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Abstract Moosavi-Dezfooli et al., 2016; Szegedy et al., 2013), i.e., 

Deep neural networks have achieved great suc-
cess in various areas, but recent works have found 
that neural networks are vulnerable to adversarial 
attacks, which leads to a hot topic nowadays. Al-
though many approaches have been proposed to 
enhance the robustness of neural networks, few 
of them explored robust architectures for neural 
networks. On this account, we try to address 
such an issue from the perspective of dynamic 
system in this work. By viewing ResNet as an 
explicit Euler discretization of an ordinary dif-
ferential equation (ODE), for the frst time, we 
fnd that the adversarial robustness of ResNet is 
connected to the numerical stability of the corre-
sponding dynamic system, i.e., more stable nu-
merical schemes may correspond to more robust 
deep networks. Furthermore, inspired by the im-
plicit Euler method for solving numerical ODE 
problems, we propose Implicit Euler skip connec-
tions (IE-Skips) by modifying the original skip 
connection in ResNet or its variants. Then we 
theoretically prove its advantages under the ad-
versarial attack and the experimental results show 
that our ResNet with IE-Skips can largely improve 
the robustness and the generalization ability un-
der adversarial attacks when compared with the 
vanilla ResNet of the same parameter size. 

1. Introduction 
Deep Learning (DL) has achieved great success in many 
machine learning problems and has been widely used in 
various computer vision and neural language processing 
tasks. However, recent works show that Neural Networks 
are vulnerable to adversarial attacks (Zügner et al., 2018; 
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adding some human-imperceptible noise to the input may 
lead to incorrect predictions even for the state-of-the-art con-
volution neural networks. Such defect signifcantly hampers 
the applications to the safety-critical problems such as those 
in medical diagnosis. 

In order to handle the problems above, researchers have 
proposed many training methods to make the network 
more robust recently, such as the Projected Gradient De-
scent (Madry et al., 2017) method, YOPO (Zhang et al., 
2019a), TRADES (Zhang et al., 2019b), etc.. But few of 
them discussed the immanent robustness of a network struc-
ture. In this paper, we concentrate on fnding a more robust 
and powerful neural architecture via our theoretical analysis. 

There have been many works that bridge the dynamic sys-
tems and the neural networks especially ResNet (He et al., 
2016a). Under the assumptions that ResNet is a kind of 
explicit (forward) Euler discretization, lots of ResNet vari-
ants (Zhu et al., 2018) are proposed based on more accurate 
low-order numerical schemes for solving the corresponding 
ODEs. While the existing works are based on the assump-
tion that higher natural accuracy (i.e., the accuracy without 
adversarial attacks) corresponds to more accurate numeri-
cal schemes, we are the frst to propose that higher robust 
accuracy (i.e., the accuracy under adversarial attacks) corre-
sponds to more stable numerical schemes. This is because 
they are both the problem of how sensitive the output is to 
the small perturbation of the input. 

As shown in Figure 1, the stability of the explicit Euler 
method is weak, i.e. a small change on the initial point 
leads to a tremendous variation of the output. Accordingly, 
the robustness of ResNet, which corresponds to the ex-
plicit Euler scheme, is not satisfactory under adversarial 
attacks. However, it is widely known that the stability of the 
implicit (backward) Euler discretization is outstanding, as 
shown in Figure 1. As the stability of the implicit method is 
superior to the explicit ones in numerical ODE, we propose 
an implicit-Euler architecture by unfolding the implicit Eu-
ler method. The architecture can be utilized in any networks 
with skip connections. If we use it in the vanilla ResNet, we 
can obtain a stable network called IE-ResNet which gains 
large improvements on the robustness of the network with 
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Figure 1. The stability of an initial value problem with the explicit 
(forward) and the implicit (backward) Euler schemes. 

no more parameter consumption. 

Furthermore, we theoretically prove that our IE-ResNet can 
be resistant to adversarial attacks with higher probability 
than the vanilla ResNet. We also conduct various experi-
ments to verify the robustness of our IE-ResNet and our 
analysis. 

2. Related Works and Contributions 
2.1. Related Works 

Adversarial Defense. Many works have been proposed 
to enhance the robustness of neural networks, such as 
adversarial training and its variants (Madry et al., 2017; 
Zhang et al., 2019a; Shafahi et al., 2019), various regular-
izations (Cisse et al., 2017; Lin et al., 2019; Jakubovitz & 
Giryes, 2018), generative model based defense (Sun et al., 
2019), Bayesian adversarial learning (Ye & Zhu, 2018), 
TRADES method (Zhang et al., 2019b), etc. All the meth-
ods above aim to improve the robustness of the networks via 
training by different strategies. Apart from that, some works 
propose some robust architectures like adding noise via an 
intriguing stochastic differential equation perspective (Wang 
et al., 2018) or feature denoising (Svoboda et al., 2018; Xie 
et al., 2019). However, none of them studies the inherent 
robustness of the ResNet architecture from the stability view 
of dynamic systems and proposes a more robust one via dy-
namic system perspectives. Therefore, in this paper, we aim 
to propose a new robust architecture which can improve the 
robustness of the original Residual Network family. 

Neural Networks and ODEs. Many works these days 
have bridged the relationship between the ODEs and neural 
networks (Chen et al., 2018; Lu et al., 2017). Especially for 
the ResNet, researchers have found that it can be written 

as the explicit Euler discretization with unit steps. From 
the above view, many training methods (Li & Hao, 2018) 
have been proposed to train neural networks via the optimal 
control perspective. In addition to that, many new architec-
tures (Haber & Ruthotto, 2017; Zhang et al., 2019c; Yang 
et al., 2019) have been proposed to improve their perfor-
mance, inspired by more accurate numerical ODE methods. 
However, none of them explores the adversarial robustness 
under the perspective of the stability of the numerical ODE 
or dynamic system. 

2.2. Contribution 

• To the best of our knowledge, this is the frst work to 
consider the adversarial robustness of a neural network 
from the perspective of the dynamic system stability. 
From such an aspect, we explore the impact of dynamic 
stability of ResNet on its adversarial robustness. 

• Building on the above insight, we propose the IE-Skips, 
which modifes the original skip connections in the 
Residual Network family inspired by the implicit Euler 
discretization. We theoretically prove that ResNets 
with our IE-Skips (called IE-ResNet) is more robust 
against the adversarial attack than vanilla ResNet. 

• On the MNIST and the CIFAR benchmarks, we con-
duct experiments to verify the adversarial robustness 
of IE-ResNets, which replace the original skip con-
nections with our IE-Skips in ResNets. The empirical 
advantages demonstrate the robustness of our archi-
tecture and validate our analysis based on dynamic 
systems. 

3. Network Robustness and Stability of 
Dynamic Systems 

3.1. Preliminaries and Notations 

We use (x0, y0) to denote a pair of input and label for train-
ing or testing. F(x) represents the output of the network. 
For a function f : Rd → Rd, we use rf(x) to denote its 
Jacobian at input x. We let B(n)(x, r) denote n-dimensional 
ball centered at x with radius r. We call an N -stage network 
if the output xN and input x0 of the network abide by the 
following equation: 

xi = si(xi−1), for i = 1, ..., N, 

where we call si(·) the i-th stage of the network. 

3.2. Stability of Dynamic Systems and Network 
Robustness 

Recent works have built the relationship between the dy-
namic systems and neural networks and proposed many 
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architectures and training methods with better generaliza-
tion ability, inspired by some numerical algorithms for dy-
namic systems. Furthermore, some researchers interpret 
new ResNet variants from such a perspective, where the i-th 
residual stage is formulated as follows: 

xi = xi−1 + hfi(xi−1), i = 1, ..., N, 

in which h ≤ 1 is a constant (Zhang et al., 2019c) or a learn-
able parameter (Yang et al., 2019). (Zhang et al., 2019c; 
Yang et al., 2019) both demonstrate that a smaller h can 
better control the output variation under the Guassian noise 
injection, which is consistent with the theoretical results of 
the choice of h on the stability of the explicit Euler method. 
Such an observation motivates us to explore the links be-
tween the stability of dynamic systems and the robustness 
of its corresponding networks under the adversarial attacks. 

As we will illustrate in the following, we fnd that the nu-
merical stability on the initial value problem is similar to 
the network’s robustness against adversarial attacks which 
add perturbations to the input, especially when training the 
network with least squared regression loss. First of all, we 
defne the numerical stability for an N -stage neural network 
from the dynamic system perspective as follows: 

Defnition 1 A network with N stages (si represents its i-th 
stage) is called C-stable for its initial value problem at input 
x0 ∈ Rn, if for a small δ and all the perturbed inputs for 

0each stage xi−1 ∈ B(n)(xi−1, δ), the following equations 
are satisfed for all the stages: 

0ksi(xi−1) − si(xi−1)k2 ≤ Cδ, for i = 1, ..., N, 

where C ≤ 1 is a constant. 

From the above defnition, one can see that if the network is 
C-stable at certain input x0, then the impacts of the small 
adversarial perturbation will not enlarge, or even shrink, 
during the forward propagation. Furthermore, we can bound 
the increment of loss for any attacks η ∈ B(n)(0, δ) for 
sample x0 if the network is C-stable at x0 using the least 
squared regression loss. 

Proposition 1 If a network with N stages is C-stable at 
x0, then the increment of the least squared regression loss 
under the adversarial attack η ∈ Bn(0, δ) on input x0 is: 

L(F(θ; x0 + η), y0) − L(F(θ; x0), y0) ≤ CN δ, 

where F(·) denotes the neural network and y0 is the label 
for clean data x0. 

Therefore, if the network is C-stable at sample x0, then the 
impacts of a small perturbation η on the output will remain 
the same or become smaller during the inference no matter 
suffering what kind of attack. Consequently, the network 

can perform more stably under the attacks on such samples. 
We call that a network can defend the adversarial attacks on 
x0 if the network is C-stable with C ≤ 1 in the following 
analysis. 

3.3. ResNet and Its Robustness Conditions 

Neglecting the size and the dimension change on the input, 
the forward propagation of the input value x0 for a vanilla 
ResNet (He et al., 2016a) with N residual stages can be 
depicted as follows: 

xi = xi−1 + fi(xi−1), i = 1, ..., N, (1) 

where fi(·) denotes the i-th residual block with xi−1 and 
xi representing its input and output, respectively. Therefore, 
ResNet can be considered as an explicit Euler discretization 
with unit step size for the following initial value problem (E, 
2017; Haber & Ruthotto, 2017): 

ẋ(t) = ft(x(t)), x(0) = x0, 

where features x(t) are viewed in the continuous limit as 
a function of time t ∈ [0, N ]. With the above insights, 
we analyze the suffcient conditions that ResNet and our 
network can defend the adversarial attacks. 

Proposition 2 For an N -block Residual Neural Network 
with fi representing its i-th residual block and a small δ > 0, 
if the following statement is satisfed: 

kI + rfi(xi−1)
>k2 ≤ 1 for i = 1, ..., N, (2) 

where xi−1 denotes the input of the i-th block corresponding 
to the clean input x0 for the network, then the network 
with N blocks can defend the attack with perturbation η ∈ 
B(n)(0, δ) on the sample x0. 

As one can see from the above proposition, such conditions 
for the Jacobian of ResNets are not easy to satisfy for an 
input x0 during training, let alone for practical data points 
sampled from some distribution. On this account, the vanilla 
ResNet is sensitive to adversarial perturbations. 

4. IE-Skips and Its Robustness Analysis 
4.1. IE-Skips Architecture 

Although the explicit Euler method is a popular frst-order 
approach for solving ODEs numerically, its stability con-
ditions (illustrated in Prop. 2) for an input x0 are hard to 
realize. For this reason, the vanilla ResNet often fails at 
different attacks. From the existing theory on numerical 
methods for ODEs, implicit Euler is a well-known frst-
order method with sound stability. On this account, we aim 
to revise the original ResNet to enhance its robustness with 
the implicit Euler method. 
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Implicit Euler is a widely used method in numerical ODE 
with the following equation: 

yi = yi−1 + hg(yi), (3) 

where h stands for the step size. Current implicit Euler 
method often uses fxed-point method or gradient methods 
to solve Eqn (3). Since we cannot ensure that the residual 
block always performs as a contractive mapping, we choose 
to use the gradient descent method to approximate the im-
plicit scheme in our network structure. Like ResNet, we 
set h = 1 in our network and integrate a non-linear least 
square optimization procedure via gradient descent into the 
original Skip-Connection to form a new architecture called 
Implicit Euler Skips connections (IE-Skips). The details for 
the residual stage with IE-Skips are illustrated in Alg. 1. 

Algorithm 1 Forward Propagation of the i-Residual Stage 
with Our IE-Skips. 
Input: Input from the former stage xi−1, the residual block fi(·), 

inner iteration number K and inner step size γ (We choose to 
be 0.05 or 0.1 in our experiments). 

1: Compute xi = xi−1 + fi(xi−1). 
2: for k = 1 to K do 
3: 
4: 
5: 

Compute ri = kxi − xi−1 − fi(xi)k2 
2. 

Compute rxi ri. 
Update xi via 

xi = xi − γrxi ri. 

6: end for 
Output: The output of the i-residual stage xi. 

Note that in Alg. 1, we use the original outputs of the vanilla 
residual stage (listed in step 1 of Alg. 1) as the initial point 
for the nonlinear least square problem. In this way, IE-
Skips can preserve the merits of the original skip connec-
tion and ensure the original advantages for gradient back-
propagation. Then with a few steps of gradient descent, we 
can rectify the vanilla residual stage to our Implicit Euler 
residual stage with almost no harm to its representation 
ability. With our IE-Skips, we can modify all networks in 
the Residual Network family to improve their robustness 
by replacing the original residual skip connections with 
our IE-Skips when the input and the output are of the same 
dimension and size (as shown in Fig. 2). In this way, we con-
struct a new model called IE-ResNet which is more robust 
than the vanilla ResNet. 

Like ResNet, we theoretically analyze the superiority of the 
stability of our IE-ResNet over the original ResNet in the 
following. 

4.2. Stability of Our IE-ResNet 

First of all, we theoretically analyse the robustness condition 
for our exact IE-ResNet, which solves the non-linear square 

(a) 

(b) 

Figure 2. The structure sketch of the vanilla ResNet (a) and our 
ResNet with IE-Skips (b), which is called IE-ResNet. The solid 
black lines in (a) denote the skip connections while the dotted black 
lines represent the dimension changing operator (we use 3 × 3 
convolutions in the following). The soild black lines combined 
with red lines in (b) represent the IE-Skips and the red lines in (b) 
denote the non-linear least square optimization process (Line 3-5 
in Alg. 1). 

least problem exactly, like Prop. 2 for ResNet. 

Proposition 3 For an N -block exact IE-ResNet with fi rep-
resenting its i-th residual block and a small δ > 0, if the 
following statement is satisfed: 

σmin(I −rfi(xi)
>) ≥ 1 for i = 1, ..., N, (4) 

where σmin denotes the smallest singular value and xi 

denotes the output of the i-th block corresponding to the 
clean input x0 for the network, then the network with N 
blocks can defend attacks with perturbation η ∈ B(n)(0, δ) 
on sample x0. 

With the propositions above, we are going to prove that our 
IE-ResNet has higher probability to defend the attack under 
our defnitions above than its corresponding ResNet in the 
following theorem. 

For an N -block ResNet, we use gi to represent its i-th 
residual block. Meanwhile, for an N -block exact IE-ResNet, 
we use fi to represent its i-th residual block. Furthermore, 
we use xi to denote the input of the i-th block of ResNet 
while we use yi to represent the output of the i-th block of 
IE-ResNet. 

Theorem 1 Suppose that for an input x, which is sampled 
from a data distribution, its corresponding rgi(xi) and 
rfi(yi) obey the same distribution since they enjoy the 
same strategies and Jacobians {rgi(xi), rfi(yi)} are in-
dependent. Then, we can obtain the following relations: 

P[∩i=1,..N {kI + rgi(xi)
>k2 ≤ 1}] ≤ 

P[∩i=1,..N {σmin(I −rfi(yi)
>) ≥ 1}]. 
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From the above theorem, one can see that the possibility for 
our IE-ResNet to maintain stability on a sample is higher 
than that for the vanilla ResNet. So the robustness of our 
IE-ResNet is superior to the vanilla ResNet under above 
defnitions and assumptions. Although our analysis above 
only concentrate on the ideal circumstances, the experimen-
tal results in the following also demonstrate the merits of 
our IE-Skips and confrm that our conclusions can be also 
extended to practical problems. 

In addition, our implicit scheme can be integrated into many 
ResNet-like networks such as ResNeXt. For the sake of 
convenience, we use IE-ResNet-K-d to represent our d-
layer ResNet with K-inner-iteration IE-Skips. Although the 
complexity for training our model is about K +1 times than 
before, the model size is the same as the vanilla ResNet. In 
the following sections, we conduct experiments for our IE-
ResNet-K-d and ResNet-d on different datasets to validate 
our advantages over the vanilla ResNets. 

5. Experiments 
5.1. Adversarial Attack 

In this subsection, we frst introduce three popular white-
box and black-box attack methods: Projected Gradient 
Descent (PGD) (Madry et al., 2017), Fast Gradient Sign 
Method (FGSM) (Goodfellow et al., 2014) and Carlini & 
Wagner (C&W) (Carlini & Wagner, 2017). In the following 
expeirments, we use the above three attack methods to eval-
uate the robustness of different models and demonstrate the 
advantages of our model. 

C&W Attack C&W attack searches the targeted adver-
sarial image by solving the following optimization problem: 

minkηk2, 
η 

s.t.F(w, x + η) = t, 

x + η ∈ [0, 1]d , 

where δ is the adversarial perturbation and t is the target 
label. 

PGD Attack PGD searches the adversarial instances 
0 0x by iteratively increasing the loss function L(x , y) = 

0L(f(x , w), y), subject to the constraint kx0 − xk∞ ≤ δ 
where x is the clean instance and k · k∞ is the infnite norm. 
Using the projected gradient descent method with step size 
α, the perturbed instances can be generated: 

(m) (m−1) (m−1)x = Clip {x + α · sign(rxL(x , y))},x,δ

(0)where m = 1, ..., M , x = x and Clip {·} clips the x,δ 
input to make the output lies in the ` ∞ ball around x with 

0radius δ. x = x(M) is the adversarial image generated by 

PGD-M attack. Furthermore, if we set α = δ and M = 1, 
then we can obtain the Fast Gradient Sign Method (FGSM), 
which is also a widely used adversarial attack approach. 

In the following experiments, we set δ = 8/255 and α = 
2/255 on CIFAR if we use the PGD method for adversarial 
training while α = 1/255 for evaluation. In addtion to these 
methods, we also run Adam for 50 iterations with learning 
rate equaling 6 × 10−4 and c = 10 for C&W adversarial 
evaluation. As for MNIST, we set δ = 0.15 for FGSM 
adversarial training or evaluation. We implement all the 
experiments with PyTorch (Paszke et al., 2019). 

5.2. IE-ResNet with Natural Training 

In this part, we conduct experiments on MNIST (LeCun 
& Cortes, 2010) and CIFAR-10 (Krizhevsky et al., 2009) 
to demonstrate the robustness of IE-ResNets. For natural 
training, we train the PreAct-ResNets (He et al., 2016b) 
and IE-ResNets with inner step size γ = 0.05 on clean 
data. Then we compare their performance on the datasets 
perturbed by the FGSM attack with δ = 0.15 for MNIST 
and δ = 1/255 for CIFAR-10, respectively. 

MNIST First of all, we resize the vanilla ResNet-18 for 
ImageNet with 8 initial channels for MNIST. Then, we nat-
urally train (i.e., without adding adversarial samples) the 
ResNet-18 and our model with the same size on MNIST 
for 35 epochs. Finally, we use white-box FGSM attack 
to evaluate their robustness. The results are shown in Ta-
ble 1. Natural Accuracy here means the accuracy for the 
model evaluated on the clean datasets and Robust Accuracy 
means the accuracy for the model evaluated on the perturbed 
datasets by adversarial attacks. 

Models Natural Acc(%) Robust Acc(%) 
ResNet-18 99.41 88.45 

IE-ResNet-1-18 
IE-ResNet-3-18 

99.32 91.36 
99.38 92.27 

Table 1. Natural Accuracy and Robust Accuracy for IE-ResNet-18 
and ResNet-18 on MNIST by natural training. The adversarial 
attack is FGSM attack. 

From the results, one can see that our models achieve higher 
robust accuracy on the MNIST dataset with comparable 
predictive performance on the clean datasets. The results 
confrm our anlaysis that our IE-ResNet can be resistant to 
adversarial attacks with higher probability than the vanilla 
ResNet. 

CIFAR-10 Besides small datasets, we also evaluate the ro-
bustness and generalization abilities for the naturally trained 
models (the initial channel number equals to 16) on CIFAR-
10. Firstly, we naturally train IE-ResNets and ResNets with 

http:forevaluation.In
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different depths for 180 epochs with initial learning rate 
0.05, which decays by a factor 5 at the 80th, 120th and 
160th epochs. Then we use the FGSM attack to evaluate 
the robustness of our model and the vanilla ResNet. The 
results are shown in Table 2. Furthermore, Figure 3 plots the 
evolution of training and validation accuracies of different 
models. 

Models Natural Acc(%) Robust Acc(%) 
ResNet-50 91.65 67.89 

IE-ResNet-1-50 92.22 68.69 

Table 2. The Natrural Accuracy and Robust Accuracy for IE-
ResNet-50 and ResNet-50 trained by clean data. The adversarial 
attack is the FGSM attack. 
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method, which also demonstrates the robustness of our mod-
els. In this part, we use the models resized from ResNets 
for ImageNet, whose channel numbers are 4 times smaller. 
In the following experiments, we use PGD-10 adversarial 
training for both CIFAR-10 and CIFAR-100 with the same 
learning rate schedule and epochs as the natural training. 

CIFAR-10 Firstly, we evaluate the robustness via the 
PGD-20 attack on the models with different depths shown 
in Table 3. From the results, one can see that the robust 
accuracies of our IE-ResNets are consistently higher than 
those of their corresponding vanilla ResNets, while having 
comparable predictive capabilities as those of the vanilla 
ResNets. Therefore, we can conclude that our modifcation 
can promote the robustness of the vanilla ResNets and vali-
date our analysis. Besides, the improvements on IE-ResNet-
1-18, IE-ResNet-1-34 (without bottleneck) and IE-ResNet-
1-50 (with bottleneck) also show that our modifcation can 
be applied in various ResNet variants and enhance their 
robustness since no constraints on the residual blocks have 
been imposed in our analysis. 

Models Natural Acc (%) Robust Acc(%) 
ResNet-18 

IE-ResNet-1-18 
80.12 39.89 
80.14 40.91 

ResNet-34 
IE-ResNet-1-34 

82.41 42.67 
82.50 43.89 

ResNet-50 
IE-ResNet-1-50 

83.83 44.07 
84.49 45.31 

Figure 3. Evolution of training and validation accuracies for 
ResNet-50 and IE-ResNet-50. 

From the tables and the fgure, one can see that IE-ResNet 
can beat the vanilla ResNet not only under the natural eval-
uation but also under the robust evaluation. The empirical 
experiments confrm our analysis that IE-ResNet enjoys 
more stability and generalization ability than ResNet. 

5.3. IE-ResNet with Robust Training 

Since our model does not involve any constraints to the 
network’s Jacobian, the exact robustness conditions in our 
theory are hard to satisfy with natural training. On this 
account, our model cannot successfully preserve stability 
if the attacks are strong via natural training although our 
IE-ResNet is more robust than the vanilla ResNet from 
both theoretical or experimental aspects. However, like the 
vanilla ResNet, we can utilize the adversarial training to en-
hance the robustness of our model. As we can see from the 
following results on CIFAR-10 and CIFAR-100 (Krizhevsky 
et al., 2009), our models can obtain higher robust accuracy 
than the vanilla ResNet with the same adversarial training 

Table 3. Natural Accuracies and Robust Accuracies of IE-ResNets 
and ResNets on CIFAR-10. The attack for the robust evaluation is 
PGD-20 attack . 

In addition to the popular PGD attack, we also evaluate 
the models with the C&W attack shown in Fig. 4. As one 
can see from the fgure, our IE-ResNet is consistently more 
robust than the vanilla ResNet under the C&W attack. 

Furthermore, we also do experiments to evaluate the ro-
bustness of IE-ResNet and its corresponding ResNet under 
the black-box attack, as shown in Table 4. In this sce-
nario, we use the target model to classify the adversarial 
images crafted by applying the FGSM attack (� = 16/255) 
to the oracle model as listed in the table. As we can see, 
our IE-ResNet also performs better than ResNet under the 
black-box adversarial attack, which also demonstrates the 
robustness of our model. 

CIFAR-100 Besides evaluating the robustness on CIFAR-
10, we also compare the robustness of ResNet-50 and IE-
ResNet-1-50 on the CIFAR-100 benchmark. First of all, we 
train both models via PGD-10 adversarial training and then 
evaluate their robustness performance under PGD attacks 
with different steps:{10, 20, 30, 50, 80, 100}. The curves of 
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Figure 4. The robust accuracy of ResNet and our IE-ResNet (inner 
step size equals to 1) trained by PGD-10 with different depths 
under the C&W attack. 

Models Oracle Robust Acc(%) 
ResNet-50 IE-ResNet-1-50 38.26 

IE-ResNet-1-50 ResNet-50 39.41 

Table 4. Robust Accuracies of IE-ResNet and ResNet on adversar-
ial images of CIFAR-10 crafted by attacking the oracle model with 
the FGSM attack. 

the robust accuracy for different models with respect to the 
PGD attack with various iterations are shown in Figure 5. 

As one can see, our IE-ResNet-1-50 also performs much 
more robust under adversarial attacks on CIFAR-100 bench-
mark. Moreover, the robust accuracy gap between our IE-
ResNet-50 and ResNet-50 gets larger with the attack going 
stronger. From the experiments above, we can conclude that 
IE-ResNets are much more robust than its corresponding 
ResNets under various circumstances. 

5.4. IE-ResNet with TRADES 

It is widely known that many improvements may somehow 
improve the performance of small networks but not be ef-
fective on large ones. However, according to our analysis, 
our architecture can consistently ameliorate the robustness 
of the network no matter the size of the model. In order to 
confrm that, in this section, we conduct the experiments 
on the widely-used WideResNet-34-10, which has 160 ini-
tial channels. Utilizing our architecture, we obtain our IE-
WideResNet-1-34 (with inner step size γ = 0.1). 

Besides that, we use TRADES method (Zhang et al., 2019b) 
with λ = 1/6 for adversarial training. TRADES formulates 

Figure 5. The robust accuracy of ResNet-50 and IE-ResNet-1-
50 under the PGD attack with different number of iterations on 
CIFAR-100. 

a trade-off between robustness and accuracy as follows, 

min E(x,y)∼D max(L(fθ (x, y)+ ̀ (fθ(x), fθ(x + η)/λ)), 
θ η≤δ 

where fθ(x) is the neural network parameterized by θ, L 
represents the loss function, ` denotes the consistency loss 
and λ is a balancing hyper-parameter. If the neural network 
is trained by solving the above min-max problem, we call 
the network is trained by TRADES-1/λ method. 

Comparing the results of our reproduced WideResNet-34 
and IE-ResNet-1-34 with the same setting as shown in Ta-
ble 5, one can see that our model outperforms the vanilla 
WideResNet no matter sustaining what kind of attack with 
obvious advantages (around 3% improvement under differ-
ent attacks). 

Furthermore, as one can see from Table 5, our IE-Skips im-
prove both the natural accuracy (85.62% vs. 84.92%) and 
robust accuracy (58.06% vs. 56.61%) for WideResNet-34 
under PGD-20 attack comparing with the results reported 
by (Zhang et al., 2019b),which is the state-of-the-art results, 
with only 5% size larger than vanilla WideResNet (46M 
vs. 44M). The parameter increments are caused by the 
down-sampling connection we use. When comparing with 
another stable architecture En1WideResNet-34 modifed 
on WideResNet, our model enjoys a distinct advantage un-
der the adversarial evaluation with comparable predictive 
capability on clean dataset, which demonstrates that the 
robustness of our model is better than En1ResNet. From 
the experimental results, we can conclude that our network 
can not only perform well on the small networks, but also 
consistently improve the robustness of large networks even 
for the state-of-the-art ones. 

http:accuracy(58.06
http:accuracy(85.62
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Table 5. Comparisons of different models with different training methods under different adversarial attacks. The upper three results are 
copied directly from the papers and the hypen here means that the robust accuracies under such attacks are not stated in their papers. 

Models Natural (%) PGD-20 (%) PGD-100 (%) C&W (%) 
WideResNet-34 (Madry et al., 2017) 

En1WideResNet-34 (Wang et al., 2018) 
WideResNet-34 (Zhang et al., 2019b) 

87.30 47.04 − − 
86.19 56.60 − − 
84.92 56.61 − − 

WideResNet-34 (Our implementation) 84.95 55.50 53.95 61.62 
IE-WideResNet-1-34 85.62 58.06 57.01 66.25 

Models C&W (%) PGD-20 (%) 
ResNet-34 

SwResNet-58 
IE-ResNet-34 

49.70 35.97 
50.25 36.06 
51.17 37.13 

6. Discussions 
6.1. Impacts of the Inner Iterations 

As we analyzed in Section 4.2, ResNets with exact implicit 
scheme is much more robust than the vanilla ResNet. There-
fore, being closer to the exact implicit ResNet can make the 
network more robust. As more inner iterations in IE-Skips 
can make our IE-ResNet perform more similarly to the exact 
implicit scheme, we want to validate whether more itera-
tions can improve the robustness or not and experimentally 
confrm our conclusions that more “implicit” leads to more 
robust performance. 

6.2. Comparing with the Share-weight ResNets 

Our IE-ResNet enhances the robustness of the vanilla 
ResNet by involving a single-step optimization in the origi-
nal residual block, which increases the forward depth of the 
network. However, as shown in Table 6, simply increasing 
the forward depth for ResNet by sharing weights of two ad-
jacent residual blocks with the same dimension (SwResNet-
58) cannot improve the robustness as our IE-ResNet does. 
(Details on swResNet are shown in the supplementary.) On 
this account, the improvements of our model beneft from 
the architecture’s inherent robustness as we have analysed 
in Section 4.2 rather than the computational increments. 
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Figure 6. The robust accuracy and natural accuracy of IE-ResNet 
models with different inner iterations under the PGD-20 attack. 
The model is trained by PGD-3 with δ = 8/255 and α = 2/255. 

The base model here is a Pre-Act ResNet-18 with initial 
channels equaling 64. From Figure 6, one can see that the 
inner iteration (K) does not have much impact on the nat-
ural accuracy while the robust accuracy increases sharply 
with the increment of the inner iteration (K). The empirical 
results also confrm our theory that more “implicit” ResNet 
may lead to more robust performance with respect to adver-
sarial attacks. However, more inner iterations will be more 
computational consuming. Therefore, we leave fnding a 
much more ”implicit” architecture with less computational 
consumption as our future work. 

Table 6. Robust Accuracies for different models trained by PGD-3 
on CIFAR-10 via C&W and PGD-20 attacks. 

7. Conclusions 
Although the training methods to improve the robustness of 
the neural network have been widely explored, few works 
studied the inherent robustness of the neural network. With 
the consideration that the vanilla ResNet is a kind of ex-
plicit Euler discretization, for the frst time we explore the 
relationship between the adversarial robustness and the sta-
bility of the dynamic systems. From such an aspect, we 
analyze the stability of the vanilla ResNet and point out the 
reasons why ResNets are vulnerable to adversarial attacks. 
Furthermore, we propose a new architecture called IE-Skips 
to replace the original skip connections for the Residual 
Network family, inspired by the implicit Euler discretization 
method. Then we analyse the stability merits of IE-ResNet 
from the dynamic system view. In the end, we conduct 
various experiments to demonstrate that our IE-ResNet is 
more robust than the vanilla ResNet, which also validate 
our theoretical analysis. Our perspective of dynamic system 
stability for the neural networks robustness and Implicit Eu-
ler architectures may also be used in other neural neworks 
other than the Residual Network family. 
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