PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

Anonymous Authors

Abstract

Recent research has shown that incorporating equivariance into neural network architectures is very helpful, and there have been some works investigating the equivariance of networks under group actions. However, as digital images and feature maps are on the discrete meshgrid, corresponding equivariance-preserving transformation groups are very limited.

In this work, we deal with this issue from the connection between convolutions and partial differential operators (PDOs). In theory, assuming inputs to be smooth, we transform PDOs and propose a system which is equivariant to a much more general continuous group, the n-dimensional Euclidean group. In implementation, we discretize the system using the numerical schemes of PDOs, deriving approximately equivariant convolutions (PDO-eConvs). Theoretically, the approximation error of PDO-eConvs is of the quadratic order. It is the first time that the error analysis is provided when the equivariance is approximate. Extensive experiments on rotated MNIST and natural image classification show that PDO-eConvs perform competitively yet use parameters much more efficiently. Particularly, compared with Wide ResNets, our methods result in comparable results using only 12.6% parameters.

1. Introduction

In the past few years, convolutional neural network (CNN) models have become the dominant machine learning methods in the field of computer vision for various tasks, such as image recognition, objective detection and semantic segmentation. Compared with fully-connected neural networks, a significant advantage of CNNs is that they are shift equivariant: shifting an image and then feeding it through a number of layers is the same as feeding the original image and then shifting the resulted feature maps. In other words, the translation symmetry is preserved by each layer. Also, the equivariance property brings in weight sharing, with which we can use parameters more efficiently.

Motivated by this, (Cohen & Welling, 2016) proposed group equivariant CNNs (G-CNNs), showing how convolutional networks can be generalized to exploit larger groups of symmetries, including rotations and reflections. G-CNNs are equivariant to the group p4m or p41, and work on square lattices. In addition, (Hoogeboom et al., 2018) proposed HexaConv and showed how one can implement planar convolutions and group convolutions over hexagonal lattices, instead of square ones. As a result, the equivariance is expanded to p6m. However, it seems impossible to design CNNs that are equivariant to the rotation angles other than π/2 (p4m) and π/3 (p6m) as there does not seem to exist other rotational symmetric discrete lattices on the 2D plane, if one considers equivariance in the ways as (Cohen & Welling, 2016) and (Hoogeboom et al., 2018).

From another point of view, a conventional convolutional filter can also be viewed as a linear combination of PDOs, which was proposed by (Ruthotto & Haber, 2018). With this new understanding, we assume inputs are smooth functions, and then show how to transform the PDOs and get a system which is exactly equivariant to a much more general continuous transformation group, the n-dimensional Euclidean group. Note that the Euclidean group includes p4m and p6m as special cases. To implement our theory on discrete digital images, we discretize the system using the numerical schemes of PDOs and get approximately equivariant convolutions. To be specific, PDO-eConvs use convolution kernels not larger than 5 × 5 to achieve a quadratic order equivariance approximation. As the derived equivariant convolutions are based on PDOs, we refer to them as PDO-eConvs.

We evaluate the performance of PDO-eConvs on rotated MNIST and natural image classification. Extensive experiments verify that PDO-eConvs result in competitive results.

Notes:
1Anonymous Institution, Anonymous City, Anonymous Region, Anonymous Country. Correspondence to: Anonymous Author <anon.email@domain.com>.

1Generally, the group pnm, which we will use in Section 4, denotes the group generated by translations, reflections and rotations by 2π/n. The group pm denotes the group only generated by translations and rotations by 2π/n.
and show significant parameter efficiency.

1.1. Contributions

Our contributions are as follows:

- With the assumption that inputs are smooth, we use PDOs to design a system that is equivariant to a much more general continuous group, the n-dimension Euclidean group, which includes $p4m$ and $p6m$ as special cases.
- The equivariance is exact in the continuous domain. It becomes approximate only after discretization. Moreover, it is the first time that the error analysis is provided when the equivariance is approximate. To be specific, the approximation error of PDO-eConvs is of the quadratic order, indicating a precise approximation.
- Extensive experiments on PDO-eConvs show that our methods perform competitively and have significant parameter efficiency. Particularly, compared with Wide ResNets, our methods result in comparable results using only 12.6% parameters.

2. Prior and Related Work

2.1. Equivariant CNNs

(Lenc & Vedaldi, 2015) showed that the AlexNet CNN (Krizhevsky et al., 2012) trained on ImageNet spontaneously learned representations that are equivariant to flips, scalings and rotations, which supported the idea that equivariance is a good inductive bias for CNNs. (Cohen & Welling, 2016) succeeded in incorporating equivariance into neural networks and proposed G-CNNs. However, this method can only deal with a 4-fold rotational symmetry for images with square pixels. (Hoogeboom et al., 2018) alleviated this limit by implementing planar convolutions and group convolutions over hexagonal lattices. Consequently, they can deal with a 6-fold rotational symmetry.

Since there does not seem to have more rotational symmetries on lattices in the 2D plane, some works designed approximately equivariant networks w.r.t. larger groups. (Zhou et al., 2017) proposed oriented response networks (ORNs), where filters are rotated during convolution and produce feature maps with location and orientation encoded. They are inherently approximately equivariant. By comparison, ours is exactly equivariant in the continuous domain and approximately equivariant in the discrete domain. (Weiler et al., 2018) proposed Steerable Filter CNNs (SFCNNs) using steerable filters, which are approximately equivariant w.r.t. the rotation group on the 2D plane. Compared with ours, they require much larger filters to achieve approximate equivariance, resulting in CNNs with a large computational burden. Also, they did not provide the error analysis.

There are also some empirical approaches for enforcing equivariance. A commonly utilized technique is data augmentation, see e.g. (Krizhevsky et al., 2012). The basic idea is to enrich the training set by transformed samples. The main deficiency is in that the equivariance needs to be learned by the network, demanding for a high learning capacity, which makes the network prone to overfitting. (Laptev et al., 2016) alleviated the drawbacks by using parallel siamese architectures for the considered transformation set and applying the transformation-invariant pooling (TI-Pooling) operator on their outputs before the fully-connected layers. Nevertheless, TI-Pooling requires significantly more training and testing cost than a standard CNN.

2.2. The Relationship between Convolutions and PDOs

The relationship between convolutions and PDOs was presented in (Dong et al., 2017; Ruthotto & Haber, 2018), where the authors translated a convolutional filter to a linear combination of PDOs, and this approximation has good analytical properties. Some works (Long et al., 2018; 2019) used this new understanding to help design CNN architectures. Also, this relationship is an important theoretical foundation of our work.

Actually, there exist some works using PDOs to investigate equivariance. (Liu et al., 2013) designed a partial differential equation (PDE) using a linear combination of equivariant PDOs and proposed learning based PDEs, which are naturally shift and rotation equivariant. (Fang et al., 2017) further adopted this technique on face recognition task. However, the capacity of learning based PDEs cannot be compared with that of nowadays widely used CNNs.

3. Mathematical Framework

In this section we will show how to design a group equivariant system using PDOs. To make concepts and notations more explicit, we give a preliminary introduction of groups and equivariance formally.

3.1. Prior Knowledge

The Isometry Group In mathematics, the isometry group is a group consisted of isometry transformations, which preserve the distance of any two points. Particularly, the Euclidean group is the largest isometry group defined on \mathbb{R}^n, which we denote as $E(n)$. Given $y \in \mathbb{R}^n$, the isometry transformation is:

$$ y \mapsto Ay + x, $$

where A is an orthogonal matrix, i.e., $A^T A = I$, and $x \in \mathbb{R}^n$. When $A = I$, the transformations in (1) compose the translation group $(\mathbb{R}^n; +)$.

Without ambiguity, we use \mathbb{R}^n to denote the translation group in the following text.
When $x = 0$, the Euclidean group degenerates to the orthogonal group, $O(n)$, which contains all the orthogonal transformations, including reflections and rotations. We use A to parameterize $O(n)$, \mathbb{R}^n and $O(n)$ are both subgroups of $E(n)$, and $E(n) = \mathbb{R}^n \rtimes O(n)$ (\rtimes is a semidirect-product).

We use (x, A) to represent the element in $E(n)$, where x and A represent a translation and a rotation, respectively. Restricting the domain of A and x, we can also use this representation to parametrize any subgroup of $E(n)$.

Actions on Functions As shown in (Cohen & Welling, 2016), feature maps can be modeled as functions defined on groups. Here, we model the input r as a smooth function defined on \mathbb{R}^n (i.e., $r : \mathbb{R}^n \to \mathbb{R}$) and the feature map e as a smooth function defined on $E(n)$ (i.e., $e : E(n) \to \mathbb{R}$). To be specific, with A fixed, the feature map $e(x, A)$ is smooth w.r.t. x. We use $C^\infty(\mathbb{R}^n)$ and $C^\infty(E(n))^2$ to denote the function spaces of r and e, respectively.

In this way, transformations like rotations and reflections on feature maps (or inputs) can be mathematically formulated. Here, we introduce two transformations used in our theory.

- Suppose that $r \in C^\infty(\mathbb{R}^n)$ and $A \in O(n)$, then the transformation A acts on r in the following way\(^3\):
 \[
 \forall x \in \mathbb{R}^n, \quad \pi_A^r[r](x) = r(A^{-1}x), \tag{2}
 \]
 where π_A^r denotes the action of transformation A on the function defined on \mathbb{R}^n.

- Following the above notation, we assume $e \in C^\infty(E(n))$ and $A \in O(n)$, then A acts on e in the following way:
 \[
 \forall a \in E(n), \quad \pi_A^e[e](a) = e(A^{-1}a), \tag{3}
 \]
 where $A^{-1}a$ is group product on $E(n)$. Using the representation of $E(n)$, it is of the following more detailed form:
 \[
 \pi_A^e[e](x, \tilde{A}) = e(A^{-1}x, A^{-1}\tilde{A}), \tag{4}
 \]
 where (x, \tilde{A}) is the representation of a.

Equivariance Equivariance measures how the outputs of a mapping transform in a predictable way with the transformation of the inputs. Here, we formulate it in detail. Let Ψ be a mapping from the input feature space to the output feature space and G is a group. A group equivariant Ψ satisfies that

\[
\forall g \in G, \quad \Psi[\pi_g[f]] = \pi_g[\Psi[f]],
\]

\(^3\)For the simplicity of our theory, we require that $r \in C^\infty(\mathbb{R}^n)$. However, in implementation, we only require that $r \in C^4(\mathbb{R}^n)$. The requirement on e is the same.

\(^5\)We use $[\cdot]$ to denote that an operator acts on a function.

![Figure 1](image-url) Figure 1. The transformation g can be preserved by the mapping Ψ.

where f can be any input feature map in the input feature space, and π_g and π_g' denote how the transformation g acts on input features and output features, respectively.

That is, transforming an input f by a transformation g (forming $\pi_g[f]$) and then passing it through the mapping Ψ should give the same result as first mapping f through Ψ and then transforming the representation. The schema of equivariance is shown in Figure 1. It is easy to see that if each layer of a network is equivariant, the equivariance can be preserved by the network.

3.2. Group Equivariant Differential Operators

We refer to H as a polynomial of n variables. $\frac{\partial}{\partial x^i}$ denotes the derivative with respect to the ith coordinate of x. Obviously, as a polynomial of PDOS $\{\frac{\partial}{\partial x^i}\}_{i=1}^n$, $H(\frac{\partial}{\partial x_1}, \frac{\partial}{\partial x_2}, \ldots, \frac{\partial}{\partial x_n})$ is still a PDO or a linear combination of PDOS. For example, if $H(x) = x^2$, $H(\frac{\partial}{\partial x}) = \frac{\partial^2}{\partial x^2}$.

3.2.1. Under Orthogonal Transformation

We transform these PDOS with orthogonal matrices, and define the following operator:

\[
\Psi^{(A)} = H \left(\frac{\partial}{\partial x_1^{(A)}}, \frac{\partial}{\partial x_2^{(A)}}, \ldots, \frac{\partial}{\partial x_n^{(A)}} \right), \tag{5}
\]

where

\[
\begin{bmatrix}
\frac{\partial}{\partial x_1^{(A)}} \\
\frac{\partial}{\partial x_2^{(A)}} \\
\vdots \\
\frac{\partial}{\partial x_n^{(A)}}
\end{bmatrix} = A^{-1} \begin{bmatrix}
\frac{\partial}{\partial x_1} \\
\frac{\partial}{\partial x_2} \\
\vdots \\
\frac{\partial}{\partial x_n}
\end{bmatrix}, \tag{6}
\]

and A is an orthogonal matrix. As a compact format, we can also rewrite (6) as

\[
\nabla^{(A)} = A^{-1} \nabla, \tag{7}
\]
where $\nabla = [\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n}]^T$, which is the gradient operator. Particularly, $\Psi^{(i)} = H(\frac{\partial}{\partial x_1}, \cdots, \frac{\partial}{\partial x_n})$. From another point of view, the transformation on PDOS can also be viewed as that we transform the coordinate frame according to A, and then conduct differential operations on the new coordinate frame (see Figure 2).

Next, we define two differential operators Ψ and Φ. One is a mapping from an input r defined on \mathbb{R}^n to a feature map e defined on $E(n)$, and the other one is a mapping between two feature maps defined on $E(n)$.

- $\Psi : C^\infty(\mathbb{R}^n) \rightarrow C^\infty(E(n))$
 \[\forall r \in C^\infty(\mathbb{R}^n), \quad \Psi[r](x, A) = \Psi^{(A)}[r](x). \]
 Using the above differential operator Ψ, we define the other operator Φ.

- $\Phi : C^\infty(E(n)) \rightarrow C^\infty(E(n))$
 \[\forall e \in C^\infty(E(n)), \quad \Phi[e](x, A) = \int_B \Psi^{(A)}_B[e](x, AB) \, d\nu(B), \]
 where B is an orthogonal matrix and ν is a measure on $O(n)$. The e on the right hand side should be viewed as a function defined on \mathbb{R}^n when the operator $\Psi^{(A)}_B$ acts on it, because its second index is fixed as AB. $\Psi^{(A)}_B$ is defined in a way similar to (5), i.e.,

$$
\Psi^{(A)}_B = H_B \left(\frac{\partial}{\partial x_1^{(A)}}, \frac{\partial}{\partial x_2^{(A)}}, \cdots, \frac{\partial}{\partial x_n^{(A)}} \right),
$$

where the coefficients in H_B are dependent on B, and the more detailed form is given in (23).

Now, we prove that the above two operators are equivariant under orthogonal transformation and show how the outputs transform w.r.t. the transformation of inputs.

Theorem 1 If $r \in C^\infty(\mathbb{R}^n), e \in C^\infty(E(n))$ and $\tilde{A} \in O(n)$, the following rules are satisfied:

$$
\Psi \left[\pi^R_{\tilde{A}}[r] \right] = \pi^E_{\tilde{A}} \left[\Psi[r] \right],
$$

(11)

$$
\Phi \left[\pi^E_{\tilde{A}}[e] \right] = \pi^E_{\tilde{A}} \left[\Phi[e] \right],
$$

(12)

where $\pi^R_{\tilde{A}}, \pi^E_{\tilde{A}}, \Psi$ and Φ are defined in (2), (4), (8) and (9), respectively.

Proof 1 To prove (11), we need to prove that $\forall x \in \mathbb{R}^n, A \in O(n)$,

$$
\Psi^{(A)} \left[\pi^R_{\tilde{A}}[r] \right](x) = \pi^E_{\tilde{A}} \left[\Psi^{(A)}[r](x) \right] = \Psi^{(\tilde{A}^{-1}A)}[r](\tilde{A}^{-1}x).
$$

(13)

We first show that

$$
\nabla^{(A)} \left[\pi^R_{\tilde{A}}[r] \right](x) = (\tilde{A}^{-1}\nabla) \left[\pi^R_{\tilde{A}}[r] \right](x) = (\tilde{A}^{-1}\nabla)[r](\tilde{A}^{-1}x) = (\tilde{A}^{-1}A)^{-1}\nabla[r](\tilde{A}^{-1}x) = (\nabla^{(\tilde{A}^{-1}A)})[r](\tilde{A}^{-1}x).
$$

The derivation from the third line to the fourth line is due to the orthogonality of \tilde{A}. Thus for any element x_i in x, we have

$$
\frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}} \left[\pi^R_{\tilde{A}}[r] \right](x) = \frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}}[r](\tilde{A}^{-1}x).
$$

Furthermore,

$$
\nabla^{(A)} \left[\frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}} \left[\pi^R_{\tilde{A}}[r] \right] \right](x) = \tilde{A}^{-1}\nabla \left[\frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}}[r](\tilde{A}^{-1}x) \right] = ((\tilde{A}^{-1}A)^{-1}\nabla)[r](\tilde{A}^{-1}x) = (\nabla^{(\tilde{A}^{-1}A)})[r](\tilde{A}^{-1}x).
$$

Then we have that for any elements x_i and x_j in x,

$$
\frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}} \frac{\partial}{\partial x_j^{(\tilde{A}^{-1}A)}} \left[\pi^R_{\tilde{A}}[r] \right](x) = \frac{\partial}{\partial x_i^{(\tilde{A}^{-1}A)}} \frac{\partial}{\partial x_j^{(\tilde{A}^{-1}A)}}[r](\tilde{A}^{-1}x).
$$

In this way, it is easy to prove that (13) is satisfied for all the differential operator terms in $\Psi^{(1)}$. Finally, as $\Psi^{(1)}$ is a linear combination of above terms, (13) is satisfied. Easily, (11) is satisfied.

As for (12), similarly, $\forall x \in \mathbb{R}^n, A \in O(n)$,

$$
\Phi \left[\pi^E_{\tilde{A}}[e] \right](x, A) = \Phi \left[e(\tilde{A}^{-1}x, \tilde{A}^{-1}AB) \right] = \int_B \Psi^{(A)}_B \left[e(\tilde{A}^{-1}x, \tilde{A}^{-1}AB) \right] \, d\nu(B) = \int_B \Psi^{(A)}_B \left[\pi^E_{\tilde{A}}[e](x, \tilde{A}^{-1}AB) \right] \, d\nu(B) = \int_B \psi^{(A)}_B(e)[x, \tilde{A}^{-1}x, \tilde{A}^{-1}AB] \, d\nu(B) = \int_B \psi^{(A)}_B[e](x, AB) \, d\nu(B) = \pi^E_{\tilde{A}} \left[\int_B \Psi^{(A)}_B[e](x, AB) \, d\nu(B) \right] = \pi^E_{\tilde{A}}[\Psi[e]](x, A).
$$

Figure 2. Transformation over coordinate frame.
PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

The derivation from the third line to the fourth line is due to (13).
So (12) is satisfied.

Furthermore, as differential operators are naturally translation-equivariant, \(\Psi \) and \(\Phi \) are also equivariant to the Euclidean group. Consequently, according to the working spaces, we set a \(\Psi \) as the first layer, followed by multiple \(\Phi \)s, inserted by pointwise nonlinearities, e.g., ReLUs, that do not disturb the equivariance. Finally, we can get a system where equivariance can be preserved across multiple layers.

3.2.2. Under Subgroup of Orthogonal Transformation

The above theorem can be easily extended to subgroups of the Euclidean group. Here we consider a subgroup \(\tilde{E}(n) \) with the form \(\mathbb{R}^n \rtimes S \), where \(S \) is a subgroup of \(O(n) \). Similarly, we denote the smooth feature map defined on \(\tilde{E}(n) \) as \(\tilde{\epsilon} \) and the function space as \(C^\infty(\tilde{E}(n)) \).

The definition of the differential operator \(\Psi^S : C^\infty(\mathbb{R}^n) \rightarrow C^\infty(\tilde{E}(n)) \) is the similar with (8):

\[
\forall r \in C^\infty(\mathbb{R}^n) \quad \Psi^S[r](x, A) = \Psi^{(A)}[r](x),
\]

where the only difference is that \(A \in S \). If \(S \) is a discrete group, the differential operator \(\Phi^S : C^\infty(\tilde{E}(n)) \rightarrow C^\infty(\tilde{E}(n)) \) is:

\[
\Phi^S[\tilde{\epsilon}](x, A) = \sum_{B \in S} \Psi^{(A)}[\tilde{\epsilon}](x, AB),
\]

where \(A \in S \). Following (2) and (4), we can define \(\pi^S_A \) and \(\pi^E_A \), where \(\tilde{A} \in S \). We can get the similar result:

\[
\Phi^S \left[\pi^S_A[r] \right] = \pi^S_A \left[\Psi^S[r] \right],
\]

\[
\pi^E_A \left[\Phi^S[\tilde{\epsilon}] \right] = \Phi^E \left[\pi^S_A[\tilde{\epsilon}] \right].
\]

Easily, they are also equivariant w.r.t. \(\tilde{E}(n) \).

4. PDO-eConvs

In this section, we will show how to apply our theory to 2D digital images, and derive approximately equivariant convolutions in the discrete domain. As they are designed using PDOs, we refer to them as PDO-eConvs. To begin with, we show how to apply PDOs on discrete images and feature maps with convolutional filters, respectively.

4.1. Differential Operators Acting on Discrete Features

We can view discrete digital images as samples from smooth functions defined on the 2D plane. Formally, we assume that an image data \(I \in \mathbb{R}^{n \times n} \) represents a two-dimensional grid function obtained by discretizing a smooth function \(r : [0, 1] \times [0, 1] \rightarrow \mathbb{R} \) at the cell-centers of a regular grid with \(n \times n \) cells and a mesh size \(h = 1/n \), i.e., for \(i,j = 1, 2, \ldots, n \),

\[
I_{i,j} = r(x_i, y_j),
\]

where \(x_i = (i - \frac{1}{2})h \) and \(y_j = (j - \frac{1}{2})h \).

Accordingly, feature maps in the convolution neural network are multi-channel matrices. Similarly, it can be seen as the discretizations of continuous functions defined on \(\tilde{E} \), where \(\tilde{E} = \mathbb{R}^2 \rtimes S \) and \(S \) is a subgroup of \(O(2) \). Formally, a feature map \(F \) represents a three-dimensional grid function sampled from a smooth function \(e : [0, 1]^2 \times S \rightarrow \mathbb{R} \). For \(i,j = 1, 2, \ldots, n \),

\[
F_{i,j}^k = e(x_i, y_j, k),
\]

where \(x_i = (i - \frac{1}{2})h \), \(y_j = (j - \frac{1}{2})h \) and \(k \in S \) which represents its channel index. Here, for ease of presentation, we only consider that inputs and feature maps are all single-valued functions, and the theory can be easily extended to multi-valued functions.

With the understanding that features are sampled from continuous functions, we can implement differential operations on features. Particularly, we use convolutions to approximate differential operations, which have been widely used in image processing. For example, the operator \(\partial_x \) acting on images and feature maps can be approximated by the following \(3 \times 3 \) convolutional filter with quadratic precision:

\[
\frac{\partial}{\partial x}[r](x_i, y_j) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ast I + O(h^2),
\]

\[
\frac{\partial}{\partial x}[e](x_i, y_j, k) = \begin{pmatrix} 1 & 1 & 1 \end{pmatrix} \begin{pmatrix} 0 & 0 & 0 \\ -1 & 0 & 1 \\ 0 & 0 & 0 \end{pmatrix} \ast F^k + O(h^2),
\]

where \(\ast \) denotes the convolution operation.

4.2. From Group Equivariant Differential Operators to PDO-eConvs

Firstly, we show how to choose the polynomial \(H \) from the connection between differential operators and convolutions. (Ruthotto & Haber, 2018) showed that we can relate a \(3 \times 3 \) convolutional filter to a differential operator, \(u \), which is a linear combination of 9 linearly independent PDOs:

\[
\begin{align*}
&u = \beta_1 \partial_0 + \beta_2 \partial_x + \beta_3 \partial_y + \beta_4 \partial_{xx} + \beta_5 \partial_{xy} \\
&+ \beta_6 \partial_{yy} + \beta_7 \partial_{xx} + \beta_8 \partial_{xy} + \beta_9 \partial_{xyy}.
\end{align*}
\]

4For ease of presentation, we denote the identity operator as \(\partial_0 \), and view it as a special PDO.
In addition, we observe that all differential operators in (21) can be approximated using 3×3 convolutional filters (see Supplementary Material 1.1) with quadratic precision. It is to say that we can always approximate the differential operators defined in (21), parameterized by $\beta = \{\beta_i, i = 1, 2, \ldots, 9\}$, using a 3×3 filter with quadratic precision. For this reason, we choose

$$H(x, y) = \beta_1 + \beta_2 x + \beta_3 y + \beta_4 x^2 + \beta_5 xy + \beta_6 y^2 + \beta_7 x^2 y + \beta_8 xy^2 + \beta_9 x^2 y^2.$$

(22)

For the same reason, we choose H_B used in (10) as

$$H_B(x, y) = \beta_1(B) + \beta_2(B)x + \beta_3(B)y + \beta_4(B)x^2 + \beta_5(B)xy + \beta_6(B)y^2 + \beta_7(B)x^2 y + \beta_8(B)xy^2 + \beta_9(B)x^2 y^2.$$

(23)

where the only difference is that the parameters $\beta(B)$ is dependent on the orthogonal matrix B. In this way, u equals $\Psi^{(1)}$, which is also the canonical differential operator of Ψ, indexed by the identity matrix. Using the transformation in (6), we can calculate all the expressions of elements in Ψ easily. Particularly, all elements in Ψ share the same parameters β, indicating greater parameter efficiency. In computation, we observe that some new partial derivatives, e.g., $\partial_{xxx}, \partial_{xxxx}$, may occur in some $\Psi^{(A)}$, where $A \in S$. Fortunately, the orders of these new partial derivatives are all below five, and we can use the filters with the size of 5×5 (see Supplementary Material 1.2) to approximate them with quadratic precision.

Now we investigate the group we use. According to (15), if S is a continuous group, we need to conduct integration. However, for the computation issue, it seems impossible to consider all the orthogonal transformations in $O(2)$. So we consider S to be a discrete subgroup of $O(2)$. Still, our theory is satisfied for feature maps defined on E (see Section 3.2.2). Particularly, noting that $O(2)$ is generated by reflections and rotations, we set the subgroup S to be generated by reflections and rotations by $2\pi/n$. As a result, $E = pnm$. If without reflections, $E = pn$. Discrete groups pnm and pn have been introduced in Section 1.

Finally, we discretize the equivariant differential operator Ψ with corresponding convolutional filters. As a result, we can get a new operator, $\tilde{\Psi}$, which is actually a set of convolution operators indexed by A:

$$\forall A \in S, \quad \tilde{\Psi}^{(A)} = \sum_{i \in \Gamma} C_i^{(A)} \tilde{u}_i,$$

(24)

where Γ indexes all the filters we use, $C_i^{(A)}$ are derived by substituting (6) into (5) and \tilde{u}_i is the convolutional filter related to the PDO ∂_i (e.g., \tilde{u}_0 and \tilde{u}_{xy} are related to ∂_0 and ∂_{xy}, respectively). Similarly, we can define a new convolution operator $\tilde{\Phi}$ by discretizing (15). Without ambiguity, we also use $*$ to denote the corresponding convolution operation. To be specific,

$$\forall A \in S, \quad (\tilde{\Phi} * F)^A = \sum_{k \in S} \tilde{\Psi}^{(A)}_k * F^{Ak},$$

(25)

where Ak is a group product on the group S, which represents the channel index of F, and $F^{Ak} \in \mathbb{R}^{n \times n}$.

We refer to Ψ and Φ as PDO-eConvs, because they are equivariant convolutions based on PDOs. Following (Cohen & Welling, 2016), we replace all the conventional convolutions in an existing CNN with our PDO-eConvs, and get the corresponding group equivariant CNN w.r.t. E.

Let us have a more detailed look at (24). Some convolutional filters like u_{xxxx} are of size 5×5, thus for some $A \in E$, $\Psi^{(A)}$ is also of size 5×5, while the canonical convolutional filter $\Psi^{(1)}$ is of size 3×3. We can explain the phenomenon in this way. By definition, the differential operator $\Psi^{(A)}$ is transformed from $\Psi^{(1)}$. Intuitively, we can also view the convolutional filter $\tilde{\Psi}^{(A)}$ as a transformed version of $\tilde{\Psi}^{(1)}$. We assume the transformation to be the rotation. As shown in Figure 3, $\tilde{\Psi}^{(A)}$ is a rotated version of $\tilde{\Psi}^{(1)}$, which overflows the original 3×3 area. So it makes sense to use a larger filter to represent some transformed filters. That 5×5 is sufficient is because the rotated 3×3 mask can always be covered by a 5×5 square, noting that $5 \geq 3\sqrt{2}$.

4.3. Approximation Error of Equivariance

When we discretize the differential operators Ψ and Φ, errors occur, leading to equivariance disturbance. Nonetheless, we can still achieve approximate equivariance. Here, we analyze the approximation error of our PDO-eConvs.

Theorem 2 \(\forall A, \tilde{A} \in S,\)

$$\tilde{\Psi}^{(A)} * \pi_{\tilde{A}} E[I] = \pi_{\tilde{A}} E \left[\tilde{\Psi}^{(A)} * I \right] + O(h^2),$$

(26)

$$\tilde{\Phi}^{(A)} * \pi_{\tilde{A}} E[F] = \pi_{\tilde{A}} E \left[\tilde{\Phi}^{(A)} * F \right] + O(h^2),$$

(27)
where transformations such as rotations or mirror reflections acting on images are defined as \(\pi^R_A[I]_{i,j} = (\pi^R_A[r])_i(x_i, y_j) \) and transformations acting on feature maps are \(\pi^E_A[F]_{i,j} = (\pi^E_A[e])_i(x_i, y_j, k) \).

Proof 2 The operator \(\Psi^{(A)} \) is a linear combination of differential operators and \(\tilde{\Psi}^{(A)} \) is a combination of corresponding convolution operators. Hence if \(f \) is a smooth function,

\[
\Psi^{(A)} \left[\pi^R_A[f] \right] (x_i, y_j) = \left[\Psi^{(A)} * \pi^R_A[f] \right]_{i,j} + O(h^2), \\
\pi^E_A \left[\Psi^{(A)}[f] \right] (x_i, y_i) = \left[\pi^E_A[\tilde{\Psi}^{(A)}] * I \right]_{i,j} + O(h^2).
\]

From (16) we know that the left hand sides of the above two equations equal, hence the right hand sides of the two equation are the same, which results in (26). We can prove (27) analogously.

4.4. Weight Initialization Scheme

An important practical issue in the training phase is an appropriate initialization of weights. When the variances of weights are chosen too high or too low, the signals propagating through the network are amplified or suppressed exponentially with depth. (He et al., 2015) and (Glorot & Bengio, 2010) investigated this problem and proposed widely used initialization schemes. However, our filters are not parameterized in a pixel basis but as a linear combination of several PDOs, thus the above-mentioned initialization schemes cannot directly be adopted for our PDO-eConvs.

To be specific, we consider the canonical filter \(\tilde{\Psi}^{(1)} \) in each PDO-eConv, and initialize it with He’s initialization scheme (He et al., 2015). Then we initialize the parameters \(\beta \) of the PDO-eConv by solving the linear equation

\[
\tilde{\Psi}^{(1)} = \beta_1 \tilde{u}_0 + \beta_2 \tilde{u}_x + \beta_3 \tilde{u}_y + \beta_4 \tilde{u}_{xx} + \beta_5 \tilde{u}_{xy} \\
+ \beta_6 \tilde{u}_{yy} + \beta_7 \tilde{u}_{xxy} + \beta_8 \tilde{u}_{xyy} + \beta_9 \tilde{u}_{xxyy},
\]

with the initialized \(\tilde{\Psi}^{(1)} \). In this way, the canonical filter is initialized with He’s initialization scheme. Since other filters are obtained by transforming the canonical filters, they also have appropriate variances. We initialize each \(\tilde{\Psi}_k \) in (25) in the same way. We use this method to initialize all the PDO-eConvs in experiments and all the experiments are implemented using Tensorflow.

5. Experiments

5.1. Rotated MNIST

The most commonly used dataset for validating rotation-equivariant algorithms is MNIST-rot-12k (Larochelle et al., 2007). It contains the handwritten digits of the classical MNIST, rotated by a random angle from 0 to 2\(\pi \) (full angle). This dataset contains 12,000 training images and 50,000 test images, respectively. We randomly select 2,000 training images as a validation set. We choose the model with the lowest validation error during training. For preprocessing, we normalize the images using the channel means and standard deviations. We report the median test error of 5 runs.

We evaluate the performance of PDO-eConvs via the CNN architecture used in (Cohen & Welling, 2016). It contains 6 layers of \(3 \times 3 \) convolutions, 20 channels in each layer, ReLU functions, batch normalization (Ioffe & Szegedy, 2015), and max pooling after layer 2. Particularly, batch normalization should be implemented with a single scale and a single bias per PDO-eConv map to preserve equivariance. Using conventional convolutions, the topology of the network is shown in Supplementary Material 2.

Next, we consider the group \(p8 \) and replace each convolution by a \(p8 \)-convolution, divided the number of filters by \(\sqrt{8} \), in order to keep the numbers of parameters nearly the same. Thus we use 7 filters on each layer. In addition, we do not use pooling over rotations after the last convolution layer, in order to keep the orientation information intact.

The model is trained using the Adam algorithm (Kingma & Ba, 2015) with a weight decay of 0.01. We use the weight initialization method introduced in Section 4.4 for PDO-eConvs and Xavier initialization (Glorot & Bengio, 2010) for the fully connected layer. We train using batch size 128 for 200 epochs. The initial learning rate is set to 0.001 and is divided by 10 at 50\% and 75\% of the total number of training epochs. We set the dropout rate as 0.2.

As shown in Table 1, with comparable numbers of parameters, our proposed PDO-eConv achieves 1.92\% test error, outperforming conventional CNN (5.03\%) and G-CNN (2.28\%), which is equivariant on group \(p4 \). This is mainly because that our model is rotation-equivariant w.r.t. smaller rotation angles, which brings in better generalization. ORN-8 also deals with an 8-fold rotational symmetry and adopts an extra strategy, ORNAalign, to refine feature maps. Compared with ORN-8 (ORNAalign), our method still results in lower test error, using far fewer numbers of parameters.

<table>
<thead>
<tr>
<th>Network</th>
<th>Test Error (%)</th>
<th>params</th>
</tr>
</thead>
<tbody>
<tr>
<td>ScatNet-2 (Bruna & Mallat, 2013)</td>
<td>7.48</td>
<td>-</td>
</tr>
<tr>
<td>PCANet-2 (Chan et al., 2015)</td>
<td>7.37</td>
<td>-</td>
</tr>
<tr>
<td>ORN-8 (ORNAlign) (Zhou et al., 2017)</td>
<td>2.25</td>
<td>0.53M</td>
</tr>
<tr>
<td>TI-Pooling (Laptev et al., 2016)</td>
<td>2.2</td>
<td>13.3M</td>
</tr>
<tr>
<td>CNN</td>
<td>5.03</td>
<td>22k</td>
</tr>
<tr>
<td>G-CNN (Cohen & Welling, 2016)</td>
<td>2.28</td>
<td>25k</td>
</tr>
<tr>
<td>PDO-eConv (ours)</td>
<td>1.92</td>
<td>26k</td>
</tr>
</tbody>
</table>

Table 1. Error rates on MNIST-rot-12k (median of 5 runs).
(26k vs. 0.53M). TI-Pooling is a representative model of
transformation-invariant CNNs, which use parallel siamese
architectures. Compared with it, PDO-eConv performs bet-
ter (1.92% vs. 2.2%) using far fewer parameters (26k vs.
13.3M) and has much lower computational complexity.

5.2. Natural Image Classification

Although most objects in natural scene images are up-right,
rotations could exist in small scales. Besides, equivariance
to a transformation group brings in more parameter sharing,
which may improve the parameter efficiency. Here we eval-
uate the performance of our PDO-eConvs on two common
natural image datasets, CIFAR-10 (C10) and CIFAR-100
(C100) (Krizhevsky & Hinton, 2009), respectively.

The two CIFAR datasets consist of colored natural images
with 32 × 32 pixels. C10 consists of images drawn from
10 classes and C100 from 100. The training and the test
sets contain 50,000 and 10,000 images, respectively. We
randomly select 5,000 training images as a validation set.
We choose the model with the lowest validation error during
training. We adopt a standard data augmentation scheme
(mirroring/shift) (Lee et al., 2015) that is widely used
for these two datasets. For preprocessing, we normalize the
images using the channel means and standard deviations.
We report the median test error of 5 runs.

To evaluate our method, we take ResNet (He et al., 2016)
as the basic model, which consists of an initial convolution
layer, followed by three stages of 2n convolution layers
using \(k_i \) filters at stage \(i \), followed by a final classifica-
tion layer (6n + 2 layers in total). We replace all convolu-
tion layers of ResNets by our PDO-eConvs and implement batch
normalization with a single scale and a single bias per PDO-
Conv map. Also, we scale the number of filters to keep
the numbers of parameters approximately the same. All
the models are trained using stochastic gradient descent (SGD)
and a Nesterov momentum (Sutskever et al., 2013) of 0.9
without dampening. We train using batch size 128 for 300
epochs, weight decay of 0.001. The initial learning rate is
set to 0.1 and is divided by 10 at 50% and 75% of the total
number of training epochs. Similarly, we use the weight
initialization method introduced in Section 4.4 for our PDO-
eConvs and Xavier initialization for the fully connected
layer. We report the results of our methods in Table 2.

Following HexaConv, we use our PDO-eConvs to estab-
lish models that are equivariant to group \(p6 \) (\(p6m \)), where
\(n = 4 \) and \(k_i = 6, 13, 26 \) (\(k_i = 4, 9, 18 \)). Using comparable
numbers of parameters, our methods perform significantly
better than HexaConv (6.33% vs. 8.64% on C10). In addi-
tion, HexaConvs require extra memory to store hexagonal
images while our PDO-eConvs do not need so.

We evaluate PDO-eConvs using ResNet44, where \(n = 7 \)
and \(k_i = 11, 23, 45 \). Compared with GCNNs, our PDO-
eConvs achieve significantly better performance using com-
parable numbers of parameters (4.31% vs. 4.94% on C10,
and 21.41% vs. 23.19% on C100). When evaluated on
ResNet26, where \(n = 4 \), \(k_i = 20, 40, 80 \), PDO-eConv
results in 4.16% test error, comparable to 4.17% resulted
from GCNN, yet using much fewer parameters (4.6M vs.
7.2M). This is mainly because that PDO-eConvs can deal with
an 8-fold rotational symmetry, which exploits more rotational
symmetries compared with G-CNN.

Finally, we compare our models with deeper ResNets
(ResNet1001) and wider ResNets (Wide ResNet). As shown
in Table 2, PDO-eConvs result in 4.16% in C10 and 20.43% in
C100, respectively. The results are comparable to that
resulted from Wide ResNet but only using 12.6% param-
eters (4.6M vs. 36.5M), which implies that PDO-eConvs use
parameters much more efficiently.

6. Conclusion

We utilize PDOS to design a system which is exactly equiv-
ariant to a much more general continuous group, the n-
dimension Euclidean group, including \(p4m \) and \(p6m \) as spe-
cial cases. We use numerical schemes to implement these
PDOS and derive approximately equivariant convolutions,
PDO-eConvs. Particularly, we provide an error analysis
and show that the approximation error is of the quadratic
order. Extensive experiments verify the effectiveness of our
method.

In this work, we only conduct experiments on 2D images.
Actually, our theory can deal with the data with any dimen-
sion. We will explore more possibilities in the future.
PDO-eConvs: Partial Differential Operator Based Equivariant Convolutions

References

