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REVISITING EXTRA FOR SMOOTH DISTRIBUTED
OPTIMIZATION\ast 

HUAN LI\dagger AND ZHOUCHEN LIN\ddagger 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . EXTRA is a popular method for dencentralized distributed optimization and has
broad applications. This paper revisits EXTRA. First, we give a sharp complexity analysis for
EXTRA with the improved O

\bigl( \bigl( 
L
\mu 

+ 1
1 - \sigma 2(\bfW )

\bigr) 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
communication and computation

complexities for \mu -strongly convex and L-smooth problems, where \sigma 2(\bfW ) is the second largest
singular value of the weight matrix \bfW . When the strong convexity is absent, we prove the O

\bigl( \bigl( 
L
\epsilon 
+

1
1 - \sigma 2(\bfW )

\bigr) 
log 1

1 - \sigma 2(\bfW )

\bigr) 
complexities. Then, we use the Catalyst framework to accelerate EXTRA

and obtain the O
\bigl( \sqrt{} 

L
\mu (1 - \sigma 2(\bfW ))

log L
\mu (1 - \sigma 2(\bfW ))

log 1
\epsilon 

\bigr) 
communication and computation complexities

for strongly convex and smooth problems and the O
\bigl( \sqrt{} 

L
\epsilon (1 - \sigma 2(\bfW ))

log 1
\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
complexities

for nonstrongly convex ones. Our communication complexities of the accelerated EXTRA are only
worse by the factors of

\bigl( 
log L

\mu (1 - \sigma 2(\bfW ))

\bigr) 
and

\bigl( 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
from the lower complexity bounds

for strongly convex and nonstrongly convex problems, respectively.

\bfK \bfe \bfy \bfw \bfo \bfr \bfd \bfs . accelerated distributed optimization, EXTRA, near optimal communication com-
plexity

\bfA \bfM \bfS \bfs \bfu \bfb \bfj \bfe \bfc \bft \bfc \bfl \bfa \bfs \bfs \bfi fi\bfc \bfa \bft \bfi \bfo \bfn \bfs . 90C25, 90C30

\bfD \bfO \bfI . 10.1137/18M122902X

1. Introduction. In this paper, we consider the following convex problem:

min
x\in \BbbR n

F (x) =
1

m

m\sum 
i=1

fi(x)(1)

in the decentralized distributed environment, where m agents form an undirected
communication network and collaboratively solve the above problem. Each agent i
privately holds a local objective function fi(x) and can exchange information only
with its immediate neighbors. We only consider the network that does not have a
centralized agent. Distributed computation has broad applications, ranging from
machine learning [1, 2, 3, 4], to sensor networks [5], to flow and power control problems
[5, 6].

1.1. Literature review. Distributed optimization has gained significant atten-
tion in engineering applications for a long time [7, 8]. The distributed subgradient
method was first proposed in [9] with the convergence and convergence rate analysis
for the general network topology and further extended to the asynchronous variant
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1796 HUAN LI AND ZHOUCHEN LIN

in [10], the stochastic variant in [11], and a study with fixed step-size in [12]. In
[13, 14], the accelerated distributed gradient method in the sense of Nesterov has
been proposed, and the authors of [15] gave a different explanation with sharper
analysis, which builds upon the accelerated penalty method. Although the optimal
computation complexity and near optimal communication complexity are proved in
[15], the accelerated distributed gradient method employs multiple consensus after
each gradient computation and thus places more burdens in the communication-limited
environment.

A different class of distributed approaches with efficient communication is based on
the Lagrangian dual, and they work in the dual space. Classical algorithms include dual
ascent [16, 17, 18], ADMM [19, 20, 21], and the primal-dual method [22, 23, 24, 25].
Specifically, accelerated dual ascent [17] and the primal-dual method [23] attain the
optimal communication complexities for smooth and nonsmooth problems, respectively.
However, the dual-based methods require the evaluation of the Fenchel conjugate or
the proximal mapping and thus have a larger computation cost per iteration.

EXTRA [26] and the augmented distributed gradient method [27, 28] (also called
DIGing in [29]) can be seen as a trade-off between communications and computa-
tions, which need equal numbers of communications and gradient computations at
each iteration. As a comparison, the accelerated distributed gradient method needs
more communications, while the dual-based methods require more computations.
EXTRA uses the differences of gradients and guarantees the convergence to the exact
optimal solution with constant step-size. The proximal-gradient variant is studied in
[30]. Recently, researchers have established the equivalence between the primal-dual
method and EXTRA [24, 31, 25]. Specifically, the authors of [24] study the nonconvex
problem and the authors of [31] focus on the stochastic optimization, while the author
of [25] gives a unified framework for EXTRA and the augmented distributed gradient
method. The augmented distributed gradient method shares some similar features to
EXTRA, e.g., using the differences of gradients and constant step-size. The accelerated
version of the augmented distributed gradient method is studied in [32].

In this paper, we revisit EXTRA and give a sharper complexity analysis for the
original EXTRA. Then, we propose an accelerated EXTRA, which answers the open
problem proposed in [30, section V] on how to improve the rate of EXTRA with
certain acceleration techniques.

1.2. Notation and assumption. Denote xi \in \BbbR n to be the local copy of the
variable x for agent i and x1:m to be the set of vectors consisting of x1, . . . ,xm. We
introduce the aggregate objective function f(x) of the local variables with its argument
x \in \BbbR m\times n and gradient \nabla f(x) \in \BbbR m\times n as

(2) f(x) =

m\sum 
i=1

fi(xi), x =

\left(   xT
1
...

xT
m

\right)   , \nabla f(x) =

\left(   \nabla f1(x1)
T

...
\nabla fm(xm)T

\right)   .

For a given matrix, we use \| \cdot \| F and \| \cdot \| 2 to denote its Frobenius norm and spectral
norm, respectively. We denote \| \cdot \| as the l2 Euclidean norm for a vector. Denote
I \in \BbbR m\times m as the identity matrix and 1 = (1, 1, . . . , 1)T \in \BbbR m as the vector with all
ones. For any matrix x, we denote its average across the rows as

\alpha (x) =
1

m

m\sum 
i=1

xi.(3)
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REVISITING EXTRA FOR SMOOTH DISTRIBUTED OPTIMIZATION 1797

Define two operators measuring the consensus violation. The first one is

\Pi = I - 1

m
11T \in \BbbR m\times m,(4)

and \| \Pi x\| F measures the distance between xi and \alpha (x) for all i. The second one
follows [26]:

U =

\sqrt{} 
I - W

2
\in \BbbR m\times m.(5)

Let \scrN i be the neighbors of agent i and Span(U) be the linear span of all the columns
of U.

We make the following assumptions for the local objectives.

Assumption 1.
1. Each fi(x) is \mu -strongly convex: fi(y) \geq fi(x) + \langle \nabla fi(x), y  - x\rangle + \mu 

2 \| y  - x\| 2.
Especially, \mu can be zero, and we say fi(x) is convex in this case.

2. Each fi(x) is L-smooth: fi(y) \leq fi(x) + \langle \nabla fi(x), y  - x\rangle + L
2 \| y  - x\| 2.

Then, F (x) and f(x) are also \mu -strongly convex and L-smooth. Assume that the
set of minimizers of problem (1) is nonempty. Denote x\ast as one minimizer, and let
x\ast = 1(x\ast )T .

We make the following assumptions for the weight matrix W \in \BbbR m\times m associated
to the network.

Assumption 2.
1. Wi,j \not = 0 if and only if agents i and j are neighbors or i = j. Otherwise,

Wi,j = 0.
2. W = WT , I \succeq W \succeq  - I, and W1 = 1.
3. \sigma 2(W) < 1, where \sigma 2(W) is the second largest singular value of W.

Part 2 of Assumption 2 implies that the singular values of W lie in [0, 1] and
its largest one \sigma 1(W) equals 1. Moreover, part 3 can be deduced by part 2 and the
assumption that the network is connected. Examples satisfying Assumption 2 can be
found in [26].

When minimizing a convex function, the performance of the first-order methods
is affected by the smoothness constant L and the strong convexity constant \mu , as
well as the target accuracy \epsilon . When we solve the problem over a network, the
connectivity of the network also directly affects the performance. Typically, 1

1 - \sigma 2(\bfW )

is a good indication of the network connectivity [13, 17] and it is often related to m
[33, Proposition 5]. In this paper, we study the complexity of EXTRA with explicit
dependence on L, \mu , 1 - \sigma 2(W), and \epsilon .

Denote x0
1:m to be the initializers. Assume that \| x0

i  - x\ast \| 2 \leq R1, \| x\ast \| 2 \leq R1,
and \| \nabla fi(x

\ast 
i )\| 2 \leq R2 for all i = 1, . . . ,m. Then we can simply have

\| x0  - x\ast \| 2F \leq mR1, \| x\ast \| 2F \leq mR1, and \| \nabla f(x\ast )\| 2F \leq mR2.(6)

In this paper, we only regard R1 and R2 as the constants which can be dropped in
our complexities.

1.3. Proposed algorithm. Before presenting the proposed algorithm, we first
rewrite EXTRA in the primal-dual framework in Algorithm 1. When we set \alpha = 1

\beta ,
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1798 HUAN LI AND ZHOUCHEN LIN

Algorithm 1. EXTRA.

Input F (x), K, x0
1:m, v0

1:m

for k = 0, 1, 2, . . . ,K do

xk+1
i = xk

i  - \alpha 
\Bigl( 
\nabla fi(x

k
i ) + vk

i + \beta 
2

\Bigl( 
xk
i  - 

\sum 
j\in \scrN i

Wi,jx
k
j

\Bigr) \Bigr) 
\forall i.

vk+1
i = vk

i + \beta 
2

\Bigl( 
xk+1
i  - 

\sum 
j\in \scrN i

Wi,jx
k+1
j

\Bigr) 
\forall i.

end for
Output xK+1

1:m and vK+1
1:m .

Algorithm 2. Accelerated EXTRA.

Initialize x0
i = y0

i , v
0
i = 0, q = \mu 

\mu +\tau ; set \theta k =
\surd 
q for all k if \mu > 0; otherwise, set

\theta 0 = 1 and update \theta k+1 \in (0, 1) by solving the equation \theta 2k+1 = (1 - \theta k+1)\theta 
2
k.

for k = 0, 1, 2, . . . ,K do
Define gki (x) = fi(x) +

\tau 
2\| x - yk

i \| 2 and Gk(x) = 1
m

\sum m
i=1 g

k
i (x).

(xk+1
1:m ,vk+1

1:m ) = EXTRA(Gk(x), Tk,x
k
1:m,vk

1:m).

yk+1
i = xk+1

i + \theta k(1 - \theta k)
\theta 2
k+\theta k+1

(xk+1
i  - xk

i ) \forall i.
end for

Algorithm 1 reduces to the original EXTRA.1 In this paper, we specify \alpha = 1
2(L+\beta )

and \beta = L for the strongly convex problems to give a faster convergence rate than
the original EXTRA, which is crucial to obtain the near optimal communication
complexities after acceleration.

We use the Catalyst framework [34] to accelerate Algorithm 1. It has double loops
and is described in Algorithm 2. The inner loop calls Algorithm 1 to approximately
minimize a well-chosen auxiliary function of Gk(x) for Tk iterations with warm-start.
Tk and \tau are given for two cases:

1. When each fi(x) is strongly convex with \mu > 0, then \tau = L(1 - \sigma 2(W)) - \mu > 0
and Tk = O

\bigl( 
1

1 - \sigma 2(\bfW ) log
L

\mu (1 - \sigma 2(\bfW ))

\bigr) 
, which is a constant.

2. When each fi(x) is convex with \mu = 0, then \tau = L(1  - \sigma 2(W)) and Tk =
O
\bigl( 

1
1 - \sigma 2(\bfW ) log

k
1 - \sigma 2(\bfW )

\bigr) 
, which is nearly a constant.

Although Algorithm 2 employs the double loop, it places almost no more burdens than
the original EXTRA. A good property of Algorithms 1 and 2 in practice is that they
need equal numbers of gradient computations and communications at each iterations.

1.4. Complexities. We compare the communication and computation complex-
ities of EXTRA and its accelerated version with other methods in this paper. They
are presented as the number of communications or computations to find an \epsilon -optimal
solution x such that F (x) - F (x\ast ) \leq \epsilon . We follow [15] to define one communication to
be the operation that all the agents receive information from their neighbors once, i.e.,\sum 

j\in \scrN i
Wijxj for all i = 1, 2, . . . ,m. One computation is defined to be the gradient

evaluations of all the agents once, i.e., \nabla fi(xi) for all i.
To find an \epsilon -optimal solution, Algorithm 1 needs O

\bigl( \bigl( 
L
\mu + 1

1 - \sigma 2(\bfW )

\bigr) 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
and O

\bigl( \bigl( 
L
\epsilon + 1

1 - \sigma 2(\bfW )

\bigr) 
log 1

1 - \sigma 2(\bfW )

\bigr) 
iterations for strongly convex and nonstrongly

convex problems, respectively. The computation and communication complexities

1Initialize \bfv 0 = \bfzero , and define \widetilde \bfW = \bfI +\bfW 
2

. The second step of Algorithm 1 leads to \bfv k =

\beta 
\sum k

t=1(
\widetilde \bfW  - \bfW )\bfx k. Plugging it into the first step and letting \alpha = 1/\beta leads to equation (3.5) in

[26].
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REVISITING EXTRA FOR SMOOTH DISTRIBUTED OPTIMIZATION 1799

are identical for EXTRA, which equal the number of iterations. For Algorithm 2,

we establish the O
\bigl( \sqrt{} 

L
\mu (1 - \sigma 2(\bfW )) log

L
\mu (1 - \sigma 2(\bfW )) log

1
\epsilon 

\bigr) 
complexity for strongly convex

problems and the O
\bigl( \sqrt{} 

L
\epsilon (1 - \sigma 2(\bfW )) log

1
\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
one for nonstrongly convex problems.

Our first contribution is to give a sharp analysis for EXTRA with improved

complexity. The complexity of the original EXTRA is at least O
\bigl( 

L2

\mu 2(1 - \sigma 2(\bfW )) log
1
\epsilon 

\bigr) 
for strongly convex problems.2 For nonstrongly convex ones, although the O

\bigl( 
1
\epsilon 

\bigr) 
complexity is studied in [26], no explicit dependence on 1 - \sigma 2(W) is given.3 To the
best of our knowledge, our result is the state-of-the-art one [25, Remark 5] among the
methods in the primal-dual framework. It is remarkable that the sum of L

\mu (or L
\epsilon ) and

1
1 - \sigma 2(\bfW ) , rather than their product, dominates our complexities. When 1

1 - \sigma 2(\bfW ) is

smaller than L
\mu or L

\epsilon , we can see that due to parallelization, EXTRA takes almost

only 1
m of computation time compared to nondistributed gradient descent, whose

complexities are O
\bigl( 
L
\mu log 1

\epsilon 

\bigr) 
and O

\bigl( 
L
\epsilon 

\bigr) 
for strongly convex and nonstrongly convex

problems, respectively [35].
Our second contribution is to give an accelerated EXTRA with the near optimal

communication complexity and a competitive computation complexity. In Table 1,
we summarize the comparisons to the state-of-the-art decentralized optimization al-
gorithms, namely, the accelerated dual ascent method and the accelerated penalty
method with consensus. We also present the complexities of the nonaccelerated
EXTRA and the lower complexity bounds. Our communication complexities of the ac-
celerated EXTRA match the lower bounds, except the extra factors of

\bigl( 
log L

\mu (1 - \sigma 2(\bfW ))

\bigr) 
and

\bigl( 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
for strongly convex and nonstrongly convex problems, respec-

tively. When high precision is required, i.e., 1
\epsilon > L

\mu (1 - \sigma 2(\bfW )) for strongly convex

problems and 1
\epsilon > 1

1 - \sigma 2(\bfW ) for nonstrongly convex problems, our communication

complexities are competitive to the state-of-the-art ones in [17, 18, 15].
On the other hand, our computation complexities are better than those of [18] for

applications with large L
\mu or L

\epsilon and moderate 1
1 - \sigma 2(\bfW ) , but worse than those of [15].6

Our result is a significant complement to the existing works in the sense that EXTRA
and its accelerated version have equal numbers of communications and computations,
while accelerated dual ascent has more computations than communications and the
accelerated penalty method needs more communications than computations.

2The authors of [26] did not give an explicit complexity. We try to simplify equation (3.38)

in [26] and find it to be at least O
\bigl( 

L2

\mu 2(1 - \sigma 2(\bfW ))
log 1

\epsilon 

\bigr) 
. The true complexity may be larger than

O
\bigl( 

L2

\mu 2(1 - \sigma 2(\bfW ))
log 1

\epsilon 

\bigr) 
.

3The authors of [26] proved the O
\bigl( 

1
K

\bigr) 
rate in the sense of 1

K

\sum K
k=1 \| \bfU \lambda k +\nabla f(\bfx k)\| 2\widetilde \bfW \leq O

\bigl( 
1
K

\bigr) 
and 1

K

\sum K
k=1 \| \bfU \bfx k\| 2F \leq O

\bigl( 
1
K

\bigr) 
, where \widetilde \bfW = \bfI +\bfW 

2
. They omitted the dependence on 1 - \sigma 2(\bfW ) in

their analysis.
4The dependence on 1

1 - \sigma 2(\bfW )
is omitted in [26].

5The authors of [17] only proved the lower communication complexity bound for the strongly
convex problems. However, the analysis in [17] can be directly extended to the nonstrongly convex
case.

6Although the authors of [17] also give the O
\bigl( \sqrt{} 

L
\mu 
log 1

\epsilon 

\bigr) 
computation complexity, they define

one computation to be the cost of solving an ``argmin"" subproblem. We cite [18] in Table 1, where
the authors study the computation complexity with the total number of gradient computations, which
is a more reasonable measurement.
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1800 HUAN LI AND ZHOUCHEN LIN

Table 1
Complexity comparisons between accelerated dual ascent, the accelerated penalty method with

consensus, EXTRA, and accelerated EXTRA for smooth convex problems.

Nonstrongly convex case
Methods Complexity of gradient computation Complexity of communication

[26]'s result for EXTRA4 O
\bigl( 
1
\epsilon 

\bigr) 
[26] O

\bigl( 
1
\epsilon 

\bigr) 
[26]

Our result for EXTRA O
\Bigl( \Bigl( 

L
\epsilon + 1

1 - \sigma 2(\bfW )

\Bigr) 
log 1

1 - \sigma 2(\bfW )

\Bigr) 
O

\Bigl( \Bigl( 
L
\epsilon + 1

1 - \sigma 2(\bfW )

\Bigr) 
log 1

1 - \sigma 2(\bfW )

\Bigr) 
Accelerated dual ascent O

\biggl( 
L

\epsilon 
\surd 

1 - \sigma 2(\bfW )
log2 1

\epsilon 

\biggr) 
[18] O

\Bigl( \sqrt{} 
L

\epsilon (1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[18]

Accelerated penalty method O

\biggl( \sqrt{} 
L
\epsilon 

\biggr) 
[15] O

\Bigl( \sqrt{} 
L

\epsilon (1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[15]

Our accelerated EXTRA O
\Bigl( \sqrt{} 

L
\epsilon (1 - \sigma 2(\bfW ))

log 1
\epsilon (1 - \sigma 2(\bfW ))

\Bigr) 
O

\Bigl( \sqrt{} 
L

\epsilon (1 - \sigma 2(\bfW ))
log 1

\epsilon (1 - \sigma 2(\bfW ))

\Bigr) 
Lower bound5 O

\biggl( \sqrt{} 
L
\epsilon 

\biggr) 
[35] O

\Bigl( \sqrt{} 
L

\epsilon (1 - \sigma 2(\bfW ))

\Bigr) 
Strongly convex case

Methods Complexity of gradient computation Complexity of communication

[26]'s result for EXTRA at least O
\Bigl( 

L2

\mu 2(1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[26] at least O

\Bigl( 
L2

\mu 2(1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[26]

Our result for EXTRA O
\Bigl( \Bigl( 

L
\mu + 1

1 - \sigma 2(\bfW )

\Bigr) 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\Bigr) 
O

\Bigl( \Bigl( 
L
\mu + 1

1 - \sigma 2(\bfW )

\Bigr) 
log 1

\epsilon (1 - \sigma 2(\bfW ))

\Bigr) 
Accelerated dual ascent O

\biggl( 
L

\mu 
\surd 

1 - \sigma 2(\bfW )
log2 1

\epsilon 

\biggr) 
[18] O

\Bigl( \sqrt{} 
L

\mu (1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[17, 18]

Accelerated penalty method O
\Bigl( \sqrt{} 

L
\mu log 1

\epsilon 

\Bigr) 
[15] O

\Bigl( \sqrt{} 
L

\mu (1 - \sigma 2(\bfW ))
log2 1

\epsilon 

\Bigr) 
[15]

Our accelerated EXTRA O
\Bigl( \sqrt{} 

L
\mu (1 - \sigma 2(\bfW ))

log L
\mu (1 - \sigma 2(\bfW ))

log 1
\epsilon 

\Bigr) 
O

\Bigl( \sqrt{} 
L

\mu (1 - \sigma 2(\bfW ))
log L

\mu (1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
Lower bound O

\Bigl( \sqrt{} 
L
\mu log 1

\epsilon 

\Bigr) 
[35] O

\Bigl( \sqrt{} 
L

\mu (1 - \sigma 2(\bfW ))
log 1

\epsilon 

\Bigr) 
[17]

1.5. Paper organization. The rest of the paper is organized as follows. Section 2
gives a sharper analysis on the original EXTRA, and section 3 develops the accelerated
EXTRA. Section 4 proves the complexities, and section 5 gives some numerical
experiments. Finally, we conclude in section 6.

2. Enhanced results on EXTRA. We give a sharper analysis on EXTRA in
this section. Specifically, section 2.1 studies the strongly convex problems and section
2.2 studies the nonstrongly convex ones, respectively.

2.1. Sharper analysis on EXTRA for strongly convex problems. In this
section, we describe EXTRA in the primal-dual form. From Assumption 2 and the
definition in (5), we know that x is consensus if and only if Ux = 0. Thus, we can
reformulate problem (1) as the following linearly constrained problem:

min
\bfx \in \BbbR m\times n

f(x) s.t. Ux = 0.(7)

Introduce the augmented Lagrangian function

L(x, \lambda ) = f(x) + \langle \lambda ,Ux\rangle + \beta 

2
\| Ux\| 2F .

Problem (7) can be solved by the classical primal-dual method [24, 25]. Specifically,
it uses the Gauss--Seidel-like order to compute the saddle point of the augmented
Lagrangian function and consists of the following iterations:

xk+1 = xk  - 1

2(L+ \beta )
(\nabla f(xk) +U\lambda k + \beta U2xk),(8a)

\lambda k+1 = \lambda k + \beta Uxk+1,(8b)

where we specify the step-size in the primal step as 1
2(L+\beta ) . Step (8b) involves the

operation of Ux, which is uncomputable in the distributed setting. We introduce the
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REVISITING EXTRA FOR SMOOTH DISTRIBUTED OPTIMIZATION 1801

auxiliary variable

vk = U\lambda k.

Multiplying both sides of (8b) by U leads to

vk+1 = vk + \beta U2xk+1.

From the definition ofU in (5), we have Algorithm 1. Now, we establish the convergence
of Algorithm 1. Define

(9) \rho k = (L+ \beta )\| xk  - x\ast \| 2F +
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F ,

where (x\ast , \lambda \ast ) is a KKT point of the saddle point problem min\bfx max\lambda f(x) + \langle \lambda ,Ux\rangle .
We prove the exponentially diminishing of \rho k in the following theorem. Especially,
we choose a smaller \beta , i.e., a larger step-size \alpha , in the primal step than that in [26]
to obtain a faster convergence rate. More precisely, the original EXTRA uses the
step-size of O

\bigl( 
\mu 
L2

\bigr) 
[26, Remark 4] and an open problem is proposed in [26] on how to

prove linear convergence under the larger step-size of O
\bigl( 
1
L

\bigr) 
. Our analysis addresses

this open problem. We leave the proof and describe the crucial tricks in section 4.1.

Theorem 1. Suppose that Assumptions 1 and 2 hold with \mu > 0. Let v0 \in 
Span(U2), \alpha = 1

2(L+\beta ) , and \beta = L. Then, for Algorithm 1, we have

\rho k+1 \leq (1 - \delta ) \rho k,

where \delta = 1
39(L

\mu + 1
1 - \sigma 2(\bfW )

)
.

Based on Theorem 1, we can give the following corollary, which proves that
Algorithm 1 needs O

\bigl( \bigl( 
L
\mu + 1

1 - \sigma 2(\bfW )

\bigr) 
log L

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
iterations to find an \epsilon -optimal

solution. Recall that \alpha (x) is the average of x1, . . . ,xm defined in (3).

Corollary 2. Under the assumptions of Theorem 1 and letting v0 = 0, Algo-
rithm 1 needs

O

\biggl( \biggl( 
L

\mu 
+

1

1 - \sigma 2(W)

\biggr) 
log

LR1 +R2/L

\epsilon (1 - \sigma 2(W))

\biggr) 
iterations to achieve an \epsilon -optimal solution x such that

F (\alpha (x)) - F (x\ast ) \leq \epsilon and
1

m

m\sum 
i=1

\| xi  - \alpha (x)\| 2 \leq \epsilon 2.

2.2. Sharper analysis on EXTRA for nonstrongly convex problems. We
study EXTRA for nonstrongly convex problems in this section. Specifically, we study
the original EXTRA in section 2.2.1 and the regularized EXTRA in section 2.2.2,
respectively.

2.2.1. Complexity for the original EXTRA. The O
\bigl( 

1
K

\bigr) 
convergence rate

of EXTRA is well studied in [26, 30]. However, the authors of [26, 30] did not establish
the explicit dependence on 1 - \sigma 2(W). In this section, we study the original EXTRA
and give the O

\bigl( 
L

K
\surd 

1 - \sigma 2(\bfW )

\bigr) 
convergence rate in the following lemma.
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1802 HUAN LI AND ZHOUCHEN LIN

Lemma 3. Suppose that Assumptions 1 and 2 hold with \mu = 0. Let \alpha = 1
2(L+\beta )

and \beta = L\surd 
1 - \sigma 2(\bfW )

, and define \^xK = 1
K

\sum K
k=1 x

k. Assume that K \geq 1\surd 
1 - \sigma 2(\bfW )

.

Then, for Algorithm 1, we have

F (\alpha (\^xK)) - F (x\ast ) \leq 34

K
\sqrt{} 
1 - \sigma 2(W)

\biggl( 
LR1 +

R2

L

\biggr) 
,

1

m

m\sum 
i=1

\bigm\| \bigm\| \^xK
i  - \alpha (\^xK)

\bigm\| \bigm\| 2 \leq 16

K2(1 - \sigma 2(W))

\biggl( 
R1 +

R2

L2

\biggr) 
.

We assume K \geq 1\surd 
1 - \sigma 2(\bfW )

in Lemma 3, and it is a reasonable assumption. Take

the linear network as an example, where all the agents connect in a line. For this
special network, we know that 1

1 - \sigma 2(\bfW ) = m2 [33]. Algorithm 1 needs at least m

iterations to exchange messages between the two farthest nodes in the network. Thus,
any convergent method needs at least 1\surd 

1 - \sigma 2(\bfW )
iterations.

In section 2.1, we establish the O
\bigl( \bigl( 

L
\mu + 1

1 - \sigma 2(\bfW )

\bigr) 
log L

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
complexity for

strongly convex problems. Naturally, one may expect the O
\bigl( 
L
\epsilon + 1

1 - \sigma 2(\bfW )

\bigr) 
complexity

for nonstrongly convex ones. However, Lemma 3 only proves the O
\bigl( 

L

\epsilon 
\surd 

1 - \sigma 2(\bfW )

\bigr) 
complexity. We describe the technical challenges in section 4.2. It is currently unclear
how to establish the faster rate for the original EXTRA, and we leave it as an open
problem. In the following section, we improve the complexity via solving a regularized
problem.

2.2.2. Complexity for the regularized EXTRA. When the complexity for
the strongly convex problems is well studied, the regularization technique is a common
way to solve the nonstrongly convex ones [36]. Namely, we add a small strongly convex
regularizer to the objective and solve the regularized problem instead. Define the
regularized version of F (x) as

F\epsilon (x) =
1

m

m\sum 
i=1

fi(x) +
\epsilon 

2
\| x\| 2,(10)

and denote x\ast 
\epsilon = argminx F\epsilon (x). It can be easily checked that the precision between

problems (1) and (10) satisfies

F (x) - F (x\ast ) \leq F\epsilon (x) - F\epsilon (x
\ast 
\epsilon ) +

\epsilon 

2
\| x\ast \| 2.(11)

Thus, to attain an \epsilon -optimal solution of problem (1), we only need to find an \epsilon -optimal
solution of problem (10). Denote L\epsilon = L+ \epsilon . Define

f\epsilon (x) = f(x) +
\epsilon 

2
\| x\| 2F ,

and that is L\epsilon -smooth and \epsilon -strongly convex. Problem (10) can be reformulated as
the following constrained problem:

min
\bfx 

f\epsilon (x) s.t. Ux = 0.(12)

Denote (x\ast 
\epsilon , \lambda 

\ast 
\epsilon ) to be a pair of KKT points of problem (12). We use Algorithm 1 to

solve problem (12), and Corollary 2 needs O
\bigl( \bigl( 

L
\epsilon + 1

1 - \sigma 2(\bfW )

\bigr) 
log L

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
iterations
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to find an \epsilon -optimal solution of problem (10), which is also an \epsilon -optimal solution of
problem (1).

When \epsilon \leq 1 - \sigma , the complexity of the above regularized EXTRA is dominated
by O

\bigl( 
L
\epsilon log L

\epsilon 

\bigr) 
. We want to further reduce the complexity by the log L

\epsilon factor. As
discussed in section 4.2, the main reason for the slow rate of the original EXTRA
discussed in section 2.2.1 is that (L+\beta )\| x0 - x\ast \| 2F + 1

2\beta \| \lambda 
0 - \lambda \ast \| 2F has the same order

of magnitude as O(1), rather than O(1 - \sigma 2(W)). Our motivation is that we may find a
good enough initializer in a reasonable time such that (L+\beta )\| x0 - x\ast \| 2F + 1

2\beta \| \lambda 
0 - \lambda \ast \| 2F

is of the order O(1  - \sigma 2(W)). With this inspiration, our algorithm consists of two
stages. In the first stage, we run Algorithm 1 for K0 iterations to solve problem (10)
and use its output (xK0 , \lambda K0) as the initializer of the second stage. In the second
stage, we run Algorithm 1 on problem (10) again for K iterations and output the
averaged solution \^xK . Although we analyze the method in two stages, we implement
it in a single loop and only average over the last K iterations.

The complexity of our two-stage regularized EXTRA is described in the next
lemma. We see that the complexity is improved from O

\bigl( \bigl( 
L
\epsilon +

1
1 - \sigma 2(\bfW )

\bigr) 
log L

\epsilon (1 - \sigma 2(\bfW ))

\bigr) 
to O

\bigl( \bigl( 
L
\epsilon + 1

1 - \sigma 2(\bfW )

\bigr) 
log 1

1 - \sigma 2(\bfW )

\bigr) 
via the two-stage strategy.

Lemma 4. Suppose that Assumptions 1 and 2 hold with \mu = 0. Let v0 \in Span(U2),
\alpha = 1

2(L+\beta ) , and \beta = L\epsilon . Run Algorithm 1 on problem (10). Then, we only need

O

\biggl( \biggl( 
L

\epsilon 
+

1

1 - \sigma 2(W)

\biggr) 
log

1

1 - \sigma 2(W)

\biggr) 

iterations for the first stage and O
\bigl( LR1+R2/L

\epsilon 

\bigr) 
iterations for the second stage such that

F\epsilon (\alpha (\^x
K)) - F\epsilon (x

\ast 
\epsilon ) \leq \epsilon and

1

m

m\sum 
i=1

\bigm\| \bigm\| \^xK
i  - \alpha (\^xK)

\bigm\| \bigm\| 2 \leq \epsilon 2,

where \^xK = 1
K

\sum K
k=1 x

k in the second stage.

3. Accelerated EXTRA. We first review Catalyst and then use it to accelerate
EXTRA.

3.1. Catalyst. Catalyst [34] is a general scheme for accelerating gradient-based
optimization methods in the sense of Nesterov. It builds upon the inexact accelerated
proximal point algorithm, which consists of the following iterations:

xk+1 \approx argmin
x\in \BbbR n

F (x) +
\tau 

2
\| x - yk\| 2,(13a)

yk+1 = xk+1 +
\theta k(1 - \theta k)

\theta 2k + \theta k+1
(xk+1  - xk),(13b)

where \theta k is defined in Algorithm 2. Catalyst employs double loop and approximately
solves a sequence of well-chosen auxiliary problems in step (13a) in the inner loop.
The following theorem describes the convergence rate for the outer loop.
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1804 HUAN LI AND ZHOUCHEN LIN

Theorem 5 (see [37, 34]). Suppose that F (x) is convex and the following criterion
holds for all k \leq K with \varepsilon k \leq 1

k4+2\xi :

F (xk+1) +
\tau 

2
\| xk+1  - yk\| 2 \leq min

x

\Bigl( 
F (x) +

\tau 

2
\| x - yk\| 2

\Bigr) 
+ \varepsilon k,(14)

where \xi can be any small positive constant. Then, Catalyst generates iterates (xk)K+1
k=0

such that

F (xK+1) - F (x\ast ) \leq 1

(K + 2)2

\biggl( 
6\tau \| x0  - x\ast \| 2 + 48

\xi 2
+

12

1 + 2\xi 

\biggr) 
.

Suppose that F (x) is \mu -strongly convex and (14) holds for all k \leq K with the precision

of \varepsilon k \leq 2(F (x0) - F (x\ast ))
9 (1 - \rho )k+1, where \rho <

\surd 
q and q = \mu 

\mu +\tau . Then, Catalyst generates

iterates (xk)
K+1
k=0 such that

F (xK+1) - F (x\ast ) \leq 8

(
\surd 
q  - \rho )2

(1 - \rho )K+2(F (x0) - F (x\ast )).

Briefly, Catalyst uses some linearly convergent method to solve the subproblem in
step (13a) with warm-start, balances the outer loop and inner loop, and attains the
near optimal global complexities.

3.2. Accelerating EXTRA via Catalyst. We establish the relation between
Algorithm 2 and Catalyst. Recall the definition of Gk(x) in Algorithm 2:

Gk(x) =
1

m

m\sum 
i=1

gki (x), where gki (x) = fi(x) +
\tau 

2
\| x - yk

i \| 2,

which is (L+\tau )-smooth and (\mu +\tau )-strongly convex. Denote Lg = L+\tau and \mu g = \mu +\tau 
for simplicity. We can easily check that

Gk(x) =
1

m

m\sum 
i=1

fi(x) +
\tau 

2

m\sum 
i=1

1

m
\| x - yk

i \| 2

=
1

m

m\sum 
i=1

fi(x) +
\tau 

2
\| x - \alpha (yk)\| 2  - \tau 

2
\| \alpha (yk)\| 2 + \tau 

2

m\sum 
i=1

1

m
\| yk

i \| 2.

Recall that \alpha (yk) is the average of yk
1 , . . . ,y

k
m defined in (3). In Algorithm 2, we call

EXTRA to minimize Gk(x) approximately, i.e., to minimize F (x) + \tau 
2\| x - \alpha (yk)\| 2.

Thus, Algorithm 2 can be interpreted as

\alpha (xk+1) \approx argmin
x

F (x) +
\tau 

2
\| x - \alpha (yk)\| 2,

\alpha (yk+1) = \alpha (xk+1) +
\theta k(1 - \theta k)

\theta 2k + \theta k+1
(\alpha (xk+1) - \alpha (xk)),

and it belongs to the Catalyst framework. Thus, we only need to ensure (14), i.e.,
Gk(\alpha (xk+1)) \leq minx G

k(x) + \varepsilon k for all k. Catalyst requires the liner convergence in
the form of

Gk(zt) - min
x

Gk(x) \leq (1 - \delta )t
\Bigl( 
Gk(z0) - min

x
Gk(x)

\Bigr) 
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when solving the subproblem in step (13a), which is not satisfied for Algorithm 1 due
to the existence of terms \| \lambda k  - \lambda \ast \| 2F and \| \lambda k+1  - \lambda \ast \| 2F in Theorem 1. Thus, the
conclusion in [34] cannot be directly applied to Algorithm 2. By analyzing the inner
loop carefully, we can have the following theorem, which establishes that a suitable
constant setup of Tk is sufficient to ensure (14) in the strongly convex case and thus
allows us to use the Catalyst framework for distributed optimization, where Tk is the
number of inner iterations when calling Algorithm 1.

Theorem 6. Suppose that Assumptions 1 and 2 hold with \mu > 0. We only need to
set Tk = O

\bigl( \bigl( 
L+\tau 
\mu +\tau + 1

1 - \sigma 2(\bfW )

\bigr) 
log L+\tau 

\mu (1 - \sigma 2(\bfW ))

\bigr) 
in Algorithm 2 such that Gk(\alpha (xk+1)) \leq 

minx G
k(x) + \varepsilon k holds for all k, where \varepsilon k is defined in Theorem 5.

Based on Theorems 5 and 6, we can establish the global complexity via finding an
optimal balance between the inner loop and outer loop. Specifically, the total number
of inner iterations is

\surd 
1+ \tau 

\mu log 1
\epsilon \sum 

k=0

Tk =

\sqrt{} 
1 +

\tau 

\mu 

\biggl( 
L+ \tau 

\mu + \tau 
+

1

1 - \sigma 2(W)

\biggr) 
log

L+ \tau 

\mu (1 - \sigma 2(W))
log

1

\epsilon 
.

We obtain the minimal value with the optimal setting of \tau , which is described in the
following corollary. On the other hand, when we set \tau \approx 0, it approximates the original
EXTRA.

Corollary 7. Under the settings of Theorem 6 and letting \tau = L(1 - \sigma 2(W)) - \mu ,
Algorithm 2 needs

O

\Biggl( \sqrt{} 
L

\mu (1 - \sigma 2(W))
log

L

\mu (1 - \sigma 2(W))
log

1

\epsilon 

\Biggr) 

total inner iterations to achieve an \epsilon -optimal solution such that

F (\alpha (x)) - F (x\ast ) \leq \epsilon and
1

m

m\sum 
i=1

\| xi  - \alpha (x)\| 2 \leq \epsilon 2.

When the strong convexity is absent, we can have the following conclusion, which
is the counterpart of Theorem 6 and Corollary 7.

Theorem 8. Suppose that Assumptions 1 and 2 hold with \mu = 0. We only need
to set Tk = O

\bigl( \bigl( 
L+\tau 
\tau + 1

1 - \sigma 2(\bfW )

\bigr) 
log k

1 - \sigma 2(\bfW )

\bigr) 
in Algorithm 2 such that Gk(\alpha (xk+1)) \leq 

minx G
k(x) + \varepsilon k holds for all k.

Corollary 9. Under the settings of Theorem 8 and letting \tau = L(1 - \sigma 2(W)),
Algorithm 2 needs

O

\Biggl( \sqrt{} 
L

\epsilon (1 - \sigma 2(W))
log

1

\epsilon (1 - \sigma 2(W))

\Biggr) 

total inner iterations to achieve an \epsilon -optimal solution such that

F (\alpha (x)) - F (x\ast ) \leq \epsilon and
1

m

m\sum 
i=1

\| xi  - \alpha (x)\| 2 \leq \epsilon 2.
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1806 HUAN LI AND ZHOUCHEN LIN

The accelerated EXTRA needs to know 1
1 - \sigma 2(\bfW ) in advance to set Tk. Generally

speaking, 1
1 - \sigma 2(\bfW ) relates to the global connectivity of the network. The authors of

[33, Proposition 5] give the estimation of 1
1 - \sigma 2(\bfW ) by m for many frequently used

networks, e.g., the 2-D graph, the geometric graph, the expander graph, and the
Erd\H os--R\'enyi random graph. See [33] for the details.

4. Proofs of theorems. In this section, we give the proofs of the theorems,
corollaries, and lemmas in sections 2 and 3. We first present several lemmas, which
will be used in our analysis.

Lemma 10. Assume that Assumption 2 holds, and then we have that \| \Pi x\| F \leq \sqrt{} 
2

1 - \sigma 2(\bfW )\| Ux\| F .

The proof is similar to that of [15, Lemma 5], and we omit the details.

Lemma 11. Suppose that x\ast is the optimal solution of problem (7). There ex-
ists \lambda \ast \in Span(U) such that (x\ast , \lambda \ast ) is a KKT point of the saddle point prob-
lem min\bfx max\lambda f(x) + \langle \lambda ,Ux\rangle . For \lambda \ast and any \lambda \in Span(U), we have \| \lambda \ast \| F \leq \surd 

2\| \nabla f(\bfx \ast )\| F\surd 
1 - \sigma 2(\bfW )

and \| U(\lambda  - \lambda \ast )\| 2F \geq 1 - \sigma 2(\bfW )
2 \| \lambda  - \lambda \ast \| 2F .

The existence of \lambda \ast \in Span(U) is proved in [26, Lemma 3.1] and \| \lambda \ast \| F \leq 
\| \nabla f(\bfx \ast )\| F\widetilde \sigma min(\bfU ) is proved in [22, Theorem 2], where \widetilde \sigma min(U) denotes the smallest nonzero

singular value of U and it is equal to
\sqrt{} 

1 - \sigma 2(\bfW )
2 . The last inequality can be obtained

from a similar induction to the proof of Lemma 10, and we omit the details. From
Lemma 11, we can see that when we study the dependence on 1 - \sigma 2(W), we should
deal with \| \lambda \ast \| F carefully. \| \lambda \ast \| F cannot be regarded as a constant that can be dropped
in the complexities.

Lemma 12. Assume that f(x) is \mu -strongly convex and L-smooth. Then, we have

\mu 

2
\| x - x\ast \| 2F \leq f(x) - f(x\ast ) + \langle \lambda \ast ,Ux\rangle \leq L

2
\| x - x\ast \| 2F .(15)

Assume that f(x) is convex and L-smooth. Then, we have

1

2L
\| \nabla f(x) +U\lambda \ast \| 2F \leq f(x) - f(x\ast ) + \langle \lambda \ast ,Ux\rangle .(16)

Proof. We can easily see that f(x) + \langle \lambda \ast ,Ux\rangle is \mu -strongly convex and L-smooth
in x. Since x\ast = argmin\bfx f(x) + \langle \lambda \ast ,Ux\rangle and Ux\ast = 0, we have (15). From
\nabla f(x\ast ) +U\lambda \ast = 0 and the smoothness of f(x) + \langle \lambda \ast ,Ux\rangle [38, Theorem 2.1.5], we
have (16).

Lemma 13. Suppose that Assumptions 1 and 2 hold with \mu = 0. Assume that
f(x) - f(x\ast ) + \langle \lambda \ast ,Ux\rangle \leq \epsilon 1 and \| Ux\| F \leq \epsilon 2. Then, we have

F (\alpha (x)) - F (x\ast ) \leq 1

m

\Biggl( 
\epsilon 1 +

3\| \nabla f(x\ast )\| F + 2L\| x - x\ast \| F\sqrt{} 
1 - \sigma 2(W)

\epsilon 2 +
L

1 - \sigma 2(W)
\epsilon 22

\Biggr) 
.

Proof. Recall that 1
m11Tx = 1(\alpha (x))T from (3) and x\ast = 1(x\ast )T . From the defi-

nitions of F (x) and f(x) in (1) and (2), respectively, we have F (\alpha (x)) = 1
mf

\bigl( 
1
m11Tx

\bigr) 
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and F (x\ast ) = 1
mf(x\ast ). Thus, we only need to bound f

\bigl( 
1
m11Tx

\bigr) 
 - f(x\ast ) :

f

\biggl( 
1

m
11Tx

\biggr) 
 - f(x\ast )

= f

\biggl( 
1

m
11Tx

\biggr) 
 - f(x) + f(x) - f(x\ast )

a
\leq 
\biggl\langle 
\nabla f(x),

1

m
11Tx - x

\biggr\rangle 
+

L

2
\| \Pi x\| 2F + f(x) - f(x\ast )

b
\leq (\| \nabla f(x\ast )\| F + L\| x - x\ast \| F ) \| \Pi x\| F +

L

2
\| \Pi x\| 2F + f(x) - f(x\ast )

c
\leq (\| \nabla f(x\ast )\| F + L\| x - x\ast \| F )

\sqrt{} 
2

1 - \sigma 2(W)
\| Ux\| F +

L

1 - \sigma 2(W)
\| Ux\| 2F

+ f(x) - f(x\ast ) + \langle \lambda \ast ,Ux\rangle + \| \lambda \ast \| F \| Ux\| F
d
\leq (\| \nabla f(x\ast )\| F + L\| x - x\ast \| F )

\sqrt{} 
2

1 - \sigma 2(W)
\| Ux\| F +

L

1 - \sigma 2(W)
\| Ux\| 2F

+ f(x) - f(x\ast ) + \langle \lambda \ast ,Ux\rangle +
\surd 
2\| \nabla f(x\ast )\| F\sqrt{} 
1 - \sigma 2(W)

\| Ux\| F ,

where we use the smoothness of f(x) and (4) in
a
\leq and

b
\leq , Lemma 10, and  - \langle \lambda \ast ,Ux\rangle \leq 

\| \lambda \ast \| F \| Ux\| F in
c
\leq and Lemma 11 in

d
\leq . The proof is complete.

The following lemma is the well-known coerciveness property of the proximal
operator.

Lemma 14 (see [34, Lemma 22]). Given a convex function F (x) and a positive
constant \tau , define p(y) = argminx F (x) + \tau 

2\| x - y\| 2. For any y and y\prime , the following
inequality holds:

\| y  - y\prime \| \geq \| p(y) - p(y\prime )\| .

Finally, we study the regularized problem (12).

Lemma 15. Suppose that Assumptions 1 and 2 hold with \mu = 0. Then, we have
\| x\ast  - x\ast 

\epsilon \| F \leq \| x\ast \| F and \| x\ast 
\epsilon \| F \leq 2\| x\ast \| F .

The proof is similar to that of [36, Claim 3.4]. We omit the details.

4.1. Proofs of Theorem 1 and Corollary 2. Now, we prove Theorem 1, which
is based on the following lemma. It gives a progress in one iteration of Algorithm 1.
Some techniques in the proof have already appeared in [26], and we present the proof
for the sake of completeness.

Lemma 16. Suppose that Assumptions 1 and 2 hold with \mu = 0. Then, for
procedure (8a)--(8b), we have

f(xk+1) - f(x\ast ) +
\bigl\langle 
\lambda \ast ,Uxk+1

\bigr\rangle 
\leq (L+ \beta )\| xk  - x\ast \| 2F  - (L+ \beta )\| xk+1  - x\ast \| 2F

+
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F  - 1

2\beta 
\| \lambda k+1  - \lambda \ast \| 2F  - \beta + L

2
\| xk+1  - xk\| 2F .

(17)
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1808 HUAN LI AND ZHOUCHEN LIN

Proof. From the L-smoothness and convexity of f(x), we have

f(xk+1) \leq f(xk) +
\bigl\langle 
\nabla f(xk),xk+1  - xk

\bigr\rangle 
+

L

2
\| xk+1  - xk\| 2F

= f(xk) +
\bigl\langle 
\nabla f(xk),x\ast  - xk

\bigr\rangle 
+
\bigl\langle 
\nabla f(xk),xk+1  - x\ast \bigr\rangle + L

2
\| xk+1  - xk\| 2F

\leq f(x\ast ) +
\bigl\langle 
\nabla f(xk),xk+1  - x\ast \bigr\rangle + L

2
\| xk+1  - xk\| 2F .

Plugging (8a) into the above inequality, adding
\bigl\langle 
\lambda \ast ,Uxk+1

\bigr\rangle 
to both sides, and

rearranging the terms, we have

f(xk+1) - f(x\ast ) +
\bigl\langle 
\lambda \ast ,Uxk+1

\bigr\rangle 
\leq  - 

\bigl\langle 
2(L+ \beta )(xk+1  - xk) +U\lambda k + \beta U2xk,xk+1  - x\ast \bigr\rangle 

+
L

2
\| xk+1  - xk\| 2F +

\bigl\langle 
\lambda \ast ,Uxk+1

\bigr\rangle 
a
= - 2(L+ \beta )

\bigl\langle 
xk+1  - xk,xk+1  - x\ast \bigr\rangle  - 1

\beta 

\bigl\langle 
\lambda k  - \lambda \ast , \lambda k+1  - \lambda k

\bigr\rangle 
 - \beta 

\bigl\langle 
Uxk,Uxk+1

\bigr\rangle 
+

L

2
\| xk+1  - xk\| 2F ,

where we use Ux\ast = 0 and (8b) in
a
=. Using the identity of 2 \langle a,b\rangle = \| a\| 2 + \| b\| 2  - 

\| a - b\| 2, we have

f(xk+1) - f(x\ast ) +
\bigl\langle 
\lambda \ast ,Uxk+1

\bigr\rangle 
\leq (L+ \beta )\| xk  - x\ast \| 2F  - (L+ \beta )\| xk+1  - x\ast \| 2F

+
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F  - 1

2\beta 
\| \lambda k+1  - \lambda \ast \| 2F +

1

2\beta 
\| \lambda k+1  - \lambda k\| 2F

 - \beta 

2
\| Uxk\| 2F  - \beta 

2
\| Uxk+1\| 2F +

\beta 

2
\| Uxk+1  - Uxk\| 2F  - 

\biggl( 
L

2
+ \beta 

\biggr) 
\| xk+1  - xk\| 2F

b
\leq (L+ \beta )\| xk  - x\ast \| 2F  - (L+ \beta )\| xk+1  - x\ast \| 2F

+
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F  - 1

2\beta 
\| \lambda k+1  - \lambda \ast \| 2F  - \beta + L

2
\| xk+1  - xk\| 2F ,

where we use (8b) and \| U\| 22 \leq 1 in
b
\leq .

A crucial property in (17) is that we keep the term  - \beta +L
2 \| xk+1  - xk\| 2F , which

will be used in the following proof to eliminate the term
\bigl( 
1
\nu  - 1

\bigr) 9(L+\beta )2

2L \| xk+1  - xk\| 2F
to attain (19). In the following proof of Theorem 1, we use the strong convexity
and smoothness of f(x) to obtain two inequalities, i.e., (19) and (20). A convex
combination leads to (21). The key thing here is to design the parameters carefully.
Otherwise, we may only obtain a suboptimal result with a worse dependence on L

\mu 

and 1
1 - \sigma 2(\bfW ) .

Proof of Theorem 1. We use (16) to upper bound \| \lambda k+1  - \lambda \ast \| 2F . From procedure
(8a)--(8b), we have

2(L+ \beta )
\bigl( 
xk+1  - xk

\bigr) 
+\nabla f(xk) +U\lambda k+1 + \beta U2(xk  - xk+1) = 0.
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Thus, we obtain

1

2L
\| \nabla f(\bfx k+1) +\bfU \lambda \ast \| 2F

=
1

2L

\bigm\| \bigm\| \bigm\| 2(L+\beta )\Bigl( \bfx k+1 - \bfx k
\Bigr) 
+\beta \bfU 2(\bfx k - \bfx k+1)+\nabla f(\bfx k) - \nabla f(\bfx k+1)+\bfU (\lambda k+1 - \lambda \ast )

\bigm\| \bigm\| \bigm\| 2

F

c

\geq 1 - \nu 

2L
\| \bfU (\lambda k+1  - \lambda \ast )\| 2F

 - 1/\nu  - 1

2L

\bigm\| \bigm\| \bigm\| 2(L+\beta )
\Bigl( 
\bfx k+1 - \bfx k

\Bigr) 
+\beta \bfU 2(\bfx k - \bfx k+1)+\nabla f(\bfx k) - \nabla f(\bfx k+1)

\bigm\| \bigm\| \bigm\| 2

F

d

\geq (1 - \nu )(1 - \sigma 2(\bfW ))

4L
\| \lambda k+1  - \lambda \ast \| 2F  - 

\biggl( 
1

\nu 
 - 1

\biggr) 
9(L+ \beta )2

2L
\| \bfx k+1  - \bfx k\| 2F ,

(18)

where we use \| a+b\| 2 \geq (1 - \nu )\| a\| 2 - (1/\nu  - 1)\| b\| 2 for some \nu \in (0, 1) in
c
\geq , Lemma

11, and the smoothness of f(x) in
d
\geq . Lemma 11 requires \lambda k \in Span(U). From the

initialization and (8b), we know it holds for all k.

Letting \nu = 9(\beta +L)
9(\beta +L)+L , then

\bigl( 
1
\nu  - 1

\bigr) 9(L+\beta )2

2L = L+\beta 
2 . Plugging \nu into the above

inequality and using (16) and (17), we have

1 - \sigma 2(W)

36(\beta + L) + 4L
\| \lambda k+1  - \lambda \ast \| 2F \leq (L+ \beta )\| xk  - x\ast \| 2F  - (L+ \beta )\| xk+1  - x\ast \| 2F

+
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F  - 1

2\beta 
\| \lambda k+1  - \lambda \ast \| 2F .

(19)

From (15) and (17), we also have

\mu 

2
\| xk+1  - x\ast \| 2F \leq (L+ \beta )\| xk  - x\ast \| 2F  - (L+ \beta )\| xk+1  - x\ast \| 2F

+
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F  - 1

2\beta 
\| \lambda k+1  - \lambda \ast \| 2F .

(20)

Multiplying (19) by \eta , multiplying (20) by 1 - \eta , adding them together, and rearranging
the terms, we have\biggl( 

L+ \beta +
(1 - \eta )\mu 

2

\biggr) 
\| xk+1  - x\ast \| 2F +

\biggl( 
1

2\beta 
+

\eta (1 - \sigma 2(W))

36(\beta + L) + 4L

\biggr) 
\| \lambda k+1  - \lambda \ast \| 2F

\leq (L+ \beta )\| xk  - x\ast \| 2F +
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F .

(21)

Letting (1 - \eta )\mu 
2(L+\beta ) = \beta \eta (1 - \sigma 2(\bfW ))

18(\beta +L)+2L , we have \eta =
\mu 

2(L+\beta )

\mu 
2(L+\beta )

+
\beta (1 - \sigma 2(\bfW ))

18(\beta +L)+2L

. Plugging it into (21)

and recalling the definition of \rho k in (9), it leads to\biggl( 
1 +

\mu \beta (1 - \sigma 2(W))

\mu (18(\beta + L) + 2L) + 2(L+ \beta )\beta (1 - \sigma 2(W))

\biggr) 
\rho k+1 \leq \rho k.

We can easily check that

\mu \beta (1 - \sigma 2(W))

\mu (18(\beta + L) + 2L) + 2(L+ \beta )\beta (1 - \sigma 2(W))

=
\mu (1 - \sigma 2(W))

20L\mu 
\beta + 2\beta (1 - \sigma 2(W)) + 2L(1 - \sigma 2(W)) + 18\mu 

e
\geq 1

38

\mu (1 - \sigma 2(W))

L(1 - \sigma 2(W)) + \mu 
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1810 HUAN LI AND ZHOUCHEN LIN

by letting \beta = L in
e
\geq . Thus, we have the conclusion.

Finally, we prove Corollary 2.

Proof. From Theorem 1, \lambda 0 = 0, (6), \beta = L, and Lemma 11, we have

(L+ \beta )\| xk  - x\ast \| 2F +
1

2\beta 
\| \lambda k  - \lambda \ast \| 2F \leq (1 - \delta )

k

\biggl( 
(L+ \beta )\| x0  - x\ast \| 2F +

1

2\beta 
\| \lambda \ast \| 2F

\biggr) 
\leq (1 - \delta )

k 2m(LR1 +R2/L)

1 - \sigma 2(W)
.

(22)

On the other hand, from x\ast = 1(x\ast )T , the definition of \alpha (x) in (3), the convexity of
\| \cdot \| 2, and the smoothness of F (x), we have

1

m
\| xk  - x\ast \| 2F =

1

m

m\sum 
i=1

\| xk
i  - x\ast \| 2 \geq \| \alpha (xk) - x\ast \| 2 \geq 2

L

\bigl( 
F (\alpha (xk)) - F (x\ast )

\bigr) 
.(23)

So we have

F (\alpha (xk)) - F (x\ast ) \leq (1 - \delta )
k LR1 +R2/L

1 - \sigma 2(W)
.

On the other hand, since 1
m

\sum m
i=1 \| xi  - \alpha (x)\| 2 = 1

m\| \Pi x\| 2F , we only need to bound
\| \Pi x\| 2F :

\| \Pi xk\| 2F
a
\leq 2

1 - \sigma 2(W)
\| Uxk\| 2F

b
=

2

(1 - \sigma 2(W))\beta 2
\| \lambda k  - \lambda k - 1\| 2F

\leq 4

(1 - \sigma 2(W))\beta 2

\bigl( 
\| \lambda k  - \lambda \ast \| 2F + \| \lambda k - 1  - \lambda \ast \| 2F

\bigr) 
c
\leq 16

(1 - \sigma 2(W))\beta 

\biggl( 
(L+ \beta )\| xk - 1  - x\ast \| 2F +

1

2\beta 
\| \lambda k - 1  - \lambda \ast \| 2F

\biggr) 
d
\leq (1 - \delta )

k - 1 32m(R1 +R2/L
2)

(1 - \sigma 2(W))2
,

(24)

where we use Lemma 10 in
a
\leq , (8b) in

b
=, \| \lambda k  - \lambda \ast \| 2F \leq 2\beta \rho k \leq 2\beta \rho k - 1 and \| \lambda k - 1  - 

\lambda \ast \| 2F \leq 2\beta \rho k - 1 in
c
\leq , (22), and \beta = L in

d
\leq . The proof is complete.

4.2. Proofs of Lemmas 3 and 4. Lemma 3 only proves the O
\bigl( 

L

K
\surd 

1 - \sigma 2(\bfW )

\bigr) 
convergence rate, rather than O

\bigl( 
L
K

\bigr) 
. In fact, from Lemma 13, to prove the O

\bigl( 
1
K

\bigr) 
convergence rate, we should establish \| Ux\| F \leq O

\bigl( \surd m(1 - \sigma 2(\bfW ))

K

\bigr) 
. However, from (27),

we know \| Ux\| F has only the same order of magnitude as O
\bigl( \surd m

K

\sqrt{} 
R1 +

R2

\beta 2(1 - \sigma 2(\bfW ))

\bigr) 
.

We find that \beta = L\surd 
1 - \sigma 2(\bfW )

is the best choice to balance the terms in (29).

Proof of Lemma 3. Summing (17) over k = 0, 1, . . . ,K  - 1, dividing both sides
by K, using the convexity of f(x), and using the definition of \^xK , we have

f(\^xK) - f(x\ast ) +
\bigl\langle 
\lambda \ast ,U\^xK

\bigr\rangle 
\leq 1

K

\biggl( 
(L+ \beta )\| x0  - x\ast \| 2F +

1

2\beta 
\| \lambda 0  - \lambda \ast \| 2F

\biggr) 
.(25)

On the other hand, since f(x) - f(x\ast )+ \langle \lambda \ast ,Ux\rangle \geq 0 for all x from (16), we also have

(L+ \beta )\| xk  - x\ast \| 2F \leq (L+ \beta )\| x0  - x\ast \| 2F +
1

2\beta 
\| \lambda 0  - \lambda \ast \| 2F \forall k = 1, . . . ,K(26)
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and

1

2\beta 
\| \lambda K  - \lambda \ast \| 2F \leq (L+ \beta )\| x0  - x\ast \| 2F +

1

2\beta 
\| \lambda 0  - \lambda \ast \| 2F

from (17). Using (8b) and the definition of \^xK , we further have

\| U\^xK\| 2F =
1

\beta 2K2
\| \lambda K  - \lambda 0\| 2F

\leq 2

\beta 2K2
\| \lambda K  - \lambda \ast \| 2F +

2

\beta 2K2
\| \lambda 0  - \lambda \ast \| 2F

\leq 4

K2

\biggl( 
L+ \beta 

\beta 
\| x0  - x\ast \| 2F +

1

\beta 2
\| \lambda 0  - \lambda \ast \| 2F

\biggr) 
.

(27)

Summing (26) over k = 1, 2, . . . ,K, dividing both sides by K, using the convexity of
\| \cdot \| 2F , and using the definition of \^xK , we have

(L+ \beta )\| \^xK  - x\ast \| 2F \leq (L+ \beta )\| x0  - x\ast \| 2F +
1

2\beta 
\| \lambda 0  - \lambda \ast \| 2F \forall k = 1, . . . ,K.(28)

From (25), (27), (28), and Lemma 13, we have

F (\alpha (\^xK)) - F (x\ast )\leq 1

mK

\biggl( \biggl( 
1+

8L

K\beta (1 - \sigma 2(W))

\biggr) \biggl( 
(L+\beta )\| x0 - x\ast \| 2F +

1

2\beta 
\| \lambda \ast \| 2F

\biggr) 
+

6\| \nabla f(x\ast )\| F\sqrt{} 
1 - \sigma 2(W)

\Biggl( \sqrt{} 
L+ \beta 

\beta 
\| x0  - x\ast \| 2F +

1

\beta 2
\| \lambda \ast \| 2F

\Biggr) 

+
4L\sqrt{} 

1 - \sigma 2(W)

\sqrt{} 
L+\beta 

\beta 

\biggl( 
\| x0 - x\ast \| 2F +

1

\beta (L+\beta )
\| \lambda \ast \| 2F

\biggr) \Biggr) 
.

(29)

Plugging \| \lambda \ast \| 2F \leq 2\| \nabla f(\bfx \ast )\| 2
F

1 - \sigma 2(\bfW ) , (6), and the setting of \beta into the above inequality, after

some simple computations, we have the first conclusion. Similarly, from (27) and
Lemma 10, we have the second conclusion.

Proof of Lemma 4. For the first stage, from a modification of (22) on problem
(12), we know that Algorithm 1 needs

K0 = O

\biggl( \biggl( 
L\epsilon 

\epsilon 
+

1

1 - \sigma 2(W)

\biggr) 
log

1

1 - \sigma 2(W)

\biggr) 
iterations such that

(L\epsilon + \beta )\| xK0  - x\ast 
\epsilon \| 2F +

1

2\beta 
\| \lambda K0  - \lambda \ast 

\epsilon \| 2F \leq m(1 - \sigma 2(W)) (L\epsilon R1 +R2/L\epsilon ) .(30)

Let (xK0 , \lambda K0) be the initialization of the second stage. From a modification of (29)
on problem (10), we have

F\epsilon (\alpha (\^x
K)) - F\epsilon (x

\ast 
\epsilon ) \leq 

1

mK

\Biggl( \Biggl( 
1 +

8L\epsilon 

K\beta (1 - \sigma 2(W))

\Biggr) 
m(1 - \sigma 2(W))(L\epsilon R1 +R2/L\epsilon )

+
6\| \nabla f\epsilon (x

\ast 
\epsilon )\| F\sqrt{} 

1 - \sigma 2(W)

\sqrt{} 
2m(1 - \sigma 2(W))(L\epsilon R1 +R2/L\epsilon )

\beta 

+
4L\epsilon \sqrt{} 

1 - \sigma 2(W)

\sqrt{} 
L\epsilon +\beta 

\beta 

2m(1 - \sigma 2(W))(L\epsilon R1+R2/L\epsilon )

L\epsilon + \beta 

\Biggr) 
.
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1812 HUAN LI AND ZHOUCHEN LIN

From the definition of f\epsilon (x), the smoothness of f(x), Lemma 15, and (6), we have

\| \nabla f\epsilon (x
\ast 
\epsilon )\| F \leq \| \nabla f(x\ast )\| F +L\| x\ast 

\epsilon  - x\ast \| F + \epsilon \| x\ast 
\epsilon \| F

\leq 
\sqrt{} 
mR2+2L\epsilon 

\sqrt{} 
mR1 \leq 

\sqrt{} 
8mL\epsilon (L\epsilon R1+R2/L\epsilon ).

From \beta = L\epsilon and after some simple calculations, we have

F\epsilon (\alpha (\^x
K)) - F\epsilon (x

\ast 
\epsilon ) \leq 

41(L\epsilon R1 +R2/L\epsilon )

K
.

On the other hand, from Lemma 10, (27), (30), and \beta = L\epsilon , we have

\| \Pi \^xK\| 2F \leq 1

1 - \sigma 2(W)
\| U\^xK\| 2F \leq 8m(R1 +R2/L

2
\epsilon )

K2
.

Thus, the second stage needs K = O
\bigl( L\epsilon R1+R2/L\epsilon 

\epsilon 

\bigr) 
iterations such that F\epsilon (\alpha (\^x

K)) - 
F\epsilon (x

\ast 
\epsilon ) \leq \epsilon and 1

m

\sum m
i=1

\bigm\| \bigm\| \^xK
i  - \alpha (\^xK)

\bigm\| \bigm\| 2 \leq \epsilon 2.

4.3. Proofs of Theorems 6 and 8. We consider the strongly convex problems
in section 4.3.1 and the nonstrongly convex ones in section 4.3.2, respectively.

4.3.1. Strongly convex case. In this section, we prove Theorem 6. Define

xk,\ast = argmin
x

Gk(x) = argmin
x

F (x) +
\tau 

2
\| x - \alpha (yk)\| 2,

and denote (xk,\ast , \lambda k,\ast ) to be a KKT point of saddle point problem min\bfx max\lambda g
k(x) +

\langle \lambda ,Ux\rangle , where gk(x) \equiv f(x) + \tau 
2\| x  - yk\| 2F . Then, we know xk,\ast = 1(xk,\ast )T . Let

(xk,t,U\lambda k,t)Tk+1
t=0 be the iterates generated by Algorithm 1 at the kth iteration of

Algorithm 2. Then, xk,0 = xk and xk,Tk+1 = xk+1. Define

\rho k,t = (Lg + \beta g) \| xk,t  - xk,\ast \| 2F +
1

2\beta g
\| \lambda k,t  - \lambda k,\ast \| 2F ,

where we set \beta g = Lg. Similar to (23), we have

Gk(\alpha (xk+1)) - Gk(xk,\ast ) = Gk(\alpha (xk,Tk+1)) - Gk(xk,\ast ) \leq 1

2m
\rho k,Tk

.

Thus, we only need to prove \rho k,Tk
\leq 2m\varepsilon k. Moreover, we prove a sharper result of

\rho k,Tk
\leq 2m(1 - \sigma 2(W))\varepsilon k by induction in the following lemma. The reason is that we

want to prove \| \Pi xK+1\| 2F \leq O (m\varepsilon K), and thus we need to eliminate 1  - \sigma 2(W) in
(32).

Lemma 17. Suppose that Assumptions 1 and 2 hold with \mu > 0. If \rho r,Tr
\leq 

2m(1  - \sigma 2(W))\varepsilon r holds for all r \leq k  - 1 and we initialize xk,0 = xk - 1,Tk - 1+1 and

\lambda k,0 = \lambda k - 1,Tk - 1+1, then we only need Tk = O
\bigl( \bigl( Lg

\mu g
+ 1

1 - \sigma 2(\bfW )

\bigr) 
log

Lg

\mu (1 - \sigma 2(\bfW ))

\bigr) 
such

that \rho k,Tk
\leq 2m(1 - \sigma 2(W))\varepsilon k.

Proof. From Theorem 1 and (24), we have

\rho k,Tk
\leq (1 - \delta g)

Tk \rho k,0,(31)

\| \Pi xk+1\| 2F = \| \Pi xk,Tk+1\| 2F \leq 16

\beta g(1 - \sigma 2(W))
\rho k,Tk

,(32)
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where \delta g = 1

39(
Lg
\mu g

+ 1
1 - \sigma 2(\bfW )

)
. From the initialization and Theorem 1, we have

\rho k,0 = (Lg + \beta g) \| xk - 1,Tk - 1+1  - xk,\ast \| 2F +
1

2\beta g
\| \lambda k - 1,Tk - 1+1  - \lambda k,\ast \| 2F

\leq 2 (Lg + \beta g) \| xk - 1,Tk - 1+1  - xk - 1,\ast \| 2F +
1

\beta g
\| \lambda k - 1,Tk - 1+1  - \lambda k - 1,\ast \| 2F

+ 2 (Lg + \beta g) \| xk,\ast  - xk - 1,\ast \| 2F +
1

\beta g
\| \lambda k,\ast  - \lambda k - 1,\ast \| 2F

\leq 2\rho k - 1,Tk - 1
+ 2 (Lg + \beta g) \| xk,\ast  - xk - 1,\ast \| 2F +

1

\beta g
\| \lambda k,\ast  - \lambda k - 1,\ast \| 2F .

(33)

From the fact that xk,\ast = 1(xk,\ast )T , we have

\| xk,\ast  - xk - 1,\ast \| 2F = m\| xk,\ast  - xk - 1,\ast \| 2
a
\leq m\| \alpha (yk) - \alpha (yk - 1)\| 2

b
\leq 

m\sum 
i=1

\| yk
i  - yk - 1

i \| 2 = \| yk  - yk - 1\| 2F ,
(34)

where
a
\leq uses Lemma 14 and

b
\leq uses the definition of \alpha (y) and the convexity of \| \cdot \| 2.

From Lemma 11, we know

\| \lambda k,\ast  - \lambda k - 1,\ast \| 2F \leq 2

1 - \sigma 2(W)
\| U\lambda k,\ast  - U\lambda k - 1,\ast \| 2F .(35)

Recall that (xk,\ast , \lambda k,\ast ) is a KKT point of min\bfx max\lambda g
k(x) + \langle \lambda ,Ux\rangle and gk(x) =

f(x) + \tau 
2\| x - yk\| 2F . From the KKT condition, we have U\lambda k,\ast +\nabla gk(xk,\ast ) = 0. Thus,

we have

\| U\lambda k,\ast  - U\lambda k - 1,\ast \| 2F
=
\bigm\| \bigm\| \nabla f(xk,\ast ) + \tau (xk,\ast  - yk) - \nabla f(xk - 1,\ast ) - \tau (xk - 1,\ast  - yk - 1)

\bigm\| \bigm\| 2
F

c
\leq 2 (L+ \tau )

2 \| xk,\ast  - xk - 1,\ast \| 2F + 2\tau 2\| yk  - yk - 1\| 2F
d
\leq 4L2

g\| yk  - yk - 1\| 2F ,

(36)

where
c
\leq uses the L-smoothness of f(x) and

d
\leq uses (34) and Lg = L+ \tau . Combining

(33), (34), (35), and (36) and using \beta g = Lg, we have

\rho k,0 \leq 2\rho k - 1,Tk - 1
+

\biggl( 
4Lg +

8Lg

1 - \sigma 2(W)

\biggr) 
\| yk  - yk - 1\| 2F .(37)

From a similar induction to the proof of [34, Proposition 12] and the relations in
Algorithm 2, we have

\| yk  - yk - 1\| 2F \leq 2\| yk  - x\ast \| 2F + 2\| yk - 1  - x\ast \| 2F
\leq 4(1 + \vargamma k)

2\| xk  - x\ast \| 2F + 4\vargamma 2
k\| xk - 1  - x\ast \| 2F

+ 4(1 + \vargamma k - 1)
2\| xk - 1  - x\ast \| 2F + 4\vargamma 2

k - 1\| xk - 2  - x\ast \| 2F
\leq 40max\{ \| xk  - x\ast \| 2F , \| xk - 1  - x\ast \| 2F , \| xk - 2  - x\ast \| 2F \} ,

(38)
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1814 HUAN LI AND ZHOUCHEN LIN

where we denote \vargamma k = \theta k - 1(1 - \theta k - 1)
\theta 2
k - 1+\theta k

and use \vargamma k \leq 1 for all k. The latter can be

obtained by \vargamma k =
\surd 
q - q\surd 
q+q \leq 1 for \mu > 0 and \vargamma k = \theta k - 1(1 - \theta k - 1)

\theta 2
k - 1/\theta k

\leq \theta k
\theta k - 1

\leq 1 for \mu = 0.

Since \rho r,Tr
\leq 2m\varepsilon r for all r \leq k  - 1, i.e., Gr(\alpha (xr+1))  - Gr(xr,\ast ) \leq \varepsilon r, from

Theorem 5 we know the following conclusion holds for all r \leq k  - 1:

F (\alpha (xr+1)) - F (x\ast ) \leq 36

(
\surd 
q  - \rho )2

\varepsilon r+1,(39)

where we use the definition of \varepsilon r in Theorem 5. Thus, we have

\| xk  - x\ast \| 2F
e
= \| 1(\alpha (xk))T +\Pi xk  - 1(x\ast )T \| 2F
\leq 2m\| \alpha (xk) - x\ast \| 2 + 2\| \Pi xk\| 2F
f

\leq 4m

\mu 
(F (\alpha (xk)) - F (x\ast )) +

32\rho k - 1,Tk - 1

\beta g(1 - \sigma 2(W))
g

\leq 144m\varepsilon k
\mu (
\surd 
q  - \rho )2

+
64m\varepsilon k - 1

\beta g
,

(40)

where we use the definitions of \Pi x and \alpha (x) in
e
=, the \mu -strong convexity of F (x) and

(32) in
f

\leq , (39), and the induction condition of \rho k - 1,Tk - 1
\leq 2m(1 - \sigma 2(W))\varepsilon k - 1 in

g

\leq .
Combining (31), (37), (38), and (40) and using \rho k - 1,Tk - 1

\leq 2m(1 - \sigma 2(W))\varepsilon k - 1,
we have

\rho k,Tk
\leq (1 - \delta g)

Tk\varepsilon k

\biggl( 
4m

1 - \rho 
+

\biggl( 
4Lg+

8Lg

1 - \sigma 2(W)

\biggr) 
40

(1 - \rho )3

\biggl( 
144m\varepsilon k

\mu (
\surd 
q - \rho )2

+
64m\varepsilon k - 1

\beta g

\biggr) \biggr) 
h
\leq (1 - \delta g)

Tk
99844mLg

\mu (1 - \sigma 2(W))(1 - \rho )3(
\surd 
q  - \rho )2

\varepsilon k \equiv (1 - \delta g)
TkC1\varepsilon k,

where we use
\surd 
q  - \rho < 1, \varepsilon k \leq \varepsilon k - 1, and \beta g \geq \mu in

h
\leq .

Thus, to attain \rho k,Tk
\leq 2m(1 - \sigma 2(W))\varepsilon k, we only need (1 - \delta g)

TkC1 \leq 2m(1 - 
\sigma 2(W)), i.e., Tk = O

\bigl( 
1
\delta g

log C1

2m(1 - \sigma 2(\bfW ))

\bigr) 
= O

\bigl( \bigl( Lg

\mu g
+ 1

1 - \sigma 2(\bfW )

\bigr) 
log

Lg

\mu (1 - \sigma 2(\bfW ))

\bigr) 
.

Based on the above lemma and Theorem 6, we can prove Corollary 7.

Proof of Corollary 7. From (32) and Lemma 17, we have

\| \Pi xK+1\| 2F \leq 32m\varepsilon K
\beta g

b
\leq 32m

\beta g

2(F (x0) - F (x\ast ))

9
(1 - \rho )K+1,

where
b
\leq uses the definition of \varepsilon k in Theorem 5. On the other hand, from Theorem 5,

we have

F (\alpha (xK+1)) - F (x\ast ) \leq 8

(
\surd 
q  - \rho )2

(1 - \rho )K+2(F (x0) - F (x\ast )).

To make \| \Pi xK+1\| 2F \leq O(m\epsilon 2) and F (\alpha (xK+1)) - F (x\ast ) \leq O(\epsilon ), we only need to run

Algorithm 2 for K = O
\bigl( \sqrt{} 

1 + \tau 
\mu log 1

\epsilon 

\bigr) 
outer iterations such that

(F (x0) - F (x\ast ))(1 - \rho )K+1 \leq \epsilon 2.
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Thus, the total number of inner iterations is

K\sum 
k=0

Tk =

\sqrt{} 
1 +

\tau 

\mu 

\biggl( 
log

1

\epsilon 

\biggr) \biggl( 
L+ \tau 

\mu + \tau 
+

1

1 - \sigma 2(W)

\biggr) 
log

L+ \tau 

\mu (1 - \sigma 2(W))

\leq 3

\sqrt{} 
L

\mu (1 - \sigma 2(W))
log

2L

\mu (1 - \sigma 2(W))
log

1

\epsilon 

by letting \tau = L(1 - \sigma 2(W)) - \mu .

4.3.2. Nonstrongly convex case. When the strong convexity is absent, we can
have the following lemma, which further leads to Theorem 8. Similar to Lemma 17,
we prove a sharper result of \rho k,Tk

\leq 2m\varepsilon k(1 - \sigma 2(W))3+\xi .

Lemma 18. Suppose that F (x) is convex. If \rho r,Tr
\leq 2m\varepsilon r(1 - \sigma 2(W))3+\xi holds for

all r \leq k - 1 and we initialize xk,0 = xk - 1,Tk - 1+1 and \lambda k,0 = \lambda k - 1,Tk - 1+1, then we only
need Tk = O

\bigl( \bigl( Lg

\mu g
+ 1

1 - \sigma 2(\bfW )

\bigr) 
log k

1 - \sigma 2(\bfW )

\bigr) 
such that \rho k,Tk

\leq 2m\varepsilon k(1 - \sigma 2(W))3+\xi .

The proof is similar to that of [34, Proposition 12], and we omit the details. Simply,
when the strong convexity is absent, (37) and (38) also hold. But we need to bound
\| xk  - x\ast \| 2F in a different way. From Theorem 5, the sequence F (\alpha (xk)) is bounded
by a constant. By the bounded level set assumption, there exists C > 0 such that
\| \alpha (xk)  - x\ast \| \leq C. From (32), we have \| \Pi xk\| 2F \leq 16

\beta g(1 - \sigma 2(\bfW ))\rho k - 1,Tk - 1
. Thus, we

have

\| xk  - x\ast \| 2F = \| 1(\alpha (xk))T +\Pi xk  - 1(x\ast )T \| 2F
\leq 2m\| \alpha (xk) - x\ast \| 2 + 2\| \Pi xk\| 2F

\leq 2mC2 +
32m\varepsilon k - 1(1 - \sigma 2(W))2+\xi 

\beta g
.

Thus, \rho k,0 is bounded by constant C2 = 4m+ 40
\bigl( 
4Lg +

8Lg

1 - \sigma 2(\bfW )

\bigr) 
(2mC2 + 32m/\beta g)

and we only need (1 - \delta g)
TkC2 \leq 2m\varepsilon k(1 - \sigma 2(W))3+\xi , i.e.,

Tk =O

\biggl( 
1

\delta g
log

C2

2m\varepsilon k(1 - \sigma 2(W))3+\xi 

\biggr) 
= O

\biggl( \biggl( 
Lg

\mu g
+

1

1 - \sigma 2(W)

\biggr) 
log

k

1 - \sigma 2(W)

\biggr) 
.

Now, we come to Corollary 9. From Theorem 5, to find an \epsilon -optimal solution such

that F (\alpha (xK+1)) - F (x\ast ) \leq \epsilon , we need K = O
\bigl( \sqrt{} 

\tau R1

\epsilon 

\bigr) 
outer iterations. On the other

hand, from (32) and Lemma 18, we have

\| \Pi xK+1\| 2F \leq 32m(1 - \sigma 2(W))2+\xi \varepsilon K
\beta g

a
\leq 32m(1 - \sigma 2(W))2+\xi 

\beta gK4+2\xi 

b
\leq 32m\epsilon 2

\beta gL2+\xi R2+\xi 
1

,

where
a
\leq uses the definition \varepsilon k in Theorem 5,

b
\leq uses K = O

\bigl( \sqrt{} 
\tau R1

\epsilon 

\bigr) 
, and \tau =

L(1  - \sigma 2(W)). Thus, the settings of Tk and K lead to \| \Pi xK+1\| 2F \leq O(m\epsilon 2). The
total number of inner iterations is

\surd 
\tau 
\epsilon \sum 

k=0

Tk =

\sqrt{} 
\tau 

\epsilon 

\biggl( 
L+ \tau 

\tau 
+

1

1 - \sigma 2(W)

\biggr) 
log

1

\epsilon (1 - \sigma 2(W))
.

The setting of \tau = L(1 - \sigma 2(W)) leads to the minimal value of
\sqrt{} 

L
\epsilon (1 - \sigma 2(\bfW )) log

1
\epsilon (1 - \sigma 2(\bfW )) .
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5. Numerical experiments. Consider the decentralized least squares problem:

min
x\in \BbbR n

m\sum 
i=1

fi(x) with fi(x) \equiv 
1

2
\| AT

i x - bi\| 2 +
\mu 

2
\| x\| 2,(41)

where each agent \{ 1, . . . ,m\} holds its own local function fi(x). Ai \in \BbbR n\times s is generated
from the uniform distribution with each entry in [0, 1], and each column of Ai is
normalized to be 1. We set s = 10, n = 500, m = 100, and bi = AT

i x with some
unknown x. We test the performance of the proposed algorithms on both the strongly
convex problem and the nonstrongly convex one. For the strongly convex case, we test
on \mu = 10 - 6 and \mu = 10 - 8, respectively. In general, the accelerated algorithms apply
to ill-conditioned problems with large condition numbers. For the nonstrongly convex
one, we let \mu = 0.

We test the performance on two kinds of networks: (1) The first is the Erd\H os--R\'enyi
random graph, where each pair of nodes has a connection with the ratio of p. We test
two different settings of p: p = 0.5 and p = 0.1, which results in 1

1 - \sigma 2(\bfW ) = 2.87 and
1

1 - \sigma 2(\bfW ) = 7.74, respectively. (2) The second is the geometric graph, where m nodes

are placed uniformly and independently in the unit square [0, 1] and two nodes are
connected if their distance is at most d. We test on d = 0.5 and d = 0.3, which leads
to 1

1 - \sigma 2(\bfW ) = 8.13 and 1
1 - \sigma 2(\bfW ) = 30.02, respectively. We set the weight matrix as

W = \bfI +\bfM 
2 for both graphes, where M is the Metropolis weight matrix [39]:

\bfM i,j =

\left\{   
1/(1 + max\{ di, dj\} ) if (i, j) \in \scrE ,
0 if (i, j) /\in \scrE and i \not = j,
1 - 

\sum 
l\in \scrN i

\bfW i,l if i = j.
and di is the number of the ith agent's neighbors,

We first compare EXTRA analyzed in this paper with the original EXTRA [26].
For the strongly convex problem, the authors of [26, Remark 4] analyzed the algorithm

with \alpha = 1
\beta = \mu 2

L and \alpha = 1
\beta = 1

L being suggested in practice. In our theory, we use

\beta = L and \alpha = 1
4L . In practice, we observe that \beta = L and \alpha = 1

L performs the best.
Figures 1(a) and 1(c) plot the results. We can see that the theoretical setting in the
original EXTRA makes almost no decreasing in the objective function values due to
small step-size and that our theoretical setting works much better. On the other hand,
both the original EXTRA and our analyzed one work best for \beta = L and \alpha = 1

L .
For the nonstrongly convex problems, the authors of [26] suggest \alpha = 1

\beta = 1
L in both

theory and practice. In our theory, Lemma 3 suggests \beta = L\surd 
1 - \sigma 2(\bfW )

and \alpha = 1
2(L+\beta ) .

From Figures 1(b) and 1(d), we observe that a larger \beta (i.e., a smaller step-size) makes
the algorithm slow. On the other hand, our regularized EXTRA performs as well as
the original EXTRA.

Then, we compare the proposed accelerated EXTRA (Acc-EXTRA) with the
original EXTRA [26], accelerated distributed Nesterov gradient descent (Acc-DNGD)
[32], accelerated dual ascent (ADA) [18], and the accelerated penalty method with
consensus (APM-C) [15]. For the strongly convex problem, we set \tau = L(1 - \sigma 2(W)) - \mu 

and Tk =
\bigl\lceil 

1
5(1 - \sigma 2(\bfW )) log

L
\mu (1 - \sigma 2(\bfW ))

\bigr\rceil 
for Acc-EXTRA, Tk =

\bigl\lceil k
\surd 

\mu /L

4
\surd 

1 - \sigma 2(\bfW )

\bigr\rceil 
and the

step-size as 1
L for APM-C, Tk =

\bigl\lceil \sqrt{} 
L
\mu log L

\mu 

\bigr\rceil 
, and the step-size as \mu for ADA, where

Tk means the number of inner iterations at the kth outer iteration and \lceil \cdot \rceil is the top
integral function. We set the step-size as 1

L for EXTRA and tune the best step-size
for Acc-DNGD with different graphs and different \mu . All the compared algorithms
start from xi = 0 for all i.
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Fig. 1. Comparisons between different EXTRA on the Erd\H os--R\'enyi random graph (p = 0.1)
and the geometric graph (p = 0.3). SC means the strongly convex problem (\mu = 10 - 6), and NS
means the nonstrongly convex one.
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Fig. 2. Comparisons on the strongly convex problem with the Erd\H os--R\'enyi random graph.
p = 0.5 for the left two plots, and p = 0.1 for the right two. \mu = 10 - 6 for the top four plots, and
\mu = 10 - 8 for the bottom four.

The numerical results are illustrated in Figures 2 and 3. The computation cost
of ADA is high, and it has almost no visible decreasing in the first 20, 000 gradient
computations [15, Figure 2]. Thus, we do not paint it in the second and fourth plots of
Figures 2--5. We can see that Acc-EXTRA performs better than the original EXTRA
on both the Erd\H os--R\'enyi random graph and the geometric graph. We also observe
that Acc-EXTRA is superior to ADA and APM-C on the graphs with small \mu and

1
1 - \sigma 2(\bfW ) . The performance of Acc-EXTRA degenerates when \mu and 1

1 - \sigma 2(\bfW ) become

larger. When preparing the experiments, we observe that Acc-EXTRA applies to
ill-conditioned problems with large condition numbers for strongly convex problems.
In this case, Acc-EXTRA runs with a certain number of outer iterations and the
acceleration takes effect.
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Fig. 3. Comparisons on the strongly convex problem with the geometric graph. d = 0.5 for the
left two plots, and d = 0.3 for the right two. \mu = 10 - 6 for the top four plots, and \mu = 10 - 8 for the
bottom four.
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Fig. 4. Comparisons on the nonstrongly convex problem with the Erd\H os--R\'enyi random graph.
p = 0.5 for the left two plots, and p = 0.1 for the right two plots.
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Fig. 5. Comparisons on the nonstrongly convex problem with the geometric graph. d = 0.5 for
the left two plots, and d = 0.3 for the right two plots.
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Fig. 6. Further comparisons on the geometric graph. d = 0.5 and \mu = 10 - 5 for the left two
plots, and d = 0.15 and \mu = 0 for the right two plots.

For the nonstrongly convex problem (\mu = 0), we set \tau = L(1  - \sigma 2(W)) and

Tk =
\bigl\lceil 

1
2(1 - \sigma 2(\bfW )) log

k+1
1 - \sigma 2(\bfW )

\bigr\rceil 
for Acc-EXTRA, Tk =

\bigl\lceil log(k+1)

5
\surd 

1 - \sigma 2(\bfW )

\bigr\rceil 
, and the step-size

as 1
L for APM-C. We tune the best step-size as 1

L and 0.2
L for EXTRA and Acc-DNGD,

respectively. For ADA, we add a small regularizer of \epsilon 
2\| x\| 

2 to each fi(x) and solve
a regularized strongly convex problem with \epsilon = 10 - 7. The numerical results are
illustrated in Figures 4 and 5. We observe that Acc-EXTRA also outperforms the
original EXTRA and Acc-EXTRA is superior with small 1

1 - \sigma 2(\bfW ) . Moreover, at the

first 10000 iterations, the advantage of Acc-EXTRA is not obvious and it performs
better at the last 5000 iterations. Thus, Acc-EXTRA is suited for the applications
requiring high precision and the well-connected networks with small 1

1 - \sigma 2(\bfW ) .

Finally, we report two results in Figure 6 that Acc-EXTRA does not perform well,
where the two left plots are for the strongly convex problem and the two right ones are
for the nonstrongly convex one. Comparing the two left plots in Figure 6 with the left
and two top plots in Figure 3, we can see that Acc-EXTRA is inferior to ADA and
APM-C in cases with a larger \mu , i.e., a smaller condition number for strongly convex
problems. On the other hand, comparing the right two plots in Figure 6 with the four
in Figure 5, we observe that ADA and APM-C outperform Acc-EXTRA in cases with
a larger 1

1 - \sigma 2(\bfW ) (it equals 268.67 when d = 0.15) for nonstrongly convex problems.

These observations further support the above conclusions.

6. Conclusion. In this paper, we first give a sharp analysis on the original
EXTRA with improved complexities, which depends on the sum of L

\mu (or L
\epsilon ) and

1
1 - \sigma 2(\bfW ) , rather than their product. Then, we use the Catalyst framework to accelerate

it and obtain the near optimal communication complexities and competitive compu-
tation complexities. Our communication complexities of the proposed accelerated
EXTRA are only worse by the factors of

\bigl( 
log L

\mu (1 - \sigma 2(\bfW ))

\bigr) 
and

\bigl( 
log 1

\epsilon 

\bigr) 
forming the

lower bounds for strongly convex and nonstrongly convex problems, respectively.
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