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Abstract. High-resolution digital images are usually downscaled to fit
various display screens or save the cost of storage and bandwidth, mean-
while the post-upscaling is adopted to recover the original resolutions or
the details in the zoom-in images. However, typical image downscaling
is a non-injective mapping due to the loss of high-frequency information,
which leads to the ill-posed problem of the inverse upscaling procedure
and poses great challenges for recovering details from the downscaled low-
resolution images. Simply upscaling with image super-resolution methods
results in unsatisfactory recovering performance. In this work, we propose
to solve this problem by modeling the downscaling and upscaling pro-
cesses from a new perspective, i.e. an invertible bijective transformation,
which can largely mitigate the ill-posed nature of image upscaling. We
develop an Invertible Rescaling Net (IRN) with deliberately designed
framework and objectives to produce visually-pleasing low-resolution
images and meanwhile capture the distribution of the lost information
using a latent variable following a specified distribution in the downscal-
ing process. In this way, upscaling is made tractable by inversely passing
a randomly-drawn latent variable with the low-resolution image through
the network. Experimental results demonstrate the significant improve-
ment of our model over existing methods in terms of both quantita-
tive and qualitative evaluations of image upscaling reconstruction from
downscaled images. Code is available at https://github.com/pkuxmq/
Invertible-Image-Rescaling.

1 Introduction

With exploding amounts of high-resolution (HR) images/videos on the Inter-
net, image downscaling is quite indispensable for storing, transferring and shar-
ing such large-sized data, as the downscaled counterpart can significantly save
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the storage, efficiently utilize the bandwidth [12,34,38,49,56] and easily fit
for screens with different resolution while maintaining visually valid informa-
tion [27,50]. Meanwhile, many of these downscaling scenarios inevitably raise
a great demand for the inverse task, i.e., upscaling the downscaled image to
a higher resolution or its original size [19,47,58,59]. However, details are lost
and distortions appear when users zoom in or upscale the low-resolution (LR)
images. Such an upscaling task is quite challenging since image downscaling is
well-known as a non-injective mapping, meaning that there could exist multiple
possible HR images resulting in the same downscaled LR image. Hence, this
inverse task is usually considered to be ill-posed [17,24,57].

Many efforts have been made to mitigate this ill-posed problem, but the gains
fail to meet the expectation. For example, most of previous works choose super-
resolution (SR) methods to upscale the downscaled LR images. However, main-
stream SR algorithms [14,17,37,51,61,62] focus only on recovering HR images
from LR ones under the guidance of a predefined and non-adjustable downscaling
kernel (e.g., Bicubic interpolation), which omits its compatibility to the down-
scaling operation. Intuitively, as long as the target LR image is pre-downscaled
from an HR image, taking the image downscaling method into consideration
would be quite invaluable for recovering the high-quality upscaled image.

Instead of simply treating the image downscaling and upscaling as two sep-
arate and independent tasks, most recently, there have been efforts [27,34,50]
attempting to model image downscaling and upscaling as a united task by an
encoder-decoder framework. Specifically, they proposed to use an upscaling-
optimal downscaling method as an encoder which is jointly trained with an
upscaling decoder [27] or existing SR modules [34,50]. Although such an inte-
grated training approach can significantly improve the quality of the HR images
recovered from the corresponding downscaled LR images, neither can we do a
perfect reconstruction. These efforts didn’t tackle much on the ill-posedness since
they link the two processes only through the training objectives and conduct no
attempt to capture any feature of the lost information.

In this paper, with inspiration from the reciprocal nature of this pair of image
rescaling tasks, we propose a novel method to largely mitigate the ill-posed prob-
lem of image upscaling. According to the Nyquist-Shannon sampling theorem,
high-frequency contents are lost during downscaling. Ideally, we hope to keep all
lost information to perfectly recover the original HR image, but storing or trans-
ferring the high-frequency information is unacceptable. In order to well address
this challenge, we develop a novel invertible model called Invertible Rescaling
Net (IRN) which captures some knowledge on the lost information in the form of
distribution and embeds it into model’s parameters to mitigate the ill-posedness.
Given an HR image x, IRN not only downscales it into a visually-pleasing LR
image y, but also embed the case-specific high-frequency content into an auxil-
iary case-agnostic latent variable z, whose marginal distribution obeys a fixed
pre-specified distribution (e.g., isotropic Gaussian). Based on this model, we use
a randomly drawn sample of z from this distribution for the inverse upscaling
procedure, which holds the most information that one could have in upscaling.
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Yet, there are still several great challenges needed to be addressed during
the IRN training process. Specifically, it is essential to ensure the quality of
reconstructed HR images, obtain visually pleasing downscaled LR ones, and
accomplish the upscaling with a case-agnostic z, i.e., z ∼ p(z) instead of a case-
specific z ∼ p(z|y). To this end, we design a novel compact and effective objective
function by combining three respective components: an HR reconstruction loss,
an LR guidance loss and a distribution matching loss. The last component is
for the model to capture the true HR image manifold as well as for enforcing
z to be case-agnostic. Neither the conventional adversarial training techniques
of generative adversarial nets (GANs) [21] nor the maximum likelihood esti-
mation (MLE) method for existing invertible neural networks [4,15,16,29] could
achieve our goal, since the model distribution doesn’t exist here, meanwhile these
methods don’t guide the distribution in the latent space. Instead, we take the
pushed-forward empirical distribution of x as the distribution on y, which, in
independent company with p(z), is the actually used distribution to inversely
pass our model to recover the distribution of x. We thus match this distribu-
tion with the empirical distribution of x (the data distribution). Moreover, due
to the invertible nature of our model, we show that once this matching task is
accomplished, the matching task in the (y, z) space is also solved, and z is made
case-agnostic. We minimize the JS divergence to match the distributions, since
the alternative sample-based maximum mean discrepancy (MMD) method [3]
doesn’t generalize well to the high dimension data in our task.

Our contributions are concluded as follows:

– To our best knowledge, the proposed IRN is the first attempt to model image
downscaling and upscaling, a pair of mutually-inverse tasks, using an invert-
ible (i.e., bijective) transformation. Powered by the deliberately designed
invertibility, our proposed IRN can largely mitigate the ill-posed nature of
image upscaling reconstruction from the downscaled LR image.

– We propose a novel model design and efficient training objectives for IRN to
enforce the latent variable z, with embedded lost high-frequency information
in the downscaling, to obey a simple case-agnostic distribution. This enables
efficient upscaling based on the valuable samples of z drawn from the certain
distribution.

– The proposed IRN can significantly boost the performance of upscaling
reconstruction from downscaled LR images compared with state-of-the-art
downscaling-SR and encoder-decoder methods. Moreover, the amount of
parameters of IRN is significantly reduced, which indicates the light-weight
and high-efficiency of the new IRN model.

2 Related Work

2.1 Image Upscaling After Downscaling

Super resolution (SR) is a widely-used image upscaling method and get
promising results in low-resolution (LR) image upscaling task. Therefore, SR
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methods could be used to upscale downscaled images. Since the SR task is
inherently ill-posed, previous SR works mainly focus on learning strong prior
information by example-based strategy [18,20,28,47] or deep learning mod-
els [14,17,35,37,51,61–64]. However, if the targeted LR image is pre-downscaled
from the corresponding high-resolution image, taking the image downscaling
method into consideration would significantly help the upscaling reconstruction.

Traditional image downscaling approaches employ frequency-based kernels,
such as Bilinear, Bicubic, etc. [42], as a low-pass filter to sub-sample the
input HR images into target resolution. Normally, these methods suffer from
resulting over-smoothed images since the high-frequency details are suppressed.
Therefore, several detail-preserving or structurally similar downscaling meth-
ods [31,39,43,53,54] are proposed recently. Besides those perceptual-oriented
downscaling methods, inspired by the potentially mutual reinforcement between
downscaling and its inverse task, upscaling, increasing efforts have been focused
on the upscaling-optimal downscaling methods, which aim to learn a downscal-
ing model that is optimal to the post-upscaling operation. For instance, Kim
et al. [27] proposed a task-aware downscaling model based on an auto-encoder
framework, in which the encoder and decoder act as the downscaling and upscal-
ing model, respectively, such that the downscaling and upscaling processes are
trained jointly as a united task. Similarly, Li et al. [34] proposed to use a CNN
to estimate downscaled compact-resolution images and leverage a learned or
specified SR model for HR image reconstruction. More recently, Sun et al. [50]
proposed a new content-adaptive-resampler based image downscaling method,
which can be jointly trained with any existing differentiable upscaling (SR) mod-
els. Although these attempts have an effect of pushing one of downscaling and
upscaling to resemble the inverse process of the other, they still suffer from the
ill-posed nature of image upscaling problem. In this paper, we propose to model
the downscaling and upscaling processes by leveraging the invertible neural
networks.
Difference from SR. Note that image rescaling is a different task from super-
resolution. In our scenario, the ground-truth HR image is available at the begin-
ning but somehow we have to discard it and store/transmit the LR version
instead. We hope that we can recover the HR image afterwards using the LR
image. While for SR, the real HR is unavailable in applications and the task is
to generate new HR images for LR ones.

2.2 Invertible Neural Network

The invertible neural network (INN) [8,13,15,16,22,29,32] is a popular choice
for generative models, in which the generative process x = fθ(z) given a latent
variable z can be specified by an INN architecture fθ. The direct access to the
inverse mapping z = f−1

θ (x) makes inference much cheaper. As it is possible
to compute the density of the model distribution in INN explicitly, one can
use the maximum likelihood method for training. Due to such flexibility, INN
architectures are also used for many variational inference tasks [10,30,45]. INN
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is also used to learn representations without information loss [25], and has been
applied for feature embedding in the super-resolution task [35,64].

INN is composed of invertible blocks. In this study, we employ the invertible
architecture in [16]. For the l-th block, input hl is split into hl

1 and hl
2 along the

channel axis, and they undergo the additive affine transformations [15]:

hl+1
1 = hl

1 + φ(hl
2),

hl+1
2 = hl

2 + η(hl+1
1 ),

(1)

where φ, η are arbitrary functions. The corresponding output is [hl+1
1 , hl+1

2 ].
Given the output, its inverse transformation is easily computed:

hl
2 = hl+1

2 − η(hl+1
1 ),

hl
1 = hl+1

1 − φ(hl
2),

(2)

To enhance the transformation ability, the identity branch is often aug-
mented [16]:

hl+1
1 = hl

1 � exp(ψ(hl
2)) + φ(hl

2),

hl+1
2 = hl

2 � exp(ρ(hl+1
1 )) + η(hl+1

1 ),

hl
2 = (hl+1

2 − η(hl+1
1 )) � exp(−ρ(hl+1

1 )),

hl
1 = (hl+1

1 − φ(hl
2)) � exp(−ψ(hl

2)).

(3)

Some prior works studied using INN for paired data (x, y). Ardizzone
et al. [3] analyzed real-world problems from medicine and astrophysics. Com-
pared to their tasks, image downscaling and upscaling bring more difficulties
because of notably larger dimensionality, so that their losses do not work for
our task. In addition, the ground-truth LR image y does not exist in our task.
Guided image generation and colorization using INN is proposed in [4] where
the invertible modeling between x and z is conditioned on a guidance y. The
model cannot generate y given x thus is unsuitable for the image upscaling task.
INN is also applied to the image-to-image translation task [44] where the paired
domain (X,Y ) instead of paired data is considered, thus is again not the case of
image upscaling.

2.3 Image Compression

Image compression is a type of data compression applied to digital images,
to reduce their cost for storage or transmission. Image compression may be
lossy (e.g., JPEG, BPG) or lossless (e.g., PNG, BMP). Recently, deep learning
based image compression methods [2,6,7,41,46,52] show promising results on
both visual effect and compression ratio. However, the resolution of image won’t
be changed by compression, which means there is no visually meaningful low-
resolution image but only bit-stream after compressing. Thus our task can’t be
served by image compression methods.
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Fig. 1. Illustration of the problem formulation. In the forward downscaling procedure,
HR image x is transformed to visually pleasing LR image y and case-agnostic latent
variable z through a parameterized invertible function fθ(·); in the inverse upscaling
procedure, a randomly drawn z combined with LR image y are transformed to HR
image through the inverse function f−1

θ (·). IK means identity matrix of variance in
multivariate Gaussian distribution.

3 Methods

3.1 Model Specification

The sketch of our modeling framework is presented in Fig. 1. As explained in
Introduction, we mitigate the ill-posed problem of the upscaling task by model-
ing the distribution of lost information during downscaling. We note that accord-
ing to the Nyquist-Shannon sampling theorem [48], the lost information during
downscaling an HR image amounts to high-frequency contents. Thus we firstly
employ a wavelet transformation to decompose the HR image x into low and
high-frequency component, denote as xL and xH respectively. Since the case-
specific high-frequency information will be lost after downscaling, in order to
best recover the original x as possible in the upscaling procedure, we use an
invertible neural network to produce the visually-pleasing LR image y mean-
while model the distribution of the lost information by introducing an auxiliary
latent variable z. In contrast to the case-specific xH (i.e., xH ∼ p(xH |xL)), we
force z to be case-agnostic (i.e., z ∼ p(z)) and obey a simple specified distribu-
tion, e.g., an isotropic Gaussian distribution. In this way, there is no further need
to preserve either xH or z after downscaling, and z can be randomly sampled
in the upscaling procedure, which is used to reconstruct x combined with LR
image y by inversely passing the model.

3.2 Invertible Architecture

The general architecture of our proposed IRN is composed of stacked Down-
scaling Modules, each of which contains one Haar Transformation block and
several invertible neural network blocks (InvBlocks), as illustrated in Fig. 2. We
will show later that both of them are invertible, and thus the entire IRN model
is invertible accordingly.
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Fig. 2. Illustration of our framework. The invertible architecture is composed of Down-
scaling Modules, in which InvBlocks are stacked after a Haar Transformation. Each
Downscaling Module reduces the spatial resolution by 2×. The exp(·) of ρ is omit.

The Haar Transformation. We design the model to contain certain inductive
bias, which can efficiently learn to decompose x into the downscaled image y
and case-agnostic high-frequency information embedded in z. To achieve this,
we apply the Haar Transformation as the first layer in each downscaling module,
which can explicitly decompose the input images into an approximate low-pass
representation, and three directions of high-frequency coefficients [4,36,55,63].
More concretely, the Haar Transformation transforms the input raw images or a
group of feature maps with height H, width W and channel C into a tensor of
shape ( 12H, 1

2W, 4C). The first C slices of the output tensor are effectively pro-
duced by an average pooling, which is approximately a low-pass representation
equivalent to the Bilinear interpolation downsampling. The rest three groups
of C slices contain residual components in the vertical, horizontal and diagonal
directions respectively, which are the high-frequency information in the original
HR image. By such a transformation, the low and high-frequency information
are effectively separated and will be fed into the following InvBlocks.
InvBlock. Taking the feature maps after the Haar Transformation as input,
a stack of InvBlocks is used to further abstract the LR and latent representa-
tions. We leverage the general coupling layer architecture proposed in [15,16],
i.e. Eqs. (1 and 3).

Utilizing the coupling layer is based on our considerations that (1) the input
has already been split into low and high-frequency components by the Haar
transformation; (2) we want the two branches of the output of a coupling layer
to further polish the low and high-frequency inputs for a suitable LR image
appearance and an independent and properly distributed latent representation
of the high-frequency contents. So we match the low and high-frequency compo-
nents respectively to the split of hl

1, hl
2 in Eq. (1). Furthermore, as the shortcut

connection is proved to be important in the image scaling tasks [37,51], we
employ the additive transformation (Eq. 1) for the low-frequency part hl

1, and
the enhanced affine transformation (Eq. 3) for the high-frequency part hl

2 to
increase the model capacity, as shown in Fig. 2.

Note that the transformation functions φ(·), η(·), ρ(·) in Fig. 2 can be arbi-
trary. Here we employ a densely connected convolutional block, which is referred
as Dense Block in [51] and demonstrated for its effectiveness of image upscaling
task. Function ρ(·) is further followed by a centered sigmoid function and a scale
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term to prevent numerical explosion due to the exp(·) function. Note that Fig. 2
omits the exp(·) in function ρ.
Quantization. To save the output images of IRN as common image storage
format such as RGB (8 bits for each R, G and B color channels), a quantization
module is adopted which converts floating-point values of produced LR images
to 8-bit unsigned int. We simply use rounding operation as the quantization
module, store our output LR images by PNG format and use it in the upscaling
procedure. There is one obstacle should be noted that the quantization module is
nondifferentiable. To ensure that IRN can be optimized during training, we use
Straight-Through Estimator [9] on the quantization module when calculating
the gradients.

3.3 Training Objectives

Based on Sect. 3.1, our approach for invertible downscaling constructs a model
that specifies a correspondence between HR image x and LR image y, as well
as a case-agnostic distribution p(z) of z. The goal of training is to drive these
modeled relations and quantities to match our desiderata and HR image data
{x(n)}N

n=1. This includes three specific goals, as detailed below.
LR Guidance. Although the invertible downscaling task does not pose direct
requirements on the produced LR images, we do hope that they are valid visually
pleasing LR images. To achieve this, we utilize the widely acknowledged Bicubic
method [42] to guide the downscaling process of our model. Let y

(n)
guide be the LR

image corresponding to x(n) that is produced by the Bicubic method. To make
our model follow the guidance, we drive the model-produced LR image fy

θ (x(n))
to resemble y

(n)
guide:

Lguide(θ) :=
N∑

n=1

�Y(y(n)
guide, f

y
θ (x(n))), (4)

where �Y is a difference metric on Y, e.g., the L1 or L2 loss. We call it the LR
guidance loss. This practice has also been adopted in the literature [27,50].
HR Reconstruction. Although fθ is invertible, it is not for the correspondence
between x and y when z is not transmitted. We hope that for a specific down-
scaled LR image y, the original HR image can be restored by the model using any
sample of z from the case-agnostic p(z). Inversely, this also encourages the for-
ward process to produce a disentangled representation of z from y. As described
in Sect. 3.1, given a HR image x(n), the model-downscaled LR image fy

θ (x(n)) is
to be upscaled by the model as f−1

θ (fy
θ (x(n)), z) with a randomly drawn z ∼ p(z).

The reconstructed HR image should match the original one x(n), so we minimize
the expected difference and traverse over all the HR images:

Lrecon(θ) :=
N∑

n=1

Ep(z)[�X (x(n), f−1
θ (fy

θ (x(n)), z))], (5)
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where �X measures the difference between the original image and the recon-
structed one. We call Lrecon(θ) the HR reconstruction loss. For practical mini-
mization, we estimate the expectation w.r.t. z by one random draw from p(z)
for each evaluation.
Distribution Matching. The third part of the training goal is to encourage
the model to catch the data distribution q(x) of HR images, demonstrated by
its sample cloud {x(n)}N

n=1. Recall that the model reconstructs a HR image x(n)

by f−1
θ (y(n), z(n)), where y(n) := fy

θ (x(n)) is the model-downscaled LR image,
and z(n) ∼ p(z) is the randomly drawn latent variable. When traversing over the
sample cloud of true HR images {x(n)}N

n=1, {y(n)}N
n=1 also form a sample cloud

of a distribution. We denote this distribution with the push-forward notation as
fy

θ #
[q(x)], which represents the distribution of the transformed random variable

fy
θ (x) where the original random variable x obeys distribution q(x), x ∼ q(x).

Similarly, the sample cloud {f−1
θ (y(n), z(n))}N

n=1 represents the distribution of
model-reconstructed HR images, and we denote it as f−1

θ #

[
fy

θ #
[q(x)] p(z)

]
since

(y(n), z(n)) ∼ fy
θ #

[q(x)] p(z) (note that y(n) and z(n) are independent due to
the generation process). The desideratum of distribution matching is to drive
the model-reconstructed distribution towards data distribution, which can be
achieved by minimizing their difference measured by some metric of distribu-
tions:

Ldistr(θ) := LP
(
f−1

θ #

[
fy

θ #
[q(x)] p(z)

]
, q(x)

)
. (6)

The distribution matching loss pushes the model-reconstructed HR images to
lie on the manifold of true HR images so as to make the recovered images appear
more realistic. It also drives the case-independence of z from y in the forward
process. To see this, we note that if fθ is invertible, then in the asymptotic case,
the two distributions match on X , i.e., f−1

θ #

[
fy

θ #
[q(x)] p(z)

]
= q(x), if and only

if they match on Y × Z, i.e., fy
θ #

[q(x)] p(z) = fθ#[q(x)]. The loss thus drives
the coupled distribution fθ#[q(x)] = (fy

θ , fz
θ )#[q(x)] of (y, z) from the forward

process towards the decoupled distribution fy
θ #

[q(x)] p(z). Neither effect can be
fully guaranteed by the reconstruction and guidance losses.

As mentioned in Introduction, the minimization is generally hard since both
distributions are high-dimensional and have unknown density function. We
employ the JS divergence as the probability metric LP , and our distribution
matching loss can be estimated in the following way:

Ldistr(θ) = JS(f−1
θ #

[
fy

θ #
[q(x)] p(z)

]
, q(x))

≈ 1
2N

max
T

∑

n

{
log σ(T (x(n)))

+ log
(
1 − σ

[
T

(
f−1

θ (fy
θ (x(n)), z(n))

)])}
+ log 2, (7)

where {z(n)}N
n=1 are i.i.d. samples from p(z), σ is the sigmoid function, T : X →

R is a function on X (σ(T (·)) is regarded as a discriminator in GAN literatures),
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and “≈” is due to Monte Carlo estimation. The appendix provides the details.
For practical computation, the function T is parameterized as a neural network
Tφ and maxT amounts to maxφ. The expression (7) is also suitable for estimating
its gradient w.r.t. θ and φ, thus optimization is made practical.
Total Loss. We optimize our IRN model by minimizing the compact loss
Ltotal(θ) with the combination of HR reconstruction loss Lrecon(θ), LR guid-
ance loss Lguide(θ) and distribution matching loss Ldistr(θ):

Ltotal := λ1Lrecon + λ2Lguide + λ3Ldistr, (8)

where λ1, λ2, λ3 are coefficients for balancing different loss terms.
Loss Minimization in Practice. As an issue in practice, we find that directly
minimizing the total loss Ltotal(θ) is difficult to train, due to the unstable training
process of GANs [5]. We propose a pre-training stage that adopts a weakened
but more stable surrogate of the distribution matching loss. Recall that the
distribution matching loss LP

(
f−1

θ #

[
fy

θ #
[q(x)] p(z)

]
, q(x)

)
on X has the same

asymptotic effect as the loss LP(fy
θ #

[q(x)] p(z), (fy
θ , fz

θ )#[q(x)]) on Y × Z. The
surrogate considers partial distribution matching on Z, i.e., LP(p(z), fz

θ #[q(x)]).
Since the density function of one of the distributions, p(z), is now made available,
we can choose more stable distribution metrics for minimization, such as the
cross entropy (CE):

L′
distr(θ) := CE(fz

θ #[q(x)], p(z))

= −Efz
θ #[q(x)][log p(z)] = −Eq(x)[log p(z=fz

θ (x))]. (9)

A related training method is the maximum likelihood estimation (MLE), i.e.,
maxθ Eq(x)[log f−1

θ #
[p(y, z)]], which is widely adopted by prevalent flow-based

generative models [4,15,16,29]. It is equivalent to minimizing the Kullback-
Leibler (KL) divergence KL(q(x), f−1

θ #
[p(y, z)]). The mentioned models explic-

itly specify the density function of p(y, z), thus the density function of
f−1

θ #
[p(y, z)] is made available together with the tractable Jacobian determi-

nant computation of fθ. However, the same objective cannot be leveraged for
our model since we do not have the density function for fy

θ #
[q(x)] p(z); only

that of p(z) is known1. The invertible neural network (INN) [3] meets the same
problem and cannot use MLE either.

We call IRN as our model trained by minimizing the following total objective:

LIRN := λ1Lrecon + λ2Lguide + λ3L
′
distr. (10)

After the pre-training stage, we restore the full distribution matching loss
Ldistr in the objective in place of L′

distr. Additionally, we also employ a perceptual

1 MLEs corresponding to minimizing KL(q(x|y), f−1
θ (y, ·)

#
[p(z)]) or KL

(
q(x),(

Ef
y
θ #

[q(x)][f
−1
θ (y, ·)]

)
#

[p(z)]
)

are also impossible, since the pushed-forward distri-

butions have a.e. zero density in X so the KL is a.e. infinite.
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loss [26] Lpercp on X , which measures the difference of two images via their
semantic features extracted by benchmarking models. It enhances the perceptual
similarity between generated and true images thus helps to produce more realistic
images. The perceptual loss has several slightly modified variants which mainly
differ in the position of the objective features [33,51]. We adopt the variant
proposed in [51]. We call IRN+ as our model trained by minimizing the following
total objective:

LIRN+ := λ1Lrecon + λ2Lguide + λ3Ldistr + λ4Lpercp. (11)

4 Experiments

4.1 Dataset and Settings

We employ the widely used DIV2K [1] image restoration dataset to train our
model, which contains 800 high-quality 2K resolution images in the training set,
and 100 in the validation set. Besides, we evaluate our model on 4 additional
standard datasets, i.e. the Set5 [11], Set14 [60], BSD100 [40], and Urban100 [23].
Following the setting in [37], we quantitatively evaluate the peak noise-signal
ratio (PSNR) and SSIM [53] on the Y channel of images represented in the
YCbCr (Y, Cb, Cr) color space. Due to space constraint, we leave training
strategy details in the appendix.

4.2 Evaluation on Reconstructed HR Images

This section reports the quantitative and qualitative performance of HR image
reconstruction with different downscaling and upscaling methods. We consider
two kinds of reconstruction methods as our baselines: (1) downscaling with Bicu-
bic interpolation and upscaling with state-of-the-art SR models [14,17,37,51,
61,62]; (2) downscaling with upscaling-optimal models [27,34,50] and upscaling
with SR models. For the method of [51], we denote ESRGAN as their pre-trained
model, and ESRGAN+ as their GAN-based model. We further investigate the
influence of different z samples on the reconstructed image x. Finally, we empir-
ically study the effectiveness of the different types of loss in the pre-training
stage.
Quantitative Results. Table 1 summarizes the quantitative comparison
results of different reconstruction methods where IRN significantly outperforms
previous state-of-the-art methods regarding PSNR and SSIM in all datasets. We
leave the results of IRN+ in the appendix because it is a visual-perception-
oriented model. As shown in Table 1, upscaling-optimal downscaling models
largely enhance the reconstruction of HR images by state-of-the-art SR mod-
els compared with downscaling with Bicubic interpolation. However, they still
hardly achieve satisfying results due to the ill-posed nature of upscaling. In con-
tract, with the invertibility, IRN significantly boosts the PSNR metric about 4–5
dB and 2–3 dB on each benchmark dataset in 2× and 4× scale downsampling
and reconstruction, and the improvement goes as large as 5.94 dB compared with
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Table 1. Quantitative evaluation results (PSNR/SSIM) of different downscaling and
upscaling methods for image reconstruction on benchmark datasets: Set5, Set14,
BSD100, Urban100, and DIV2K validation set. For our method, differences on average
PSNR/SSIM from different z samples are less than 0.02. We report the mean result
over 5 draws.

Downscaling & Upscaling Scale Param Set5 Set14 BSD100 Urban100 DIV2K

Bicubic & Bicubic 2× / 33.66/0.9299 30.24/0.8688 29.56/0.8431 26.88/0.8403 31.01/0.9393

Bicubic & SRCNN [17] 2× 57.3K 36.66/0.9542 32.45/0.9067 31.36/0.8879 29.50/0.8946 –

Bicubic & EDSR [37] 2× 40.7M 38.20/0.9606 34.02/0.9204 32.37/0.9018 33.10/0.9363 35.12/0.9699

Bicubic & RDN [62] 2× 22.1M 38.24/0.9614 34.01/0.9212 32.34/0.9017 32.89/0.9353 –

Bicubic & RCAN [61] 2× 15.4M 38.27/0.9614 34.12/0.9216 32.41/0.9027 33.34/0.9384 –

Bicubic & SAN [14] 2× 15.7M 38.31/0.9620 34.07/0.9213 32.42/0.9028 33.10/0.9370 –

TAD & TAU [27] 2× – 38.46/ – 35.52/ – 36.68/ – 35.03/ – 39.01/ –

CNN-CR & CNN-SR [34] 2× – 38.88/– 35.40/– 33.92/– 33.68/– –

CAR & EDSR [50] 2× 51.1M 38.94/0.9658 35.61/0.9404 33.83/0.9262 35.24/0.9572 38.26/0.9599

IRN (ours) 2× 1.66M 43.99/0.9871 40.79/0.9778 41.32/0.9876 39.92/0.9865 44.32/0.9908

Bicubic & Bicubic 4× / 28.42/0.8104 26.00/0.7027 25.96/0.6675 23.14/0.6577 26.66/0.8521

Bicubic & SRCNN [17] 4× 57.3K 30.48/0.8628 27.50/0.7513 26.90/0.7101 24.52/0.7221 –

Bicubic & EDSR [37] 4× 43.1M 32.62/0.8984 28.94/0.7901 27.79/0.7437 26.86/0.8080 29.38/0.9032

Bicubic & RDN [62] 4× 22.3M 32.47/0.8990 28.81/0.7871 27.72/0.7419 26.61/0.8028 –

Bicubic & RCAN [61] 4× 15.6M 32.63/0.9002 28.87/0.7889 27.77/0.7436 26.82/0.8087 30.77/0.8460

Bicubic & ESRGAN [51] 4× 16.3M 32.74/0.9012 29.00/0.7915 27.84/0.7455 27.03/0.8152 30.92/0.8486

Bicubic & SAN [14] 4× 15.7M 32.64/0.9003 28.92/0.7888 27.78/0.7436 26.79/0.8068 –

TAD & TAU [27] 4× – 31.81/ – 28.63/ – 28.51/ – 26.63/ – 31.16/ –

CAR & EDSR [50] 4× 52.8M 33.88/0.9174 30.31/0.8382 29.15/0.8001 29.28/0.8711 32.82/0.8837

IRN (ours) 4× 4.35M 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

the state-of-the-art downscaling and upscaling model. These results indicate an
exponential improvement of IRN in the reduction of information loss, which also
accords with the significant improvement in SSIM.

Moreover, the number of parameters of IRN is relatively small. When Bicubic
downscaling and super-resolution methods require large model size (>15M) for
better results, our IRN only has 1.66M and 4.35M parameters in scale 2× and
4× respectively. It indicates that our model is light-weight and efficient.
Qualitative Results. We then qualitatively evaluate IRN and IRN+ by
demonstrating details of the upscaled images. As shown in Fig. 3, HR images
reconstructed by IRN and IRN+ achieve better visual quality and fidelity than
those of previous state-of-the-art methods. IRN recovers richer details, which
contributes to the pleasing visual quality. IRN+ further produces sharper and
more realistic images as the effect of the distribution matching objective. For
the ’Comic’ example, we observe that the IRN and IRN+ are the only models
that can recover the complicated textures on the headwear and necklace, as well
as the sharp and realistic fingers. Previous perceptual-driven methods such as
ESRGAN [51] also claim that the sharpness and reality of their generated HR
images are satisfied. However, the visually unreasonable and unpleasing details
produced by their model often lead to dissimilarity to the original images. We
leave the high-resolution version and more results in the appendix for spacing
reason.
Visualisation on the Influence of z. As described in previous sections, we
aim to let z ∼ p(z) focus on the randomness of high-frequency contents only. In
Table 1, the PSNR difference is less than 0.02 dB for each image with different
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Ground Truth
Comic from set14

Bicubic & ESRGAN+
(21.00 / 0.6386)

CAR & EDSR
(25.51 / 0.8219)

Bicubic & RCAN
(23.85 / 0.7516)

Ground Truth

Bicubic & ESRGAN+
(25.84 / 0.7534)

CAR & EDSR
(32.29 / 0.9003)

Bicubic & RCAN
(29.24 / 0.8406)

Bicubic & ESRGAN
(29.92 / 0.8508)

img_012 from DIV2K 
validation set Ground Truth

Bicubic & ESRGAN+
(21.68 / 0.4811)

CAR & EDSR
(25.38 / 0.6605)

Bicubic & ESRGAN
(24.19 / 0.5876)

Bicubic & RCAN
(24.18 / 0.5868)

img_001 from B100

IRN (ours)
(28.25 / 0.9061)

IRN+ (ours)
(25.27 / 0.8491)

IRN (ours)
(35.00 / 0.9462)

IRN+ (ours)
(31.87 / 0.9070)

IRN (ours)
(27.00 / 0.7741)

IRN+ (ours)
(24.44 / 0.6685)

Fig. 3. Qualitative results of upscaling the 4× downscaled images. IRN recovers rich
details, leading to both visually pleasing performance and high similarity to the original
images. IRN+ produces even sharper and more realistic details. See the appendix for
more results.

(a) (b) (c) (d)

Fig. 4. Visualisation of the difference of upscaled HR images from multiple draws of
z. (a): original image; (b–d): HR image differences of three z drawn from a common z
sample. Darker color means larger difference. It shows that the differences are random
noise in high-frequency regions without a typical texture.

Scale of sampled z

0 1 2 5 7 9 10

Fig. 5. Results of HR images by IRN+ with out-of-distribution samples of z. We train
z with an isotropic Gaussian distribution, and illustrate upscaling results when scaling
z sampled from the isotropic Gaussian distribution.
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samples of z. In order to verify whether z has learned only to influence high-
frequency information, we calculate and present the difference between different
draws of z in Fig. 4. We can see in the figure that there is only a tiny noisy
distinction in high-frequency regions without typical textures, which can hardly
be perceived when combined with low-frequency contents. This indicates that
our IRN has learned to reconstruct most meaningful high-frequency contents,
while embedding senseless noise into randomness.

As mentioned above, we train the model to encourage p(z) to obey a simple
and easy-to-sample distribution, i.e., isotropic Gaussian distribution. In order
to further verify the effectiveness of the learned model, we feed (y, αz) into
our IRN+ to obtain xα by controlling the scale of sampled z with different
values of α. As shown in Fig. 5, a larger deviation to the original distribution
results in more noisy textures and distortion. It demonstrates that our model
transforms z faithfully to follow the specified distribution, and is also robust to
slight distribution deviation.

Table 2. Analysis results (PSNR/SSIM) of training IRN with L1 or L2 LR guide
and HR reconstruction loss, with/without partial distribution matching loss, on Set5,
Set14, BSD100, Urban100 and DIV2K validation sets with scale 4×.

Lguide Lrecon Ldistr′ Set5 Set14 BSD100 Urban100 DIV2K

L1 L1 Yes 34.75/0.9296 31.42/0.8716 30.42/0.8451 30.11/0.8903 33.64/0.9079

L1 L2 Yes 34.93/0.9296 31.76/0.8776 31.01/0.8562 30.79/0.8986 34.11/0.9116

L2 L1 Yes 36.19/0.9451 32.67/0.9015 31.64/0.8826 31.41/0.9157 35.07/0.9318

L2 L2 Yes 35.93/0.9402 32.51/0.8937 31.64/0.8742 31.40/0.9105 34.90/0.9308

L2 L1 No 36.12/0.9455 32.18/0.8995 31.49/0.8808 30.91/0.9102 34.90/0.9308

Analysis on the Losses. We conduct experiments to analyze the components
in the loss of Eqs. (4, 5, and 9). As shown in Table 2, IRN performs the best
when the LR guidance loss is the L2 loss and the HR reconstruction loss is the
L1 loss. The reason is that the L1 loss encourages more pixel-wise similarity,
while the L2 loss is less sensitive to minor changes. In the forward procedure, we
utilize the Bicubic-downscaled images as guidance, but we do not aim to exactly
learn the Bicubic downscaling, which may harm the inverse procedure. The for-
ward reconstruction loss only acts as a constraint to maintain visually pleasing
downscaling, so the L2 loss is more suitable. In the backward procedure, on the
other hand, our goal is to reconstruct the ground truth image accurately. There-
fore, the L1 loss is more appropriate, as also identified by other super-resolution
works. Table 2 also demonstrates the necessity of the partial distribution match-
ing loss of Eq. (9), which restricts the marginal distributions on Z, and benefits
the forward distribution learning.
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4.3 Evaluation on Downscaled LR Images

We also evaluate the quality of LR images downscaled by our IRN. We demon-
strate the similarity index between our LR images and Bicubic-based LR images,
and present similar visual perception of them, to show that IRN is able to per-
form as well as Bicubic.

Table 3. SSIM results between the images downscaled by IRN and by Bicubic on the
Set5, Set14, BSD100, Urban100 and DIV2K validation sets.

Scale Set5 Set14 BSD100 Urban100 DIV2K

2× 0.9957 0.9936 0.9936 0.9941 0.9945

4× 0.9964 0.9927 0.9923 0.9916 0.9933

As shown in Table 3, images downscaled by IRN are extremely similar to
those by Bicubic. More figures in the appendix illustrate the visual similarity
between them, which demonstrates the proper perception of our downscaled
images.

5 Conclusion

In this paper, we propose a novel invertible network for the image rescaling task,
with which the ill-posed nature of the task is largely mitigated. We explicitly
model the statistics of the case-specific high-frequency information that is lost in
downscaling as a latent variable following a specified case-agnostic distribution
which is easy to sample from. The network models the rescaling processes by
invertibly transforming between an HR image and an LR image with the latent
variable. With the statistical knowledge of the latent variable, we draw a sample
of it for upscaling from a downscaled LR image (whose specific high-frequency
information was lost during downscaling, of course). We design a specific invert-
ible architecture tailored for image rescaling, and an effective training objective
to enforce the model to have desired downscaling and upscaling behavior, as well
as to output the latent variable with the specified properties. Extensive experi-
ments demonstrate that our model significantly improves both quantitative and
qualitative performance of upscaling reconstruction from downscaled LR images,
while being light-weighted.
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