Supplementary Material of PDO-eConvs: Partial Differential Operator Based
Equivariant Convolutions

1. Numerical Schemes of Partial Differential
Operators

1.1. Filters of Size 3 x 3
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The topology of CNN model used in Section 5.1 is shown
in Table 1. We replace each conventional convolution by
1.2. Filters of Size 5 x 5 a PDO-eConv and obtain an equivariant CNN model. The
numbers of filters are modified accordingly, in order to keep
the numbers of parameters nearly the same. Each PDO-

0 0 0 0 0 eConv is followed by a batch normalization layer and an
0 0 0 ReLU function. Particularly, batch normalization should
Uppsw = % -12 1 0 -1 12 be implemented with a single scale and a single bias per
0 0 0 PDO-eConv map to preserve equivariance. We use dropout
0 0 0 0 0 after PDO-eConvs and set the dropout rate to 0.2.
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Table 1. The topology of the conventional CNN used in Section

5.1.
Layer Parameters and channel size.
input size: 28 x 28
convolution channel: 20
convolution channel: 20

max pooling

kernel: 2 x 2, stride: 2

convolution channel: 20
convolution channel: 20
convolution channel: 20
convolution channel: 20
linear channel: 10
softmax

3. PDO-eConv vs. Competitive Models

We compare the performance of our PDO-eConv with some
more competitive models, using a larger model. The archi-
tecture is given in Table 2. Different from the architecture
shown in Table 1, we use the orientation pooling after the
final PDO-eConv layer, in order to get rotation-invariant
features. Following (Weiler et al., 2018), we augment the
dataset with continuous rotations during training time. For
using data augmentation and the larger model, we train our
model for 300 epochs, starting with a learning rate of 1073
and reducing it gradually to 1075, The other training de-
tails are the same as that in Section 5.1. As shown in Table
3, SFCNN achieved 0.714% test error on rotated MNIST.
Compared with SFCNN, our method achieves a comparable
result, 0.709% test error, using only 10% parameters. To be
specific, our method uses 0.65M parameters, while SFCNN
needs 6.5M parameters.

Table 2. The topology of the CNN model using PDO-eConvs.

Layer Parameters and channel size.
input size: 28 x 28
PDO-eConv channel: 16
PDO-eConv channel: 16

max pooling kernel: 2 x 2, stride: 2
PDO-eConv channel: 32
PDO-eConv channel: 32
PDO-eConv channel: 32
PDO-eConv channel: 64
PDO-eConv channel: 64

max pooling kernel: 2 x 2, stride: 2

orientation pooling

linear channel: 10
softmax

Table 3. Error rates on MNIST-rot-12k (median of 5 runs).

Method Test Error (%)
H-Net (Worrall et al., 2017) 1.69
OR-TIPooling (Zhou et al., 2017) 1.54
RotEqNet (Marcos et al., 2017) 1.09
RotEqNet (test time augmentation) (Marcos et al., 2017) 1.01
SFCNN (Helnit) (Weiler et al., 2018) 0.957
SFCNN (CoefflInit) (Weiler et al., 2018) 0.714
PDO-eConv (ours) 0.709
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