predict
instance id. Li et al. (Li et al. 2018) introduce a binary mask
to differentiate between thing or stuff for each pixel. A semi-
and weakly-supervised method is proposed in (Li, Arnab,
and Torr 2018) to relieve the cost of pixel-level annotation.

An important aspect ignored by current panoptic segmen-
tation studies is modeling and resolving overlaps. The study
(Lazarow, Lee, and Tu 2019) tries to learn instance occlu-
sions but cannot resolve them in the end-to-end training. As
a comparison, our study is able to explicitly model overlap
relations, telling us whether an instance lies upon or beneath
another, and resolve their overlaps in a differentiable way to
generate the panoptic output.

Relational Modeling Parsing relationships of objects has
been one of the core components of visual understanding.
In (Hu et al. 2018), appearance and geometry features are
used to build interactions for object detection. The visual
relationship datasets, such as Visual Genome, inspire a series
of studies on scene graph generation. In (Zellers et al. 2018;
Woo et al. 2018), the low-rank outer product (Kim et al.
2017) is adopted to perform relational embedding from ob-
ject features. Other relation reasoning methods are proposed
by graph-based propagation (Xu et al. 2017), associative em-
bedding (Newell and Deng 2017), and introducing an efficient
module (Santoro et al. 2017).

In our study, we formulate the overlapping problem as a
simplified scene graph, and also perform relational embed-
ding to encode overlap relations. Our method differs from
these studies in that our problem does not offer relation an-
notation to supervise. We use the supervision from panoptic
head to help the modeling of overlap relations.
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Figure 2: An illustration of the SOGNet for panoptic segmentation. The instance ground truths are input of our relational
embedding module. During inference, they are replaced with the predictions from the instance segmentation head. The architecture
is trained in an end-to-end manner. σ denotes the ReLU non-linear function.

Scene Overlap Graph Network
In the scene graph generation task (Zellers et al. 2018;
Woo et al. 2018; Xu et al. 2017), objects in an image are
constructed as a graph and their relations are directed edges.
We formulate the overlapping problem in panoptic segmenta-
tion as a similar structure, named scene overlap graph (SOG).
There are three relation types for instance i with respect to
j: no overlap, covering as a subject, and being covered as an
object. Our proposed SOGNet consists of four components.
The joint segmentation connects semantic and instance seg-
mentation in a unified network. The relational embedding
module explicitly encodes overlap relations of objects. After
the overlap resolving module, overlaps among instances are
removed in a differentiable way. Finally, the panoptic head
performs per-pixel instance id classification. An illustration
of our SOGNet architecture is shown in Figure 2.

Joint Segmentation
Following current popular methods, we use ResNet with FPN
as the shared backbone of semantic and instance segmenta-
tion branches. The Mask R-CNN structure is adopted for our
instance segmentation head, which outputs the box regres-
sion, class prediction, and mask segmentation for foreground
objects. As for semantic head, the FPN feature maps first go
through three 3× 3 deformable convolution layers (Dai et al.
2017), and then are up-sampled to the 1/4 scale. Finally, they
are concatenated to generate the per-pixel category prediction.
This branch is supervised with both stuff and thing classes,
and then the semantic logits of stuff classes are extracted into
the panoptic head. We train our model using instance and
panoptic annotation. The panoptic annotation that gives per-
pixel category and instance id supervises the semantic and
panoptic head, respectively. The instance annotation contains
overlaps and is used for instance segmentation.

Relational Embedding Module
For any training image, we are given the ground truth
{bi, ci,Mi}Ninst

i=1 , where bi, ci, and Mi refer to the bounding
box, one-hot category, and corresponding mask for instance
i, respectively, and Ninst is the number of instances in this
image. As illustrated in Figure 2, we perform relational em-
bedding using the ground truth in the training phase. During
inference, we replace them with the prediction from Mask R-
CNN branch. The bi ∈ R4 and ci ∈ R80 (there are 80 thing
classes for COCO) encode geometry and category informa-
tion, respectively. In order to include appearance feature, we
resize the values inside box bi from Mi as 28× 28, which is
consistent with the size of Mask R-CNN’s output. The resized
mask is flattened to be a vector, denoted as mi ∈ R784.

The bilinear pooling method learns joint representation
for pair of features and is widely applied to visual question
answering (Kim et al. 2017; Kim, Jun, and Zhang 2018), and
image recognition (Yu et al. 2018) tasks. We construct our
category and appearance relation features using the low-rank
outer product in (Kim et al. 2017). For a pair of instances i
and j, their category relation feature is calculated as:

E
(c)
i|j = PT

(
σ(V T ci) ◦ σ(UT cj)

)
, (1)

where ◦ denotes the Hadamard product (element-wise multi-
plication), σ is the ReLU non-linear activation, V and U are
two linear embeddings that project the input into subject and
object features, respectively, and P maps the relation feature
into output dimension dc. We then have the category relation
features as:

E(c) =
[
E

(c)
1|1, E

(c)
1|2, · · · , E

(c)
Ninst|Ninst

]T
∈ RN2

inst×dc ,

(2)



where “[ ]” is the concatenation operation. In a similar way,
using mi as the input of Eq. (1), we can also construct the
appearance relation features E(m) ∈ RN2

inst×dm .
The relative geometry provides strong information to infer

whether two objects have overlap or not. Following (Hu et al.
2018; Woo et al. 2018), we have the translation- and scale-
invariant relative geometry feature encoded as:

E
(b)
i|j = KT

(
xi − xj
wj

,
yi − yj
hj

, log

(
wi

wj

)
, log

(
hi
hj

))T

,

(3)
where xi, yi, wi, hi are coordinates and scales extracted from
bi, and K ∈ R4×db is a linear matrix that maps the 4-
dimensional relative geometry feature into high-dimensional
db. We can further have the geometry relation features
E(b) ∈ RN2

inst×db . We concatenate these edge representa-
tions about appearance, category, and geometry as:

E = [E(m), E(c), E(b)] ∈ RN2
inst×d, (4)

where d = dm+dc+db. The relational embedding is further
used to encode overlap relations.

Overlap Resolving Module
Based on relational embedding, we introduce the overlap
resolving module to explicitly model overlap relations and
resolve overlaps among instances in a differentiable way.

As illustrated in Figure 2, the relation features, E ∈
RN2

inst×d, go through a fc(d, 1) layer to have a single-
channel output with the sigmoid activation to restrict the
values within (0, 1). We reshape the output as a square ma-
trix, denoted as M ∈ RNinst×Ninst . The element Mij has
a physical meaning to represent the potential of instance i
being covered by instance j. Because there can be only one
overlap relation between instances i and j, we then introduce
the overlap relation matrix defined as:

O = σ(M −MT ) ∈ RNinst×Ninst , (5)

where σ denotes the ReLU activation that is used to filter
out the negative differences between potentials on symmetric
positions. In doing so, if Oij > 0, it encodes that instance i is
being covered by instance j, while on its symmetric position,
Oji = 0. When Oij = Oji = 0, the instances i and j do
not have overlaps. Besides, all diagonal elements Oii equals
to 0. As explained later, the positive elements in O will be
optimized towards 1 in implementations. We now show how
to leverage the overlap relation matrix O to resolve overlaps.

For each bounding box, bi, of the ground truth instances,
we have its mask logits (the activations before sigmoid) of
28× 28 from the Mask R-CNN output. We then interpolate
these logits back to the image scale H ×W by bilinear inter-
polation and padding outside the box. These logits, denoted
as {Ai}Ninst

i=1 , may have overlaps because Mask R-CNN is
region-based and operates on each region independently. Us-
ing the matrix O, we can deal with the overlaps between
instances i and j as:

A′i = Ai −Ai ◦ [s(Ai) ◦ s(Aj)]Oij , (6)

whereA′i is the output logit of instance i, and s represents the
sigmoid activation that turns the logit Ai into a binary-like
mask s(Ai). The element-wise multiplication, s(Ai)◦ s(Aj),
calculates the intersecting region between instances i and
j. The value Oij decides whether the elements in intersect-
ing region should be removed from the logit Ai. When Oij

approaches 1, Oji equals to 0, thus the logit Aj will not be
affected, and vice versa.

Considering the overlap relations of all the other instances
on i, we have:

A′i = Ai −Ai ◦ s(Ai) ◦
Ninst∑
j=1

s(Aj)Oij , (7)

and then the computational steps of the overlap resolving
module can be formulated as:

A′ = A−A ◦ s(A) ◦
(
s(A)×3 O

T
)
, (8)

where A = [A1, A2, · · · , ANinst
] ∈ RH×W×Ninst , and ×3

denotes the Tucker product along the 3-rd dimension (reshape
s(A) as RHW×Ninst for inner product with OT , and then
return toRH×W×Ninst ). We see that our module is friendly
to tensor operations in current deep learning frameworks, and
is differentiable for resolving overlaps, so that the SOGNet
can be trained in an end-to-end fashion.

Panoptic Head
The overlap relation matrix, O, explicitly encodes whether
there is intersection between any pair of instances, and if
there is, the overlapping region should be removed from
which instance. However, we are not provided with the super-
vision of overlap relations by the panoptic segmentation task.
Because accurately resolving overlaps has a strong correla-
tion with the quality of final panoptic output, we can exploit
the pixel-level panoptic annotation to assist in the process
of modeling overlap relations encoded by O. As illustrated
in Figure 2, the instance logits A′ after the SOG module are
then fed into the panoptic head.

Following UPSNet (Xiong et al. 2019), we incorporate the
logits from semantic head into the mask logits A′. We get
the logits of i-th object from semantic output Xi by taking
the values inside its ground truth box Bi from the channel
corresponding to its ground truth category Ci, and padding
zeros outside the box. In UPSNet, they are combined by
addition, which is denoted as “Panoptic Head 1”. Here we
develop an improved combination denoted as “Panoptic Head
2”. They are compared as:

Panoptic Head 1 : Zi = Xi +A′i, (9)

Panoptic Head 2 : Zi = k ·Xi ◦ s(A′i) +A′i, (10)

where Zi is the combined logit, s denotes the sigmoid func-
tion and k is a factor to balance the numerical difference
between semantic output values and mask logits. We set k
to be 2 in our experiments. Finally, we concatenate the com-
bined instance logits Zinst = [Z1, ..., ZNinst

] and the stuff
logits Zstuff from the semantic head to perform per-pixel
instance id classification with the standard cross entropy
loss function, Lpanoptic.



Despite we do not have the supervision to know which in-
stance lies on the other one, we can leverage the ground truth
binary masks, {Mi}Ninst

i=1 , to infer whether two instances
have overlaps or not. We produce a symmetric relation matrix
R ∈ RNinst×Ninst defined as:

Rij = 1

[
|Mi ◦Mj |

min{|Mi|, |Mj |}
≥ 0.1

]
, i 6= j, (11)

where | · | calculates the area of a binary mask through sum
operation, ◦ calculates the intersection mask through element-
wise multiplication, and 1 denotes the indicator function that
equals to 1 when the condition holds. All diagonal elements
Rii are filled with 0. When Rij = Rji = 1, it indicates that
the overlapped intersection over the smaller object is larger
than 0.1, which means there is a significant overlap between
instances i and j. With the symmetric relation matrix R, we
can introduce the relation loss function as:

LR =
1

N2
inst

∥∥O +OT −R
∥∥2
F
, (12)

which calculates the mean squared error between (O +OT )
and R. In doing so, when there is overlap between instances
i and j, i.e., Rij = Rji = 1, the overlap relation Oij or Oji

is forced to approach 1, so that it will not contribute trivially
when removing overlaps by Eq. (6).

In total, our SOGNet has the loss functions for semantic
and instance segmentation, the panoptic loss Lpanoptic for
instance id classification, and the relation loss LR to help
optimizing the overlap relation matrix O.

Evaluation Metrics
Panoptic Quality We adopt the evaluation metric intro-
duced in (Kirillov et al. 2019b), called Panoptic Quality (PQ).
It can be viewed as the multiplication of a segmentation term
(SQ) and a recognition term (RQ):

PQ =

∑
(p,q)∈TP IoU(p, g)

|TP |︸ ︷︷ ︸
SQ

× |TP |
|TP |+ 1

2 |FP |+
1
2 |FN |︸ ︷︷ ︸

RQ

,

(13)
where p and g are predicted and ground truth segments, and
TP , FP and FN denote the true positive, false positive and
false negative sets, respectively.

Overlap Accuracy For dataset, such as COCO, the in-
stance annotation permits overlapping instances, while the
panoptic annotation contains no overlaps. We can leverage
the difference between the two annotations to generate an
approximate ground truth of overlap relations, in order to
test the quality of overlap relations predicted by our model.
The method is also used in (Lazarow, Lee, and Tu 2019) to
generate their occlusion ground truth.

Concretely, we are provided with the instance annotation
{Mi}Ninst

i=1 , and the panoptic annotation {M̂i}Ninst
i=1 . For any

pair of instances i and j, we calculate the intersecting region
by Mi ◦Mj , and inspect which one of M̂i and M̂j mainly
covers the intersecting region, to know if i lies upon j or
the other way round. Note that the instance and panoptic

annotation are not seamlessly matched. Thus this method can
only produce approximately true overlap relations

Using the synthetic ground truth as weak supervision, we
construct a new asymmetric relation matrix R?. When R?

ij =
1, we have R?

ji = 0, and it means instance i is covered by
j. We can have a new relation loss function in this weakly-
supervised setting to replace Eq. (12) with:

L?
R =

1

N2
inst

‖O −R?‖2F , (14)

which directly supervises the overlap relation matrix O. In
experiments, the weakly-supervised manner by Eq. (14) and
our method by Eq. (12) have similar performances. Note that
the supervision is only valid for datasets such as COCO that
has difference between instance and panoptic annotations. It
will be ineffective for datasets such as Cityscapes. But our
method by Eq.(12) works in both cases.

Thus the weakly-supervised manner by Eq. (14) is served
to test the efficacy of our method. Using the weak supervision
R?, we develop a metric, named overlap accuracy (OA), to
quantify the quality of overlap predictions encoded by O.
The OA of image I is calculated as:

OA(I) =
|TP |+ |TN |

Ninst × (Ninst − 1)
, (15)

where TP = {(i, j)|R?
ij = 1, Oij ≥ 0.5, i 6= j}, and TN =

{(i, j)|R?
ij = 0, Oij < 0.5, i 6= j}. Our reported OA is an

average over all images in the validation set.

Experiments
We conduct experiments on the COCO and Cityscapes
datasets for panoptic segmentation, and show that our pro-
posed SOGNet is able to accurately predict overlap relations
and outperform state-of-the-art performances.

Implementation Details
Training We set the weights of loss functions following
(Xiong et al. 2019). The weight of panoptic head is 0.1 for
COCO and 0.5 for Cityscapes. The weight of relation loss is
set to 1.0. We train the models with a batchsize of 8 images
distributed on 8 GPUs. The region proposal network (RPN)
is also trained end-to-end. The SGD optimizer with 0.9 Nes-
terov momentum and a weight decay of 10−4 is used. We use
an equivalent setting to UPSNet for fair comparison. Images
are resized with the shorter edge as 800, and the longer edge
less than 1333. We freeze all batch normalization (BN) (Ioffe
and Szegedy 2015) layers within the ResNet backbone. For
COCO, we train the SOGNet for 180K iterations. The initial
learning rate is set to 0.01 and is divided by 10 at the 120K-
th and 160K-th iterations. For Cityscapes, we train for 24K
iterations and drop the learning rate at the 18K-th iteration.
Besides, in order to test the quality of our overlap predic-
tions, we perform an ablation study on COCO using a shorter
training schedule because our relation loss converges soon.
We only train for 45K iterations and drop the learning rate
at iteration 30K and 40K. We do not adopt the void channel
prediction proposed in UPSNet. In implementations, we filter
out the instances that have no overlap with any other instance
to reduce negative samples and computation overhead.



0:dinning table

4:laptop

Figure 3: Visualization of the overlap relations encoded by O (down left) and the approximate ground truth, R? (down right).
Note that the activation on location (i, j) represents that the instance i is covered by (lies below) j. The indices of instances are
marked in the images. Zoom in to have a better view. More visualization results can be found in the supplementary material.

Box Cat Mask PQ SQ RQ OA
3 - - 37.5 76.3 47.0 69.62
- 3 - 37.9 76.6 47.3 75.48
3 3 - 38.3 76.8 47.7 88.19
3 3 3 38.4 76.9 47.8 89.22

Weakly supervised 38.4 77.0 47.7 89.31

Table 1: Different input for the relational embedding module.
“Cat”, “Box” and “Mask” denote the category, geometry and
appearance features, respectively.

Inference During inference phase, the ground truths
{bi, ci,Mi}Ninst

i=1 as the input of our relational embedding
are replaced with the predictions from Mask R-CNN branch.
In order to remove invalid instances, we filter out instances
whose probability is lower than a threshold, and perform
an NMS-like procedure, following (Kirillov et al. 2019b;
Xiong et al. 2019). For highly overlapped predictions of the
same class, we keep the mask with the higher confidence
score and discard the other one if the intersection is larger
than a threshold. Otherwise, we keep the non-interacting part
and deal with the next instance. The final output is predicted
by our panoptic head. For stuff segment whose area is lower
than 4096, we set the corresponding region as void.

Ablation Study
We use ResNet-50 as backbone with a short training schedule,
and conduct experiments to analyze feature combinations for
our relational embedding, and test the quality of overlap re-
lations predicted by our method. As shown in Table 1, we
use different features as the input of our relational embed-
ding. When only category or geometry feature is adopted, the
performance improvement on PQ is not so significant, and
the overlap prediction does not show high accuracy. When
category and geometry features are used together, the em-

Methods PQ SQ RQ
PlainNet + heuristics 39.6 78.7 48.4
PlainNet + heuristics + label prior 40.9 78.8 49.7
PlainNet + PH1 42.3 78.6 52.1
SOGNet (PH1) 43.0 78.1 53.1
SOGNet (PH2) 43.7 78.7 53.5

Table 2: PlainNet denotes the joint segmentation component
of SOGNet. They are trained in the same condition. “PH 1 /
2” denotes the “Panoptic Head 1 / 2”, respectively.

bedding becomes much more powerful. Mask feature also
slightly improves the overlap accuracy. We expect that a
more sophisticated feature design will further boost the per-
formance. It is observed that the weakly-supervised method
by Eq. (14) achieves a similar result to our method by Eq.
(12). As shown in Figure 3, we visualize the overlap rela-
tions predicted by O, as well as the approximate ground
truth, R?, on images from the validation set. More exam-
ples can be found in the supplementary material. It is shown
that the matrix O accurately predicts some overlap relations,
including baseball glove→person, tie→person→bus, and
spoon→cup→dinning table. The results demonstrate that the
overlap relations are modeled well with the help of supervi-
sion from per-pixel instance id classification in the panoptic
head. Our method is able to encode overlap relations without
direct supervision on them.

Using the standard training schedule and ResNet-50 as the
backbone, we also perform comparisons between SOGNet
and heuristic inference. The heuristics in (Kirillov et al.
2019b) sort instances according to their objectness scores
to deal with overlaps. In (Li et al. 2019b), some hand-crafted
label priors are made to rule overlap orders. For example,
tie should always cover person. As a comparison, SOGNet
explicitly predict overlap relations and resolve overlaps in a



Models backbone PQ SQ RQ
Megvii ensemble 53.2 83.2 62.9
Caribbean ensemble 46.8 80.5 57.1
PKU-360 ResNeXt-152-FPN 46.3 79.6 56.1
Panoptic FPN ResNet-101-FPN 40.9 - -
OANet ResNet-101-FPN 41.3 - -
AUNet ResNeXt-152-FPN 46.5 81.0 56.1
UPSNet ResNet-101-FPN∗ 46.6 80.5 56.9
SOGNet ResNet-101-FPN∗ 47.8 80.7 57.6

Table 3: Comparisons with SOTA performances on COCO
test-dev set. The first block shows the top-3 entries in public
leaderboard of COCO 2018 competition. The second block
shows results in recent literatures. ∗ denotes that the backbone
has extra deformable convolution layers and longer training
schedule is adopted.

differentiable way. We train the joint segmentation compo-
nent of SOGNet as a PlainNet, and perform inference with
different methods. As shown in Table 2, label prior helps to
improve the performance. When PlainNet adds the panop-
tic head for inference to produce the panoptic results, the
performance becomes better. The SOGNet with relational
embedding and overlap resolving has a further improvement.
And our proposed Panoptic Head 2 (PH2) performs better
than PH1. In Figure 4, we visualize the panoptic segmenta-
tion results of heuristic inference and SOGNet. It is shown
that SOGNet better deals with the overlapping problem.

Comparison with Other Methods
We run SOGNet on the COCO and Cityscapes datasets, and
compare the results with state-of-the-art methods including
the method in (Li, Arnab, and Torr 2018), JSIS (de Geus,
Meletis, and Dubbelman 2018), TASCNet (Li et al. 2018),
Panoptic FPN (Kirillov et al. 2019a), OANet (Liu et al. 2019),
AUNet (Li et al. 2019b), UPSNet (Xiong et al. 2019), and
OCFusion (Lazarow, Lee, and Tu 2019).

As shown in Table 3, with ResNet-101-FPN as the back-
bone, our proposed SOGNet achieves the highest single-
model performance on the COCO test-dev set. It has a 1.3%
PQ improvement than AUNet that uses a larger backbone.
SOGNet also performs better than UPSNet using the same
backbone and training schedule.

The results of SOGNet on the COCO and Cityscapes vali-
dation set are shown in Table 4. It is observed that SOGNet
generalizes well to Cityscapes. It has a 0.7% improvement
than TASCNet and UPSNet. On the COCO validation set,
SOGNet has a 1.2% improvement than UPSNet using the
same backbone. The mIoU and AP of SOGNet are 54.56 and
34.2 on COCO, which are similar to the results of UPSNet
(54.3 and 34.3 as reported). It indicates that our better panop-
tic performance is not derived from a stronger semantic or
instance segmentation model. More importantly, SOGNet is
the only method that can explicitly encode overlap relations
and tell us which instance lies upon or beneath another.

Models backbone PQ PQTh PQSt

Cityscapes
Q.Li et al. ResNet-101 53.8 42.5 62.1
Panoptic FPN ResNet-101 58.1 52.0 62.5
TASCNet ResNet-50 59.3 56.3 61.5
UPSNet ResNet-50 59.3 54.6 62.7
SOGNet ResNet-50 60.0 56.7 62.5

COCO
JSIS ResNet-50 26.9 29.3 23.3
Panoptic FPN ResNet-101 40.3 47.5 29.5
OCFusion ResNet-50 41.2 49.0 29.0
UPSNet ResNet-50 42.5 48.5 33.4
SOGNet ResNet-50 43.7 50.6 33.2

Table 4: Panoptic segmentation results of SOGNet and other
state-of-the-art methods on Cityscapes and COCO. Multi-
scale testing and flipping are not used.

Image GT Heuristic SOGNet

Figure 4: The Visualization of panoptic segmentation results
of heuristic inference and SOGNet.

Conclusion
In this study, we aim to model overlap relations and resolve
overlaps in a differentiable way for panoptic segmentation.
We develop the SOGNet composed of the joint segmenta-
tion, the relational embedding module, the overlap resolving
module, and the panoptic head. It is able to explicitly en-
code overlap relations without direct supervision on them.
Ablation studies detach SOGNet and analyze the efficacy
of each component. Experiments demonstrate that SOGNet
accurately predicts overlap relations, and outperforms the
state-of-the-art methods on both COCO and Cityscapes.
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