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Abstract

Neural architecture search (NAS) aims to produce the optimal sparse solution from
a high-dimensional space spanned by all candidate connections. Current gradient-
based NAS methods commonly ignore the constraint of sparsity in the search phase,
but project the optimized solution onto a sparse one by post-processing. As a result,
the dense super-net for search is inefficient to train and has a gap with the projected
architecture for evaluation. In this paper, we formulate neural architecture search
as a sparse coding problem. We perform the differentiable search on a compressed
lower-dimensional space that has the same validation loss as the original sparse
solution space, and recover an architecture by solving the sparse coding problem.
The differentiable search and architecture recovery are optimized in an alternate
manner. By doing so, our network for search at each update satisfies the sparsity
constraint and is efficient to train. In order to also eliminate the depth and width
gap between the network in search and the target-net in evaluation, we further
propose a method to search and evaluate in one stage under the target-net settings.
When training finishes, architecture variables are absorbed into network weights.
Thus we get the searched architecture and optimized parameters in a single run.
In experiments, our two-stage method on CIFAR-10 requires only 0.05 GPU-day
for search. Our one-stage method produces state-of-the-art performances on both
CIFAR-10 and ImageNet at the cost of only evaluation time1.

1 Introduction

Current NAS studies can be mainly categorized into reinforcement learning-based [1, 60, 58, 61, 4],
evolution-based [41, 40, 29, 35, 14], Bayesian optimization-based [25, 59], and gradient-based
methods [30, 48, 5, 53]. Most reinforcement learning and evolution-based algorithms suffer from
huge computational cost, while gradient-based methods are simple to implement.

In gradient-based methods, an over-parameterized super-net is constructed to cover all candidate
connections. Different architectures are sub-graphs of the super-net by weight sharing [39]. Thus the
aim of search is to determine a sparse solution from the high-dimensional architecture space. Liu
et al. propose a differentiable search framework, DARTS [30], by introducing a set of architecture
variables jointly optimized with the network weights. After search, the architecture variables are
projected to be sparse by only keeping the top-2 strongest connections for each intermediate node as
the target-net for evaluation. This method is the basis of many follow-up studies [48, 5, 9, 49].

However, we note that the architecture variables do not satisfy the sparsity constraint during search.
There is a gap between the dense super-net in search and the sparse target-net in evaluation (the term
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“evaluation” in this paper denotes re-training on the full train set and validation on the test set). From
the perspective of optimization, solutions should be constrained in the feasible region at each iteration,
as adopted in the Projected Gradient Descent (PGD) [36] and proximal algorithms [37]. Otherwise,
the converged solution may be far from the optimal one in the feasible region. It explains the fact
that there is a poor correlation between the performances of super-net for search and target-net for
evaluation in DARTS [48, 7, 50]. A high-performance super-net does not necessarily produce a good
architecture after projection onto the sparsity constraint. Besides, the dense super-net covering all
candidate connections is inefficient to train due to its huge computational and memory cost.

In some follow-up studies [48, 13, 47, 7], the Gumbel Softmax strategy [24, 33] is adopted to enforce
sparsification. Nevertheless, the super-net still contains the whole graph which is different from the
derived architecture in target-net and does not reduce the computational and memory consumption.
In ProxylessNAS [5] and NASP [53], only sampled or projected connections are active for each
edge to reduce the memory consumption and search cost. But the active paths of super-net still
deviate from the target-net as there is no connection for some edges in the target-net. For single-path
architecture search, DSNAS [21] proposes a one-stage method to eliminate the inconsistency between
super-net and target-net brought by two-stage methods, while there is yet no single-stage solution to
DARTS-based architecture where the dimension of candidate connections is relatively higher.

Inspired by the observation that architecture variables in DARTS should have a sparse structure
that can be well-represented by a compact space, in this paper, we propose to formulate NAS as
a sparse coding problem, named ISTA-NAS. We construct an equivalent compressed search space
where each point corresponds to a sparse solution in the original space. We perform gradient-based
search in the compressed space with the sparsity constraint inherently satisfied, and then recover a
new architecture by the sparse coding problem, which can be efficiently solved by well-developed
methods, such as the iterative shrinkage thresholding algorithm (ISTA) [12]. The differentiable
search and architecture recovery are conducted in an alternate way, so at each update, the network for
search is sparse and efficient to train. After convergence, there is no need of projection onto sparsity
constraint by post-processing and the searched architecture is directly available for evaluation.

In previous studies [30, 48, 49], the super-net in search is dense, and thus has a smaller depth and
width than the target-net setting due to limited memory. However, the number of cells and channels
has a significant effect on the search result [50, 9]. In order to also eliminate these gaps between
super-net in search and target-net in evaluation, we develop a one-stage framework where search and
evaluation share the same super-net under the target-net settings, such as depth, width and batchsize.
One-stage ISTA-NAS begins to search with all batch normalization (BN) [23] layers frozen. When a
termination condition is satisfied, architecture variables cease to change and one sparse architecture is
searched and fixed. BN layers are now trainable and other network weights continue to be optimized.
After training, architecture variables are absorbed into the parameters of BN layers, and we get the
searched architecture and all optimized parameters in a single run with only evaluation cost.

We list the contributions of this paper as follows:
• We formulate neural architecture search as a sparse coding problem and propose ISTA-NAS,

which performs the differentiable search on an equivalent compressed space and recovers its
corresponding sparse architecture in an alternate manner. The sparsity constraint is inherently
satisfied at each update so the search is more efficient and consistent with evaluation.
• We further develop a one-stage ISTA-NAS that incorporates search and evaluation in a single

framework under the target-net settings. The network for search has no gap in terms of depth,
width and even training batchsize with the derived architecture for evaluation.
• In experiments, the two-stage ISTA-NAS finishes search on CIFAR-10 in only 0.05 GPU-day.

And the one-stage version produces state-of-the-art performances in a single run on CIFAR-10
or directly on ImageNet at the cost of only evaluation time. Code will be released.

2 Related Work

Neural architecture search (NAS) has been proposed to spare the manual efforts in traditional networks
[42, 43, 19, 22, 52, 51, 55] and benefit application tasks, such as object detection [38, 16, 45, 10],
and semantic segmentation [8, 28]. Current gradient-based search methods widely adopt a two-stage
strategy. In the first stage for search, the dense super-net covers all candidate connections and has to
decrease the depth and width. As a result, it has a gap with the target-net for evaluation in the second
stage, and the two stages correlate poorly. Several studies have been proposed for this problem.

2



Reducing the gap. To derive an architecture that is close to the one during search, Gumbel Softmax
[48, 13, 7] and sparsity or entropy regularization [56, 15] are adopted to enforce sparse architecture
variables. But the whole graph still needs to be stored and computed, which is inefficient to train
for the dense super-net. Some studies use a sparse super-net by only keeping sampled or projected
connections active [5, 53]. P-DARTS [9] reduces the depth gap by gradually dropping connections
and increasing depths. Even if these studies improve the correlation between the two stages, their
super-nets only approach to but do not strictly satisfy the sparsity constraint. A post-processing is still
needed to derive the target-net. Our method differs from theses studies in that we keep the sparsity
constraint inherently satisfied at each update, and do not need the projection as post-processing.

One-stage NAS. Some studies [3, 34, 21] have proposed one-stage search methods to circumvent the
gap brought by two-stage methods. The architecture variables and network weights are simultaneously
optimized. However, they are all proposed for the chain-based search space [18, 54, 47]. We show
that ISTA-NAS also enables one-stage search. As a comparison, our method is developed for the
cell-based search space in DARTS, which has a higher dimension because candidate connections for
each intermediate node come from various operations of multiple previous nodes.

We note that a study [11] introduces compressed sensing into NAS. But the method is based on
a meta-learning algorithm, instead of our differentiable architecture search. Besides, [27] tries to
combine optimization algorithms with neural architecture design, instead of search.

3 ISTA-NAS

In this section, we first make a brief review of the differentiable architecture search and sparse coding.
Then we build their relation and formulate NAS as a sparse coding problem. Finally, we introduce
our two-stage and one-stage ISTA-NAS algorithms, respectively.

3.1 Preliminaries on Differentiable Neural Architecture Search

The search space of a cell in DARTS-based method is formed as a directed acyclic graph (DAG)
consisting of n ordered nodes {x1, x2, · · · , xn} and their edges E = {e(i,j)|1 ≤ i < j ≤ n}.
Each edge has K candidate operations from O = {o1, o2, · · · , oK}, such as identity, max-pooling,
and 3 × 3 separable convolution. With a binary variable z(i,j)k ∈ {0, 1} to indicate whether the
corresponding connection is active, we have the intermediate node xj as:

xj =

j−1∑
i=1

K∑
k=1

z
(i,j)
k ok(xi) = zTj oj , (1)

where zj ∈ {0, 1}(j−1)K and oj ∈ R(j−1)K denote the vectors formed by z
(i,j)
k and ok(xi),

respectively. The goal of NAS is to solve the following constrained bi-level optimization problem:
Z∗ = argmin

Z
Lval(N (W ∗, Z)), (2)

W ∗ = argmin
W

Ltrain(N (W,Z)), (3)

s.t. ‖zj‖0 = sj , 1 < j ≤ n, (4)
where Z = {zj}nj=2, W is the weights of super-net N , and sj denotes the sparseness of node j.
Since the architecture variables zj are binary and thus stubborn to optimize in a differentiable way,
current studies adopt the continuous relaxation by z(i,j)k = exp(α

(i,j)
k )/

∑
k exp(α

(i,j)
k ) and optimize

α
(i,j)
k as trainable variables [30, 48, 9, 49]. In the search phase, the sparsity constraint Eq. (4) is

not considered. α(i,j)
k and W are optimized in an alternate manner by solving Eq. (2) and Eq. (3),

respectively. After search, zj is projected onto the sparsity constraint Eq. (4) by only keeping the
top-2 strongest dimensions for node j, i.e., sj = 2,∀ 1 < j ≤ n.

It is shown that current studies widely ignore the sparsity constraint Eq. (4) during search, and the
sparse architecture variables zj are derived by post-processing. This may cause an invalid search
process because there is few correlation between the optimal solutions inside and outside the feasible
region. Constraints should be satisfied at each step of optimization [36, 37]. In addition, the dense
super-net N (W,Z) covers all candidate connections in search. As a result, it is inefficient to train,
and has to adopt a small depth, width and training batchsize due to limited memory, which introduces
the gap of depth, width and batchsize with the target-net in evaluation.
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3.2 Preliminaries on Sparse Coding

Sparse coding serves as the basis of many machine learning applications, such as image denoising
and super-resolution (see [57] and references therein). It aims to recover a sparse signal z ∈ Rn from
its compressed observation b ∈ Rm:

b = Az + ε, (5)
where ε ∈ Rm is the additive noise, A ∈ Rm×n is an over-complete measurement matrix and we
have m < n. The sparsity constraint of z is non-convex and challenging to deal with. A popular
approach is to use the `1-norm as the convex surrogate, known as the LASSO formulation [46]:

min
z

1

2
‖Az− b‖22 + λ‖z‖1, (6)

where λ is the regularization parameter. Many well-developed algorithms are proposed to solve the
problem Eq. (6), such as the iterative shrinkage thresholding algorithm (ISTA) [12]:

z(t+1) = ηλ/L

(
z(t) − 1

L
AT (Az− b)

)
, t = 0, 1, · · · , (7)

where L is taken as the largest eigenvalue of ATA, and ηθ is the component-wise soft-thresholding
operator defined as: ηθ(x) = sign(x) max(|x| − θ, 0). ISTA is a proximal gradient method applied
to Eq. (6) and has an O(1/t) convergence rate with a proper λ [2].

3.3 Formulate Differentiable NAS as Sparse Coding

We also relax the binary constraint of zj and let zj ∈ Ω(zj) = {zj ∈ R(j−1)K : ‖zj‖0 ≤ sj},
where sj is the sparseness in Eq. (4). It is hard for current methods to search zj directly in Ω(zj).
If there is an equivalent search process constructed on a compressed space Ω(bj) = Rmj , where
mj < (j − 1)K, we can perform the differentiable search on the lower-dimensional space without
the sparsity constraint Eq. (4), and then recover a zj in Ω(zj) by sparse coding. We have bj by a
measurement matrix Aj ∈ Rmj×(j−1)K as bj = Ajzj . Assuming that Ej is a residual matrix of
Aj , such that AT

j Aj −Ej = I, we introduce a network defined on Ω(bj) by:

N (W,Z) :→ xj = zTj oj = zTj (AT
j Aj −Ej)oj = (Ajzj)

T (Ajoj)− zTj Ejoj

= (bTj Aj − [zj(bj)]
T
Ej)oj :→ N (W,B),

(8)

where xj and oj are defined in Eq. (1), B denotes the architecture variables in the networkN (W,B),
i.e., B = {bj}nj=2, and zj(bj) is deemed as a function of bj in N (W,B). The two arrows denote
how xj is produced in the networks N (W,Z) and N (W,B), respectively. We note that N (W,B)
and N (W,Z) have the same propagation for node xj ,∀ 1 < j ≤ n when bj = Ajzj .

Supposing there is only one architecture variable (i.e., n = 2), we remove the index j for simplicity.
We consider that A satisfies the restricted isometry property (RIP) [6] with the constant δ2s, which is
the smallest δ ∈ (0, 1) such that (1− δ)‖z‖22 ≤ ‖Az‖22 ≤ (1 + δ)‖z‖22 for all 2s-sparse z. Then for
any b ∈ Ω(b), there is at most one s-sparse z ∈ Ω(z) that satisfies Az = b. When δ meets a more
strict condition, an exact s-sparse recovery of z is guaranteed via `1-norm minimization [6]. Here
we simply assume that the solution derived by z∗ = argminz

1
2‖Az− b‖22 + λ‖z‖1 is s-sparse and

satisfies Az∗ = b, which is possible with λ small enough. Then we have the following proposition:

Proposition 1. Assume that A satisfies the RIP with its constant δ2s and the exact s-sparse solution
z∗ can be recovered by argminz

1
2‖Az− b‖22 + λ‖z‖1 and satisfies Az∗ = b. Then we have that

z∗ is the optimal solution of the network N (W, z) if and only if b∗ = Az∗ is the optimal solution of
the network N (W,b).

Proof. For sufficiency, suppose that there exists another s-sparse z′ 6= z∗, such that L(N (W, z′)) <
L(N (W, z∗)). Then b′ = Az′ 6= b∗ due to the RIP of A. Because the two networks N (W,b)
and N (W, z) have the same propagation by Eq. (8), we have L(N (W,b′)) = L(N (W, z′)) <
L(N (W, z∗)) = L(N (W,b∗)), which is in conflict with the fact that b∗ = Az∗ is the optimal
solution ofN (W,b). The necessity can be derived in the same way. Suppose that there exists another
b′ 6= b∗, such that L(N (W,b′)) < L(N (W,b∗)). Then z′ = argminz

1
2‖Az−b′‖22+λ‖z‖1 6= z∗.

We have L(N (W, z′)) = L(N (W,b′)) < L(N (W,b∗)) = L(N (W, z∗)), which is in conflict with
the fact that z∗ is the optimal solution of N (W, z), and concludes the proof.
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Algorithm 1 Two-stage ISTA-NAS (for search only)
Input: Initialize the network weights W of the whole super-net N (W,B) and architecture variables

bj ∈ Rmj for each intermediate node 1 < j ≤ n. Sample Aj ∈ Rmj×(j−1)K ,∀1 < j ≤ n.
1: while not converged do
2: Recover z by solving Eq. (9) with ISTA. Keep the top-s strongest magnitudes and set other

dimensions as zeros. The support set S(z) = {i|z(i) 6= 0};
3: Derive a sub-graph N (W(S), B) of the super-net by only propagating the dimensions in S;
4: Update network weights W(S) by descending∇W(S)

Ltrain(N (W(S), B));
5: Update architecture variables b by descending∇bLval(N (W(S), B));
6: end while

Output: Produce a sparse architecture for evaluation according to the final S(z).

𝐳 𝐛

𝑆 𝐛𝑇𝐀 𝑆 − 𝐳 𝑆
𝑇 𝐄 𝑆,𝑆 𝐨 𝑆

Loss

update 𝑊 𝑆

update 𝐛

Ω 𝐛Ω 𝐳

1 2 3

Figure 1: An illustration of our search process. The blue arrows denote the forward propagation,
while the red ones are backward updates. Ω(z) and Ω(b) are the original and the compressed spaces,
respectively. z lies near the axises because it is sparse. The black arrows in the network represent the
corresponding connections that are active in the current S, while the gray ones do not belong to S.

It is shown that a proper measurement matrix A builds the relation between the original and the
compressed spaces. The optimal solution in Ω(z) can be searched by optimization in Ω(b). Thus we
have our problem formulated as:

zj = argmin
z

1

2
‖Ajz− bj‖22 + λ‖z‖1, 1 < j ≤ n, (9)

B∗ = argmin
B

Lval(N (W ∗, B)),

W ∗ = argmin
W

Ltrain(N (W,B)),
(10)

where B = {bj}nj=2 is the trainable variables in the network N (W,B). B and W are optimized
by the differentiable NAS without the sparsity constraint Eq. (4). Z = {zj}nj=2 is recovered by the
sparse coding problem in Eq. (9), which inherently produces a sparse architecture.

3.4 Two-stage ISTA-NAS

The benefit of introducing sparse coding into NAS is that we can utilize the sparsity for more efficient
search. In implementation, the solution of Eq. (9) may not lie in Ω(z) and strictly satisfy the sparsity
constraint. We keep the top-s strongest magnitudes and set other dimensions as zeros. Let S(z)
denote the support set of z, i.e., S(z) = {i|z(i) 6= 0} and |S| = s, where i is the i-th dimension of z
and s is the sparseness. Then the network propagation in Eq. (8) is equivalent to:

x = zTo = zT(S)o(S) = zT(S)

(
AT

(S)A(S) −E(S,S)

)
o(S) =

(
bTA(S) − zT(S)E(S,S)

)
o(S), (11)

where z(S) denotes the elements of z indexed by S, A(S) denotes the columns of A indexed by S,
and E(S,S) denotes the rows and columns of E indexed by S.

We now introduce our two-stage ISTA-NAS outlined in Algorithm 1. The two-stage pipeline is
consistent with current studies [30, 48, 9, 49]. A super-net with the whole DAG is constructed
for search, after which the searched sparse architecture is for evaluation with a larger depth and
width. We first initialize the network weights W and architecture variables B of the super-net. The
measurement matrices Aj used to construct the relations between the original and the compressed
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Algorithm 2 One-stage ISTA-NAS (for both search and evaluation)
Input: Initialize N (W,B) with depth, width, and batch size in the target-net setting. γ and β of BN

layers in all candidate operations are frozen and initialized as 1 and 0. search_flag := True.
1: while not converged do
2: if search_flag then
3: Perform the Line 2 and Line 3 of Algorithm 1; znew := z;
4: end if
5: if search_flag and ‖znew − zold‖ ≤ ε then
6: γ.requires_grad := True; β.requires_grad := True; search_flag := False;
7: end if
8: Update network weights W(S) by descending∇W(S)

Ltrain(N (W(S), B));
9: if search_flag then

10: Update architecture variables b by descending∇bLtrain(N (W(S), B)); zold := znew;
11: end if
12: end while
13: Update the parameters of BN layers by Eq. (12);
Output: Produce a sparse architecture and its optimized parameters.

spaces for each node are sampled and fixed. At each iteration of the algorithm, bj corresponds to
a sparse zj by solving Eq. (9) with ISTA. Then we keep the top-s strongest magnitudes of zj and
derive its support set S , which indicates a sparse architecture. We only propagate the connections in
S by Eq. (11), and then updates W(S) and b, respectively. The optimization of Eq. (10) is performed
in an alternate way, which is the same as the widely-used bi-level scheme in current differentiable
NAS methods [30]. The difference lies in that S dynamically changes in our search, so the sparsity
constraint is inherently satisfied at each update. We do not need a projection onto the target-net
constraint by post-processing. Besides, the network N (W(S), B) in our search is sparse and more
efficient to train. An illustration of how we perform our search process is shown in Figure 1.

3.5 One-stage ISTA-NAS

Since the super-net of ISTA-NAS is as sparse as the target-net, our method is friendly to memory and
is able to adopt the larger depth and width in target-net. If we can use one network for both search
and evaluation under the target-net settings, the gap of depth, width, and even batch size in two-stage
methods will be eliminated. To this end, we develop a one-stage method, where search and evaluation
are finished in a single run, after which we get both architecture and its optimized parameters.

In Eq. (11), the architecture variables b and matrix A decide the coefficient of each connection for
differentiable search. We need to combine these coefficients with network weights W as the final
optimized parameters. Considering the parameterized operations for search, such as 3× 3 separable
convolution, 5×5 dilation convolution, end up with a batch normalization (BN) layer, we also append
BN layers after non-parametric operations, including identity and all pooling operations.

The one-stage ISTA-NAS is outlined in Algorithm 2. At the beginning, the weight and bias of BN
layers, i.e., γ and β, are frozen and initialized as 1 and 0, respectively, so they will not affect the
search process. Different from the two-stage method, W(S) and b share the same loss using the full
train set (no validation set is split out). We introduce a termination condition, such that when z of
two neighboring iterations are close, i.e., ‖znew − zold‖ ≤ ε, we stop the optimization of b. Then z
and S no longer change and thus a sparse architecture is searched and fixed. The coefficient of each
connection does not change accordingly. The weight γ and bias β of BN layers are now enabled to
optimize. When training finishes, the coefficients are absorbed into γ, β ∈ Rs as2:

γ̂ =
(
bTA(S) − zT(S)E(S,S)

)
◦ γ; β̂ =

(
bTA(S) − zT(S)E(S,S)

)
◦ β; (12)

where ◦ is the element-wise multiplication, and γ̂, β̂ ∈ Rs are updated parameters that keep the
trained network accuracy unchanged. In this way, we get the searched architecture and its optimized
parameters in a single run of Algorithm 2. No further training is necessary.

2γ and β are viewed as vectors in Rs formed by all active connections to the same node.
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Bs. Mem. Search Cost
DARTS (1st order) 64 9.1 G 0.70 day
PC-DARTS 256 11.6 G 0.14 day
ISTA-NAS 64 1.9 G 0.15 day
ISTA-NAS 256 5.5 G 0.05 day
ISTA-NAS 512 10.5 G 0.03 day

Table 1: Search cost of DARTS, PC-DARTS, and
two-stage ISTA-NAS. “Bs.” and “Mem.” denote the
batchsize and its corresponding memory consumption.
Search cost is tested on a GTX 1080Ti GPU.

Kendall τ
DARTS (1st order) −0.36

PC-DARTS −0.21

Two-stage ISTA-NAS 0.43

One-stage ISTA-NAS 0.57

Table 2: Kendall τ correlation of search
and evaluation performances in DARTS, PC-
DARTS, and ISTA-NAS. The one-stage ISTA-
NAS is measured by its converged accuracy
and retraining without the optimization of b.

0 0.5 1 2.5 3 3.51.5 2

time (GPU-hour)

20

30

40

50

60

70

80

90

V
al

id
at

io
n 

A
cc

. (
%

)

PC-DARTS (bs-256)
ISTA-NAS (bs-64)
ISTA-NAS (bs-256)
ISTA-NAS (bs-512)

0 10 20 50 60 7030 40

time (GPU-hour)

40

50

60

70

80

90

100

A
cc

ur
ac

y 
(%

)
0

0.005

0.01

0.015

z 
di

st
an

ce

DARTS search Acc. on validation
DARTS evaluation Acc. on test
One-stage ISTA-NAS Acc. on test

||znew-zold||

Figure 2: (left) The super-net accuracies of search in PC-DARTS and two-stage ISTA-NAS; (right)
The search and evaluation processes of two-stage DARTS and one-stage ISTA-NAS.

4 Experiments

We analyze the improved efficiency and correlation of the two-stage and one-stage ISTA-NAS, and
then compare our search results on CIFAR-10 and ImageNet with state-of-the-art methods. All
searched architectures are visualized in the supplementary material.

4.1 Implementation Details

Our setting of search and evaluation is consistent with the convention in current studies [30, 48, 9, 49].
Please see the full description of our implementation details in the supplementary material. For our
two-stage ISTA-NAS, the super-net is composed of 6 normals cells and 2 reduction cells. Each cell
has 6 nodes. The first two nodes are input nodes output from the previous two cells. As convention,
each intermediate node keeps two connections after search, so the sparseness sj = 2 in our method.
We adopt the Adam optimizer for bj and SGD for network weights W . We use the released tool
MOSEK with CVX [17] to efficiently solve Eq. (9). For our single-stage ISTA-NAS, we adopt the
target-net settings of the evaluation stage. The network is stacked by 18 normal cells and 2 reduction
cells. Other details are described in the supplementary material.

4.2 Efficiency and Correlation Improved by ISTA-NAS

ISTA-NAS inherently satisfies the sparsity constraint at each update, so significantly improves the
search efficiency. As shown in Table 1, we re-implement DARTS and PC-DARTS using their released
codes on CIFAR-10. When our two-stage ISTA-NAS uses a batchsize of 64, the search cost is on par
with PC-DARTS, which uses a batchsize of 256 and consumes much more GPU memory. Two-stage
ISTA-NAS supports a batchsize of 512, which leads to a search cost of only 0.03 GPU-day, about 20
times faster than DARTS. Their search processes are depicted in Figure 2 (left). The learning rates
are also enlarged by the same times as batchsize. It is shown that ISTA-NAS with a batchsize of 256
has the most stable search accuracy on validation. Thus we adopt the 256 batchsize and 0.1 learning
rate of W for our two-stage search result on CIFAR-10. As for the one-stage ISTA-NAS, its accuracy
on test is shown in Figure 2 (right). We also visualize the distance of zj of two neighboring iterations
averaged by all intermediate nodes j. It is observed that the distance of neighboring z decays fast. In
about 10 GPU-hour, the termination condition is satisfied for all intermediate nodes, after which only
network weights in the searched architecture get optimized. We have the architecture searched and
optimized in a single run, which saves the search cost compared with the two-stage DARTS.

7



Methods
Test Error Params Cost (GPU-day)

Search Method
(%) (M) search eval.

DenseNet-BC [22] 3.46 25.6 - - manual
NASNet-A + cutout [61] 2.65 3.3 1800 3.2 RL
ENAS + cutout [39] 2.89 4.6 0.5 3.2 RL
AmoebaNet-B +cutout [40] 2.55±0.05 2.8 3150 - evolution
NAONet-WS [31] 3.53 3.1 0.4 - NAO
DARTS (2nd order) + cutout [30] 2.76±0.09 3.3 4.0 2.3 gradient
SNAS (moderate) + cutout [48] 2.85±0.02 2.8 1.5 2.2 gradient
P-DARTS+cutout [9] 2.50 3.4 0.3 2.9 gradient
NASP + cutout [53] 2.83±0.09 3.3 0.1 - gradient
PC-DARTS + cutout [49] 2.57±0.07 3.6 0.1 3.1 gradient
Two-stage ISTA-NAS + cutout 2.54±0.05 3.32 0.05 2.0 gradient
One-stage ISTA-NAS + cutout 2.36±0.06 3.37 2.3 gradient

Table 3: Search results on CIFAR-10 and comparison with state-of-the-art methods. Cost is tested on
a GTX 1080Ti GPU. The evaluation cost is calculated by us with their searched architectures in the
same experimental settings. The cost of one-stage ISTA-NAS is the time spent in a single run.

Methods
Test Err. (%) Params Flops Cost (GPU-day)

Search Method
top-1 top-5 (M) (M) search eval.

Inception-v1 [43] 30.2 10.1 6.6 1448 - - manual
MobileNet [20] 29.4 10.5 4.2 569 - - manual
ShuffleNet 2× (v2) [32] 25.1 - ∼5 591 - - manual
NASNet-A [61] 26.0 8.4 5.3 564 1800 - RL
MnasNet-92 [44] 25.2 8.0 4.4 388 - - RL
AmoebaNet-C [40] 24.3 7.6 6.4 570 3150 - evolution
DARTS (2nd order) [30] 26.7 8.7 4.7 574 4.0 3.6×8 gradient
SNAS [48] 27.3 9.2 4.3 522 1.5 3.3×8 gradient
P-DARTS [9] 24.4 7.4 4.9 557 0.3 3.6×8 gradient
ProxylessNAS (ImgNet) [5] 24.9 7.5 7.1 465 8.3 - gradient
PC-DARTS (ImgNet) [49] 24.2 7.3 5.3 597 3.8 3.9×8 gradient
One-stage ISTA-NAS (C-10) 25.1 7.7 4.78 550 2.3 3.4×8 gradient
One-stage ISTA-NAS (ImgNet) 24.0 7.1 5.65 638 4.2×8 gradient

Table 4: Search results on ImageNet and comparison with state-of-the-art methods. Cost is tested on
eight GTX 1080Ti GPUs. “ImgNet” denotes it is directly searched on ImageNet. Otherwise, it is
searched on CIFAR-10 and then transfered to ImageNet for evaluation.

We also test the correlation between search and evaluation by the Kendall τ metric [26], which ranges
from−1 to 1 and evaluates the rank correlation of data pairs. If τ = −1, the ranking order is reversed,
while if the ranking is identical, τ will be 1. The full introduction of this metric is appended in the
supplementary material. We implement DARTS, PC-DARTS and two-stage ISTA-NAS for 8 times on
CIFAR-10 with different seeds and calculate their Kendall τ metrics based on the super-net accuracies
in search and the target-net accuracies in evaluation. We measure the metric of one-stage ISTA-NAS
using its converged accuracy and the one retrained for the same epochs without optimizing b. As
shown in Table 2, both two-stage and one-stage ISTA-NAS have positive correlation scores, and the
one-stage ISTA-NAS has the best correlation. The Kendall τ metric is still not close to 1, because
accuracies on CIFAR-10 are not so distinguishable, and are easily affected by random noise.

4.3 Search Results on CIFAR-10

The search results of two-stage and one-stage ISTA-NAS on CIFAR-10 are shown in Table 3. We see
that two-stage ISTA-NAS achieves a state-of-the-art error rate of 2.54% within only 0.05 GPU-day.
The error rate is on par with P-DARTS, while the search cost is reduced to one sixth of the number
in P-DARTS, and a half of that in PC-DARTS and NASP, which are the fastest approaches for
DARTS-based search space before ISTA-NAS. The one-stage ISTA-NAS unifies the search and
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evaluation in a single run of 2.3 GPU-day, which is smaller than the total cost of most two-stage
methods. In our implementation of one-stage ISTA-NAS, after the termination condition is satisfied,
the same epochs of training as the evaluation stage in two-stage ISTA-NAS is performed. So its
search cost is usually larger than that of two-stage ISTA-NAS because of its direct search in the
evaluation settings that have a larger depth and width. But the performance gets better due to its
improved consistency brought by further reducing the gaps apart from sparseness, such as depth,
width and training batchsize.

4.4 Search Results on ImageNet

We use one-stage ISTA-NAS for experiments on ImageNet. As shown in Table 4, the architecture
searched on CIFAR-10 has a top-1 error rate of 25.1%, which is better than DARTS by more than
1.5% top-1 error rate. Its search cost on CIFAR-10 is larger than that of SNAS and P-DARTS because
our search is unified with evaluation in one stage. When one-stage ISTA-NAS is directly performed
on ImageNet, we have a top-1/5 error rates of 24.0%/7.1%, which slightly surpasses PC-DARTS, the
best performance to date of DARTS-based search space on ImageNet as we know. Still, the total cost
is lower than most two-stage methods. PC-DARTS and our method both directly search on ImageNet.
However, the difference is that our search is performed on the full training set instead of a sampled
subset as adopted in PC-DARTS. Consequently, our search results may enjoy a better generalization
ability due to the sufficient access to the data space.

5 Conclusion

In this paper, we formulate the NAS problem as optimizing a sparse solution from a high-dimensional
space spanned by all candidate connections, and introduce a more efficient and consistent search
method, named ISTA-NAS. The differentiable search is performed on a compressed space and the
sparse solution is recovered by ISTA. The sparsity constraint is inherently satisfied at each update,
which makes the search more efficient and consistent with the architecture for evaluation. We further
develop a one-stage method that unifies the search and evaluation in a single run. Experiments
verify the improved efficiency and correlation of two-stage and one-stage ISTA-NAS. The searched
architectures surpass the state-of-the-art performances on both CIFAR-10 and ImageNet.
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Broader Impact

Our work proposes a new perspective to formulate the NAS problem and develops two algorithms that
have better efficiency and correlation. The positive impacts are obvious. First, better architectures may
be searched for some problems, so the practical application of neural network to the corresponding
area can be fostered. It benefits industry because the products or services with more satisfactory
performance can be employed. Second, NAS has been a resource demanding task. Our method
saves much memory and time cost, which is friendly to environment and easy to use for practitioners.
Finally, automation is believed as a complementary tool to human experts. We think that a good NAS
method could bring researchers expertise in understanding neural architectures.
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