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Abstract

In recent years, convolutional neural networks have achieved great success in streak arti-
facts reduction. However, there is no special method designed for the artifacts reduction
of the prostate. To solve the problem, the artifacts reduction CliqueNet (ARCliqueNet)
to reconstruct dense-view computed tomography images form sparse-view computed
tomography images is proposed. In detail, first, the proposed ARCliqueNet extracts a set
of feature maps from the prostate sparse-view CT image by Clique Block. Second, the
feature maps are sent to ASPP with memory to be refined. Thenanother Clique Block is
applied to the output of ASPP with memory and reconstruct the dense-view CT images.
Later on, reconstructed dense-view CT images are used as new input of the original net-
work. This process is repeated recurrently with memory delivering information between
these recurrent stages. The final reconstructed dense-view CT images are the output of the
last recurrent stage. Our proposed ARCliqueNet outperforms the SOTA (state-of-the-art)
general artifacts reduction methods on the prostate dataset in terms of PSNR (peak signal-
to-noise ratio) and SSIM (structural similarity). Therefore, we can draw the conclusion
that Clique structures, ASPP with memory and recurrent learning are useful for prostate
sparse-view CT Artifacts here.

1 INTRODUCTION

The prostate is a small, walnut-sized gland located deep inside
the groin. Due to bad work, health and eating habits, prostate
diseases are very common in men.

For example, prostate cancer is the second leading cause of
cancer death in American men. Fortunately, because of a huge
increase in imaging techniques, such as computed tomogra-
phy (CT), prostate diseases are now easier to diagnose. Pre-
cise imaging of the prostate is very useful for treatment plan-
ning and many other diagnostic and therapeutic procedures for
prostate diseases.

However, precise CT always brings a considerable amount of
radiation dose, which is harmful to human health. One way to
reduce radiation dose is sparse-view CT reconstruction, which
is achieved by reducing the number of radiation angles, that is.,
views. This method is also called ’down-sampling streak arti-
facts’ since reducing the number of radiation angles can be
regarded as downsampling. Every coin has two sides. Fewer X-
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ray projection views result in more streak artifacts and worse
image quality than CT images reconstructed from original dense
projection views. Besides, because of large variations of prostate
shape and indistinct prostate boundaries, streak artifacts make
it harder for doctors to locate and diagnose. Balancing image
quality and radiation dose level has become a well-known trade-
off problem.

To resolve this issue, we propose a neural network archi-
tecture named artifacts reduction CliqueNet (ARCliqueNet)
to reconstruct dense-view CT images from sparse-view CT
images. The prostate has a wide variation in size and shape
among different subjects due to pathological changes, so we
introduce ASPP [1] to use multi-scale information to further
enhance the efficiency of information acquisition, and Clique
Block [2] to maximise information flow. What is more, due to
the similar appearance of the prostate and its surrounding tis-
sues (e.g. blood vessels, bladder, rectum, and seminal vessels),
the lack of clear prostate boundaries motivates us to introduce
the recurrent mechanism to refine reconstruction images stage
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FIGURE 1 The prostate has a wide variation in size and shape among different subjects due to pathological changes, and there is lack of clear prostate boundaries
due to similar appearance of prostate and its surrounding tissues (e.g. blood vessels, bladder, rectum and seminal vessels). And as shown in the above two rows, the
streak artifacts, resulting from sparse view, make the prostate more confusing and hard to locate and analyse

by stage and add memory mechanism to ASPP. According to
the two weaknesses mentioned above, which can be seen in
Figure 1, ARCliqueNet involves Clique Block [2], ASPP [1] with
memory and recurrent mechanism.

Main contributions of this paper are listed as follows:

1. To the best of our knowledge, this is the first paper to intro-
duce Clique Block [2] and ASPP [1] with memory into the
streak artifacts reduction of CT. These designs are special
for the prostate’s properties.

2. We bring in recurrent mechanism to refine prostate CT
images getting rid of streak artifacts stage by stage. This
mechanism encourages the addition of memory for ASPP
and is also helpful to reduce parameters needed.

3. Experiments show that ARCliqueNet outperforms general
SOTA artifacts reduction methods on prostate CT images
dataset from the American Association of Physicists in
Medicine (AAPM) [3].

2 RELATED WORK

2.1 Basic module evolution

A number of deep networks with large model capacity have
been proposed. These designs can be briefly divided into two
categories: widen the network and deepen the network.

As for widening the network, the Inception module [4] fuses
the features in different map sizes to construct a multi-scale
representation. Wide residual networks [5] increase the width
and decrease the depth to improve the performance. However,
simply widening the network is easy to consume more runtime
and memory.

As for deepening the networks, skip connections or short-
cut paths are widely adopted to ease the training stage of the
network, such as ResNet [6]. To further increase information

flow, DenseNet [7] replaces the identity mapping in the resid-
ual block by concatenating operation so that new feature learn-
ing can be reinforced while keeping old feature reused. In each
Clique Block [2], both forward and feedback are densely con-
nected. The information flow is maximised and feature maps
are repeatedly refined by attention mechanism.

2.2 Streak artifacts reduction in computer
vision

With the demand for radiation dose reduction is becoming more
and more intense, great efforts have been devoted to improving
sparse-view CT reconstruction’s quality. Existing approaches
to address the streak artifacts can be mainly divided into two
categories.

On the one hand, classical methods are developed from
mathematics problems, such as compressed sensing theory, total
variation, dictionary learning, and so on. These methods include
ASD-POCS [8], AwTV [9], ASDL [10] and so on.

On the other hand, with the rapid growth in deep learning,
deep learning methods, such as Tight Frame U-Net(TF U-Net)
[11], cascade of U-Nets [12], outperform traditional methods in
terms of PSNR and SSIM.

Our method is a deep learning method incorporating Clique
Block [2], ASPP [1] with memory and recurrent mechanism.
These designs are intended to solving the lack of clear prostate
boundaries due to similar appearance between the prostate and
the surrounding tissues, and the wide variation in size and shape
among different subjects.

3 PROPOSED METHODS

In this section, we first overview the proposed ARCliqueNet
architecture, then we introduce Clique Block [2] as encoder
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FIGURE 2 The architecture of ARCliqueNet in one recurrent stage

FIGURE 3 (a) Clique Block. (b) ASPP with memory

and decoder, recurrent mechanism, and ASPP with memory
as information reconstruction net, which are the key parts
of ARCliqueNet.

3.1 Overview

As shown in Figure 2, our ARCliqueNet mainly consists of two
modules: Clique Block [2] and recurrent mechanism including
ASPP [1] with memory. Clique Block [2] is responsible for the
conversion between images and a set of feature maps. ASPP
[1] is originally designed to combine information from different
receptive sizes. Due to the appearance of the recurrent mech-
anism, the memory mechanism is added to ASPP in order to
adapt to it and exploit its potential.

3.2 Clique Block as encoder and decoder

Clique Block [2] is showed in Figure 3(a). The reasons why
Clique Block [2] is chosen as the main module are illustrated
as follows. First, the forward propagation of Clique Block [2]
contains two stages. The first stage does the same things as

Dense Block [7]. Besides, the second stage distills the feature
further. Second, compared with the Dense Block [7], the Clique
Block [2] contains more skip connections, so the information
flow among layers can be more efficient.

Suppose a Clique Block [2] has l layers, the channel of input
is c1, and the channel of each layer in a Clique Block [2] is c2.
The input and the output of the Clique Block [2] are denoted
by X0 ∈ ℝc1×h×w and Y ∈ ℝ(lc2 )×h×w , respectively. The weight
between layer i and layer j is represented by Wi j . The feed-
forward pass of the Clique Block [2] can be mathematically
described as the following equations. For stage one,

X
(1)
i = 𝜎

(
i−1∑
k=1

Wki ∗ X
(1)
k
+ W0i ∗ X0

)
, (1)

where ∗ is the convolution operation, 𝜎 is the activation func-
tion. For stage two,

X
(2)
i = 𝜎

(
i−1∑
k=1

Wki ∗ X
(2)
k
+

l∑
k=i+1

Wki ∗ X
(1)
k

)
, (2)
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For the output of Clique Block,

Y =

[
X

(2)
1 , X

(2)
2 , X

(2)
3 ,… , X

(2)
l

]
, (3)

where [⋅] represents the concatenation operation.
A important difference between original Clique Block [2] and

the Clique Block [2] in ARCliqueNet is that Clique Block [2]
in ARCliqueNet has no batch normalisation (BN) [13] layers.
Because BN [13] can reduce the internal covariate shift of fea-
ture maps, BN [13] is widely used in deep neural network’s train-
ing stage. Through applying BN [13], each normalised scalar
feature has zero mean and unit variance. So these features have
the same distribution and are independent of each other. How-
ever, in the artifacts reduction problem, streak artifacts in differ-
ent layers have different distributions in intensity, color, shapes
and etc. Therefore, BN [13] contradicts the characteristics of
our proposed model, and we choose to remove BN [13] from
the original Clique Block [2].

Besides, since BN [13] has to keep a normalised copy of the
feature map in GPU, removing BN [13] can also reduce the
demand on GPU memory. This benefit can help us to enlarge
model capacity or increase batch size.

3.3 ASPP with memory

ASPP actually is an atrous version of spatial pyramid pool-
ing (SPP), in which the concept has been used in SPPNet
[14]. In ASPP, parallel atrous convolutions with different dila-
tion sizes (DS) are applied in the input feature map and fuse
the processed feature maps together. Some of the papers also
call atrous convolution as dilated convolution. As the prostate
has different scales and shapes in different objects’ CT images,
ASPP helps to account for different scales and shapes which
can improve the precision.

As we remove the streak artifacts in multiple stages based on
recurrent mechanism, useful information for reduction in pre-
vious stages can guide the learning in later stages. So we incor-
porate the RNN architecture with memory mechanism to make
full use of the useful information in previous stages. In detail,
the atrous convolutions in ASPP are replaced with convolu-
tional GRU with dilation to fully exploit recurrent mechanism
and ASPP’s potential. ASPP with memory is used as an infor-
mation reconstruction net and shown in Figure 3(b).

3.4 Recurrent mechanism

As there are various streak artifacts of different characteristics
in a sparse-view CT image, we think it is better to refine recon-
structed dense-view CT images stage by stage. Meanwhile, the
recurrent mechanism is suitable for decomposing the denoise
task into multiple stages.

In each recurrent stage, our proposed model predicts the
whole residual, that is, streak artifacts. Our scheme can be for-

mulated as:

I 1
s = Iori, H 0 = None, (4)

R̂n = Fn(I n
s , H n−1), 1 ≤ n ≤ N, (5)

I n+1
s = Î n

d
= Iori − R̂n, (6)

where Iori indicates the original sparse-view CT image, I n
s rep-

resents the input of the nth recurrent stage, N is the number
of recurrent stages, Fn indicates the computing process of the
nth recurrent stage, H n−1 represents the hidden states, that is,
the feature maps of the previous stage in ASPP with memory,
R̂n indicates the output of the nth recurrent stage, and Î n

d
is the

predicted dense-view CT image as well as intermediate artifacts-
free image after the nth recurrent stage.

The recurrent mechanism with N stages is shown in Figure 4.
In order to illustrate the effect of recurrent mechanism, we
also present the metric of different stages in Figure 4, and the
difference between the previous stage and the later stage in
Figure 5.

3.5 Loss function

The loss function is defined as the sum of all recurrent stages’
MSE loss, which is formulated as:

L(Θ) =
N∑

n=1

‖‖‖R̂n − R
‖‖‖2

F
, (7)

where Θ represents the network’s parameters, R is the resid-
ual between the original sparse-view CT image and dense-view
CT image, and R̂n indicates the output of the nth recurrent
stage.

4 EXPERIMENTS

4.1 Dataset

We evaluate ARCliqueNet on a dataset from AAPM [3], which
consists of 2,378 CT images from 10 patients and is the most
commonly used benchmark dataset in artifact reduction field.
For training, we use five male patients’ data containing CT
images from chest to hip, whose range includes prostate. For
testing, we use the other patients’ CT images only containing
the prostate. For the training set, we use the 2D FBP recon-
struction images from 60, 120, 180, and 240 projection views as
input. And we adopt residual learning, so the residual images,
that is, streak artifacts, are used as the label. The residual images
are the difference between the dense-view (720 views) recon-
structions and the sparse-view reconstructions.
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FIGURE 4 The architecture of ARCliqueNet of N recurrent stages

FIGURE 5 The difference between Î 1
d

and Î 2
d

as well as Î 2
d

and ˆI N
d

in Fig-
ure 4

4.2 Experimental setup

In our experiments, the size of each image in the system is
1*512*512 (1 is the number of channels). In order to avoid the
influence of outliers, we normalise the dataset according to the
upper and lower 25 points of all pixels’ values. For a fair compar-
ison, all architectures are trained by Adam algorithm. For evalu-
ation metrics, we adopt SSIM and PSNR.

In our proposed ARCliqueNet, the layer number in a Clique
Block [2] is 3, and the stage number is set as 2. And the dila-

TABLE 1 Quantitative comparison between ARCliqueNet and other
SOTA methods on AAPM’s prostate CT dataset

SSIM/PSNR 60 views 120 views 180 views 240 views

FBP [15] 0.651/25.18 0.897/33.16 0.975/39.46 0.992/44.27

TF U-Net [11] 0.971/38.43 0.989/43.30 0.994/46.35 0.996/48.31

DD-Net [16] 0.967/37.56 0.986/41.72 0.991/44.33 0.993/45.56

ARCliqueNet 0.974/39.07 0.991/44.56 0.995/47.75 0.997/49.55

tion sizes in ASPP with memory is 1, 2, 4, 8, which ensure the
fastest growth in receptive field size without missing any pixel
in its receptive field. Unlike most neural network designed for
computer vision, we avoid dropout [17], batch normalisation
[13] and instance normalisation [18], because they reduce the
flexibility of features and not suitable for the artifact reduction
problem.

4.3 Experimental results

4.3.1 Comparison between ARCliqueNet
and other SOTA models

In Table 1, we present the average PSNR and SSIM values of
FBP, other SOTA methods, and ARCliqueNet. All methods are
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FIGURE 6 MSE curve of 60 and 120 views on test data during the training process

FIGURE 7 Qualitative comparison between ARCliqueNet and other SOTA methods on test sample No. 10 in AAPM’s prostate CT dataset of 60 views. It is
easy to find that the quality of ARCliqueNet’s reconstructed dense-view CT images is better than Tight Frame U-Net’s and DD-Net’s

significantly better than FBP [15]. Our ARCliqueNet achieves
much better results than the other two SOTA methods in all
different views.

Besides, the MSE curve on test data during the training
process is presented in Figure 6. We can observe that our
ARCliqueNet converge at the lowest MSE value. We take the
60 and 120 views, for example, and the results of 180 and 240
views are similar to 60 and 120 views’ MSE curves.

Qualitative results of 60 view are shown in Figures 7 and 8.
In the figure, we can easily see the outputs of our ARCliqueNet

have less noise and clearer boundaries, especially in the red box
area, which is related to the prostate and its surroundings.

4.3.2 Ablation study about Clique Block and
recurrent mechanism with memorised ASPP

In this part, we conduct experiments to compare the effect
of Clique Block [2] and recurrent mechanism with memorised
ASPP [1]. Since ASPP with memory working with recurrent
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FIGURE 8 Qualitative comparison between ARCliqueNet and other SOTA methods on test sample No. 29 in AAPM’s prostate CT dataset of 60 views. It is
easy to find that the quality of ARCliqueNet’s reconstructed dense-view CT images is better than Tight Frame U-Net’s and DD-Net’s

TABLE 2 Ablation study about the existence of Clique Block and
recurrent mechanism with memorised ASPP on 120 views prostate CT dataset

Clique

Block PSNR/SSIM

Recurrent and ASPP

with memory PSNR/SSIM

✓ 0.991/44.56 ✓ 0.991/44.56

× 0.989/44.07 × 0.985/42.86

mechanism can play an effective role, we bind them together
in the study. In Table 2, we report the ablation study’s results. It
is obvious that both Clique Block [2] and recurrent mechanism
with memorised ASPP [1] are beneficial to the performance. In
addition, the recurrent mechanism with memorised ASPP [1]
contributes more than Clique Block [2].

4.3.3 The performance contribution of
different recurrent stages

In the previous subsection, we find that the recurrent mecha-
nism with memorised ASPP [1] contributes more than Clique
Block [2]. So, we conduct experiments to compare the perfor-
mance contribution of different recurrent stages.

We report the SSIM and PSNR of different stages’ output
of different views in Table 3, where it can be concluded that
every recurrent contributes to the final performance and later
stages contribute less than earlier ones. This is because mem-

TABLE 3 Quantitative comparison of the performance contribution of
different recurrent stages

SSIM/PSNR 60 views 120 views 180 views 240 views

Stage 0 (input) 0.651/25.18 0.897/33.16 0.975/39.46 0.992/44.27

Stage 1 0.932/36.08 0.985/42.85 0.994/46.83 0.996/48.87

Stage 2 0.968/38.55 0.990/44.32 0.995/47.68 0.997/49.50

Stage 3 0.974/39.07 0.991/44.56 0.995/47.75 0.997/49.55

ory feature helps the previous recurrent stages guide the later
stages’ learning and the noise in later stages is minor than ear-
lier stages. Therefore, we can draw the conclusion that recurrent
mechanism with memorised ASPP benefits the refining of arti-
facts reduction stage by stage.

4.3.4 Parameters cost and computational
complexity

This kind of medical research makes sense only when it is
put into application, so the parameters cost is fairly impor-
tant. After calculating the number of parameters used in Tight
Frame U-Net [11], DD-Net [16] and ARCliqueNet, we find out
that ARCliqueNet costs only 43.97% parameters of DD-Net
and 0.455% parameters of TF U-Net. The numerical results
are illustrated in Table 4. Hence our ARCliqueNet needing less
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TABLE 4 Parameters cost and computational complexity comparison
among Tight Frame U-Net, DD-Net and our proposed ARCliqueNet

Number of Params(K) FLOPs(G)

TF U-Net [11] 40,837 290.68

DD-Net [16] 423 4.58

ARCliqueNet 186 49.57

TABLE 5 Parameters cost and computational complexity comparison of
ARCliqueNet’s different parts

Params (K) FLOPs (G)

Encoder 4.15 1.69

Info reconstruction net 177.32 46.15

Decoder 4.35 1.74

Sum 185.81 49.57

parameter to realise high performance is more suitable for real
application than other SOTA methods.

As for computational complexity, Tight Frame U-Net
[11] is 290.6 GFLOPs, DD-Net [16] is 4.58 GFLOPs and
ARCliqueNet is 49.58 GFLOPs. The comparison is illustrated
in Table 4. Due to the recurrent mechanism, our ARCliqueNet
needs forward propagation three times in our experiments.
Besides, our ARCliqueNet does not downsample the feature
map. These two points result in that the ARCliqueNet needs
more FLOPs compared with DD-Net [16], but our proposed
model still needs fewer FLOPS than Tight Frame U-Net [11].

In addition, the parameters cost and computational complex-
ity comparison of ARCliqueNet’s different parts are presented
in Table 5. We can observe that the information reconstruc-
tion net takes up most of the parameters cost and computa-
tional complexity.

5 CONCLUSION

In this work, we investigate the utilisation of Clique Block and
recurrent mechanism with memorised ASPP for sparse-view
CT slice reconstruction. Since the prostate has a wide variation
in size and shape among different subjects due to pathologi-
cal changes, we introduce Clique Block to further extract useful
information. Besides, for the lack of clear prostate boundaries,
we bring in recurrent mechanism and ASPP with memory to get
multi-scale information and refine the reconstructed dense-view
CT images stage by stage. The experimental results show that
our proposed ARCliqueNet achieves very good performance
on the streak artifacts reduction task of prostate CT images.
We are sure that the Clique Block and ASPP with memory can
be easily applied to many more medical tasks and achieve high
performance.
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