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Abstract—Recently, many stochastic variance reduced alternating directionmethods of multipliers (ADMMs) (e.g., SAG-ADMMand

SVRG-ADMM) havemade exciting progress such as linear convergence rate for strongly convex (SC) problems. However, their best-known

convergence rate for non-strongly convex (non-SC) problems isOð1=T Þ as opposed toOð1=T 2Þ of accelerated deterministic algorithms,

whereT is the number of iterations. Thus, there remains a gap in the convergence rates of existing stochastic ADMMand deterministic

algorithms. To bridge this gap, we introduce a newmomentum acceleration trick into stochastic variance reducedADMM, and propose a

novel accelerated SVRG-ADMMmethod (called ASVRG-ADMM) for themachine learning problemswith the constraintAxþBy ¼ c. Then

we design a linearized proximal update rule and a simple proximal one for the two classes of ADMM-style problemswithB ¼ tI andB 6¼ tI,

respectively, where I is an identitymatrix and t is an arbitrary bounded constant. Note that our linearized proximal update rule can avoid

solving sub-problems iteratively. Moreover, we prove that ASVRG-ADMMconverges linearly for SCproblems. In particular, ASVRG-ADMM

improves the convergence rate fromOð1=T Þ toOð1=T 2Þ for non-SC problems. Finally, we apply ASVRG-ADMM to variousmachine learning

problems, e.g., graph-guided fused Lasso, graph-guided logistic regression, graph-guidedSVM, generalized graph-guided fused Lasso and

multi-task learning, and show that ASVRG-ADMMconsistently converges faster than the state-of-the-art methods.

Index Terms—Stochastic optimization, ADMM, variance reduction, momentum acceleration, strongly convex and non-strongly convex,

smooth and non-smooth

Ç

1 INTRODUCTION

THIS paper mainly considers the following composite
finite-sum equality-constrained optimization problem

min
x2Rdx ;y2Rdy

n
fðxÞ þ hðyÞ; s.t., AxþBy ¼ c

o
; (1)

where c 2 Rdc , A 2 Rdc�dx , B 2 Rdc�dy , fðxÞ :¼ 1
n

Pn
i¼1 fiðxÞ,

each component function fið�Þ is convex, and hð�Þ is convex
but possibly non-smooth. For instance, a popular choice of
fið�Þ in binary classification problems is the logistic loss, i.e.,
fiðxÞ ¼ log ð1þ expð�bia

T
i xÞÞ, where ðai; biÞ is the feature-

label pair, and bi 2 f�1g. With regard to hð�Þ, we are inter-
ested in a sparsity-inducing regularizer, e.g., ‘1-norm [1],
[2], group Lasso [3], [4] and nuclear norm [5], [6], [7].

Problem (1) arises inmany places inmachine learning, pat-
tern recognition, computer vision, statistics, and operations

research [8]. When the constraint in Eq. (1) is Ax ¼ y, the for-
mulation (1) becomes

min
x2Rdx ;y2Rdy

n
fðxÞ þ hðyÞ; s.t., Ax ¼ y

o
; (2)

where A 2 Rdy�dx . Recall that this class of problems include
the graph-guided fused Lasso [3], generalized Lasso [4] and
graph-guided support vector machine (SVM) [9] as notable
examples. If the constraint degenerates to x ¼ y, this class of
problems include the regularized empirical risk minimiza-
tion (ERM) problem, e.g., logistic regression, Lasso and lin-
ear SVM.

For solving the large-scale optimization problem involving
a large sum of n component functions, stochastic gradient
descent (SGD) [10] uses only one or a mini-batch of gradients
in each iteration, and thus enjoys a significantly lower per-
iteration complexity than deterministic methods including
Nesterov’s accelerated gradient descent (AGD) [11], [12] and
accelerated proximal gradient (APG) [13], [14], i.e., OðdxÞ ver-
sus OðndxÞ. Therefore, SGD has been successfully applied to
many large-scale machine learning problems [9], [15], [16],
especially training deep network models [17]. However, the
variance of the stochastic gradient estimator may be large,
and thus we need to gradually reduce its step-size, which
leads to slow convergence [18], especially for equality-
constrained composite convex problems [19].

This paper mainly focuses on the large sample regime. In
this regime, even first-order deterministic methods such as
FISTA [14] become computationally burdensome due to their
per-iteration complexity ofOðndxÞ. As a result, SGDwith low
per-iteration complexity OðdxÞ has witnessed tremendous
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progress in the recent years. Recently, a number of stochastic
variance reduced methods such as SAG [23], SDCA [24],
SVRG [18], Prox-SVRG [25] and VR-SGD [26] have been pro-
posed to successfully address the problem of high variance of
stochastic gradient estimators in ordinary SGD, resulting in
linear convergence for strongly convex problems as opposed
to sub-linear rates of SGD.More recently, theNesterov’s accel-
eration technique [27] was introduced in [28], [29], [30], [31] to
further speed up the stochastic variance reduced algorithms,
which results in the best-known convergence rates for both
strongly convex (SC) and non-strongly convex (non-SC) prob-
lems, e.g., Katyusha [29]. This also motivates us to integrate
the momentum acceleration trick into the stochastic alternat-
ing directionmethod ofmultipliers (ADMM) below.

1.1 Review of Stochastic ADMMs

It is well known that the ADMM is an effective optimization
tool [32] to solve this class of composite optimization prob-
lems (1). The ADMM has shown attractive performance in a
wide range of real-world problems, such as big data classifi-
cation [33] and matrix and tensor recovery [5], [34], [35]. We
refer the reader to [36], [37], [38], [39] for some review
papers on the ADMM. Recently, several faster deterministic
ADMM algorithms have been proposed to solve some spe-
cial cases of Problem (1). For instance, [40] proposed an
accelerated ADMM, and proved that their algorithm has an
Oð1=T 2Þ convergence rate for SC problems, similar to [37],
[41].1 [42], [43] proposed a faster ADMM algorithm with a
convergence rate Oð1=T 2Þ for solving the special case of
Problem (1) with the constraint Ax ¼ y. However, the per-
iteration complexity of all the full-batch ADMMs is OðndxÞ,
and thus they become very slow and are not suitable for
large-scale machine learning problems.

To tackle the issue of high per-iteration complexity of
deterministic ADMMs, [9], [44], [45] proposed some online or
stochastic ADMM algorithms. However, all these variants
only achieve the convergence rate of OðlogT=TÞ for SC prob-
lems and Oð1= ffiffiffiffi

T
p Þ for non-SC problems, respectively, as

compared with the linear convergence and Oð1=T 2Þ rates of
the accelerated deterministic ADMM algorithms mentioned

above. Recently, several accelerated and faster converging
versions of stochastic ADMMs such as SAG-ADMM [19],
SDCA-ADMM [20] and SVRG-ADMM [22], which are all
based on variance reduction techniques, have been proposed.
With regard to strongly convex problems, [20], [22] proved
that linear convergence can be obtained for the special
ADMM form (i.e., Problem (2)) and the general ADMM form,
respectively. [46] also proposed a fast stochastic variance
reduced ADMM for stochastic composition optimization
problems. More recently, [47], [48] proposed two accelerated
stochastic ADMM algorithms for the problem (2) and four-
composite optimization problems, respectively. For SAG-
ADMM and SVRG-ADMM, an Oð1=TÞ convergence rate can
be guaranteed for non-strongly convex problems, which
implies that there remains a gap in convergence rates between
the stochastic ADMMs and accelerated deterministic algo-
rithms, i.e.,Oð1=T Þ versusOð1=T 2Þ.

1.2 Contributions

To fill in this gap, we design a new momentum accelera-
tion trick similar to the ones in deterministic optimization
and incorporate it into the stochastic variance reduction
gradient (SVRG) based stochastic ADMM (SVRG-
ADMM) [22]. Naturally, the proposed method has a low
per-iteration cost as existing stochastic ADMM algorithms
such as SVRG-ADMM, and does not require the storage of
all gradients (or dual variables) as in SAG-ADMM [19] and
SCAS-ADMM [21], as shown in Table 1.

The main differences between this paper and our previ-
ous conference paper [49] are listed as follows: 1) We briefly
review recent work on stochastic ADMM for solving Prob-
lems (1) and (2). 2) When B 6¼ tI in Eq. (1), where t is an
arbitrary bounded constant and I is an identity matrix, the
sub-problem with respect to y (see Eq. (4) below) has no
closed-form solution and has to be solved iteratively. To
overcome this difficulty, we present a new linearized proxi-
mal update rule for both SC and non-SC problems (1) with
the constraint AxþBy ¼ c when B 6¼ tI. In other words,
the existing stochastic ADMM algorithms including the pro-
posed ones in our previous work [49] do not work for this
case. Although the theoretical guarantees of existing vari-
ance reduced stochastic ADMMs except SDCA-ADMM [20]
are for Problem (1) with the general constraint AxþBy ¼ c,
they do not actually work for solving such problems. 3) For
the case of B ¼ tI, we use a simple proximal update rule as

TABLE 1
Comparison of Convergence Rates and Memory Requirements of Various Stochastic ADMM Algorithms, Including Stochastic
ADMM (STOC-ADMM) [9], Stochastic Average Gradient ADMM (SAG-ADMM) [19], Stochastic Dual Coordinate Ascent ADMM

(SDCA-ADMM) [20], Scalable Stochastic ADMM (SCAS-ADMM) [21], Stochastic Variance Reduced Gradient ADMM
(SVRG-ADMMM) [22], and Our ASVRG-ADMM

Non-strongly convex Strongly convex Constraints Space requirement

STOC-ADMM [9] Oð1= ffiffiffiffi
T

p Þ OðlogT=T Þ Ax ¼ y Oðdxdyþ d2xÞ
SAG-ADMM [19] Oð1=T Þ unknown Ax ¼ y Oðdxdyþ ndxÞ
SDCA-ADMM [20] unknown linear rate AxþBy ¼ c Oðdxdyþ nÞ
SCAS-ADMM [21] Oð1=T Þ Oð1=T Þ Ax ¼ y OðdxdyÞ
SVRG-ADMM [22] Oð1=T Þ linear rate Ax ¼ y OðdxdyÞ
ASVRG-ADMM (ours) Oð1=T 2Þ linear rate AxþBy ¼ c OðdxdyÞ
It should be noted although all the methods except SDCA-ADMM apply the same update rule in (4), their algorithms do not actually work for solving the problem
(1) with the constraint AxþBy ¼ c, where B 6¼ tI, t is an arbitrary bounded constant, and I is an identity matrix.

1. Note that, for simplicity, we do not differentiate the Oð1=T 2Þ and
oð1=T 2Þ because they are of the same order in the worst-case nature
and their difference is insignificant in general, where T is the number
of iterations.

LIU ETAL.: ACCELERATED VARIANCE REDUCTION STOCHASTIC ADMM FOR LARGE-SCALE MACHINE LEARNING 4243

Authorized licensed use limited to: Peking University. Downloaded on January 11,2022 at 09:14:42 UTC from IEEE Xplore.  Restrictions apply. 



in our previous work [49] instead of the linearized proximal
one. Then we propose two novel accelerated SVRG-ADMM
algorithms (called ASVRG-ADMM) for both SC and non-SC
problems. 4) We also theoretically analyze the convergence
properties of the proposed ASVRG-ADMM algorithms for
both SC and non-SC problems and the two cases of B 6¼ tI
and B ¼ tI, respectively. 5) We further improve the theoret-
ical results in our previous work [49] by removing the
boundedness assumption. 6) Finally, we report more experi-
mental results especially for the ADMM problem (1) with
the constraint AxþBy ¼ c to verify both the effectiveness
and efficiency of ASVRG-ADMM.

The main contributions of this paper are summarized as
follows.

� We propose an efficient accelerated variance reduced
stochastic ADMM (ASVRG-ADMM) method, which
integrates both our momentum acceleration trick and
the variance reduction technique of SVRG-ADMM [22].
Moreover, ASVRG-ADMM has a linearized proximal
rule and a simple proximal one for both cases ofB 6¼ tI
andB ¼ tI, respectively.

� We prove that ASVRG-ADMM achieves a linear con-
vergence rate for SC problems, which is consistent
with the best-known result in SDCA-ADMM [20]
and SVRG-ADMM [22]. Besides, ASVRG-ADMM
uses its linearized proximal rule and thus becomes
more practical than existing algorithms, which have
to solve the sub-problems iteratively.

� In particular, for the more general problem (1) with
the constraint AxþBy ¼ c and B 6¼ tI, we also
design a novel epoch initialization technique for the
variable y at each epoch of our linearized proximal
acceleration algorithm for SC problems.

� We also prove that ASVRG-ADMM has a conver-
gence rate Oð1=T 2Þ for non-SC problems, which
means that ASVRG-ADMM is a factor T faster than
SAG-ADMM and SVRG-ADMM, whose conver-
gence rate is Oð1=T Þ. In particular, we design an
adaptive increasing epoch length strategy and fur-
ther improve the theoretical results by using this
strategy and removing boundedness assumptions.

� Various experimental results on synthetic and real-
world datasets further verify that our ASVRG-
ADMM converges consistently much faster than the
state-of-the-art stochastic ADMMmethods.

The remainder of this paper is organized as follows. Section 2
discusses some recent advances in stochastic ADMM. Section 3
proposes a new accelerated stochastic variance reduction
ADMM method (called ASVRG-ADMM) with the proposed
momentum acceleration trick. Moreover, we analyze the con-
vergence properties of ASVRG-ADMM in Section 4. Experi-
mental results in Section 5 show the effectiveness of ASVRG-
ADMM. In Section 6, we conclude this paper and discuss the
futurework.

2 RELATED WORK

This section reveals recent progresses and efforts in stochas-
tic optimization methods that are based on the stochastic
alternating direction method of multipliers (ADMM).

2.1 Notation

Throughout this paper, the norm k � k denotes the standard
euclidean norm, and k � k1 is the ‘1-norm, i.e.,
kxk1 ¼

P
i jxij. We denote by rfðxÞ the gradient of fðxÞ if it

is differentiable, or f 0ðxÞ any of the subgradients of fð�Þ at x
if fð�Þ is only Lipschitz continuous. To facilitate our discus-
sion, we first make the following basic assumptions.

2.2 Basic Assumptions

Assumption 1 (Smoothness). Each convex component func-
tion fið�Þ is L-smooth if its gradients are L-Lipschitz continu-
ous, that is

krfiðxÞ � rfiðyÞk � Lkx� yk; for all x; y 2 Rd:

Assumption 2 (Strong Convexity). A convex function
gð�Þ : Rd ! R is m-strongly convex, if there exists a constant
m > 0 such that

gðyÞ � gðxÞ þ hrgðxÞ; y� xi þ m

2
ky� xk2; for all x; y 2 Rd:

If gð�Þ is non-smooth, we modify the above inequality by simply
replacingrgðxÞ with an arbitrary sub-gradient g0ðxÞ.

2.3 Stochastic ADMM

It is easy to see that Problem (2) is only a special case of the
general ADMM form (1) when B ¼ �I and c ¼ 0. Thus, the
purpose of this paper is to propose an accelerated stochastic
variance reduced ADMM method for solving the more gen-
eral problem (1). Although the stochastic (or online) ADMM
algorithms and theoretical results in [9], [19], [22], [44] are
all for the problem (1), they do not actually work.

The augmented Lagrangian function of Problem (1) is

Lðx; y; �Þ ¼ fðxÞ þ hðyÞ þ h�;AxþBy� ci
þ b

2
kAxþBy� ck2

(3)

where � is the vector of Lagrangian multipliers (also called
the dual variable), and b > 0 is a penalty parameter. To
minimize Problem (1), together with the dual variable �, the
update steps of deterministic ADMM are

yk ¼ argminy

n
hðyÞ þ b

2
kAxk�1 þBy� cþ �k�1k2

o
; (4)

xk ¼ argminx

n
fðxÞ þ b

2
kAxþByk � cþ �k�1k2

o
; (5)

�k ¼ �k�1 þAxk þByk � c: (6)

To extend the deterministic ADMM to the online and sto-
chastic settings, the update rules for yk and �k remain
unchanged, while in [9], [44], the update rule of xk is
approximated as follows:

xk ¼ argmin
x

n
x;rfikðxk�1Þ
� �þ 1

2hk
kx� xk�1k2G

þ b

2
kAxþByk � cþ �k�1k2

o
;

(7)

where we draw ik uniformly at random from ½n	 :¼ f1; . . . ;
ng, hk / 1=

ffiffiffi
k

p
is the learning rate or step-size, and
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kzk2G ¼ zTGz with a given positive semi-definite matrix G,
e.g., G 
 Id1 as in [22]. Analogous to SGD, the stochastic

ADMM variants also use an unbiased estimate of the gradi-

ent at each iteration, i.e., E½rfikðxk�1Þ	 ¼ rfðxk�1Þ. How-

ever, all those algorithms have much slower convergence

rates than their deterministic counterparts mentioned above.

This barrier is mainly due to the large variance introduced

by the stochasticity of the gradients [18]. Essentially, to guar-

antee convergence of SGD and its ADMM variants, we need
to employ a decaying sequence of step-sizes fhkg, which in

turn leads to slower convergence rates.
Recently, a number of variance reduced stochastic

ADMM methods (e.g., SAG-ADMM and SVRG-ADMM)
have been proposed and made exciting progress such as lin-
ear convergence rates. SVRG-ADMM [22] is particularly
attractive here because of its low storage requirement com-
pared with the algorithms in [19], [20]. Within each epoch of
mini-batch SVRG-ADMM, the full gradient ep ¼ rfðexÞ is
first computed, where ex is the average point of the previous
epoch. Thenrfikðxk�1Þ and hk in (7) are replaced by

erfIkðxk�1Þ ¼ 1

jIkj
X
ik2Ik

rfikðxk�1Þ � rfikðexÞ� �þ ep; (8)

and a constant step-size h, respectively, where Ik � ½n	 is a
randomly chosenmini-batch of size b. Note thatmini-batching
is a useful technique to reduce the variance of the stochastic
gradients [26], [50]. In fact, erfIkðxk�1Þ is also an unbiased
estimator of the gradient rfðxk�1Þ, i.e., E½ erfIkðxk�1Þ	 ¼
rfðxk�1Þ.

Algorithm 1. ASVRG-ADMM for Strongly-Convex
Problems

Input:m, h, b > 0, 1 � b � n.

Initialize:ex0, ey0, u, n ¼ 1þ hbkBTBk2
u

, g ¼ 1þ hbkATAk2
u

;
1: for s ¼ 1; 2; . . . ; T do

2: ep ¼ rfðexs�1Þ, e�s�1 ¼ � 1
b
ðAT Þyrfðexs�1Þ, �s

0 ¼ e�s�1;

3: xs
0 ¼ zs0 ¼ exs�1, ys0 ¼ eys�1 (Case of B ¼ tI) or ys0 ¼ �By

ðAzs0 � cÞ (Case of B 6¼ tI);
4: for k ¼ 1; 2; . . . ;m do
5: Choose Ik � ½n	 of size b, uniformly at random;

6: erfIkðxs
k�1Þ ¼ 1

jIkj
P

ik2Ik rfikðxs
k�1Þ � rfikðexs�1Þ� �þ ep;

7: ysk ¼ Prox
1

bt2

h ð�Azsk�1 þ c� �s
k�1Þ=t

� �
for the case ofB ¼ tI,

ysk ¼ Prox
h
un
h ysk�1 � hb

un
BT ðAzsk�1 þBysk�1 � cþ �s

k�1Þ
� �

for the

case ofB 6¼ tI;

8: zsk ¼ zsk�1 � h
gu

h erfIkðxsk�1Þ þ bAT ð Azsk�1 þBysk � cþ �s
k�1Þ

i
;

9: xs
k ¼ ð1� uÞexs�1 þ uzsk;

10: end for
11: exs ¼ 1

m

Pm
k¼1 x

s
k, eys ¼ ð1� uÞeys�1 þ u

m

Pm
k¼1 y

s
k;

12: end for
Output: exT , eyT .

For the equality-constrained composite convex problem
(2), Xu et al. [47] proposed a faster variant of SVRG-ADMM
with an adaptive penalty parameter scheme. Fang et al. [48]
proposed an accelerated stochastic ADMM with Nesterov’s
extrapolation and variance reduction techniques for solving
four-composite optimization problems. Moreover, Huang
et al. [51], and Huang and Chen [52] proposed several

variants of SVRG-ADMM for solving non-smooth and non-
convex optimization problems.

3 MOMENTUM ACCELERATED VARIANCE

REDUCTION STOCHASTIC ADMM

In this section, we propose an efficient accelerated variance
reduced stochastic ADMM (ASVRG-ADMM) method for
solving both SC and non-SC problems (1). In particular, we
design two new linearized proximal accelerated algorithms
for both SC and non-SC problems with the constraint
AxþBy ¼ c and B 6¼ tI, respectively.

3.1 ASVRG-ADMM for Strongly Convex Problems

In this part, we first consider the case of Problem (1) when
each fið�Þ is convex, L-smooth, and fð�Þ is m-strongly con-
vex. Recall that this class of problems include graph-guided
logistic regression and support vector machines (SVM) as
notable examples. To efficiently solve this class of problems,
we incorporate both the momentum acceleration trick pro-
posed in our previous work [49] and the variance reduced
stochastic ADMM [22], as shown in Algorithm 1. All our
algorithms including Algorithm 1 are divided into T
epochs, and each epoch consists of m stochastic updates,
wherem is usually chosen to bem ¼ QðnÞ as in [18], [49].

3.1.1 Update Rule of y

As in both SVRG-ADMM [22] and ASVRG-ADMM [49], the
variable y is updated by solving the following problem for
both strongly convex and non-strongly convex cases:

ysk ¼ argmin
y

n
hðyÞ þ b

2
kAzsk�1 þBy� cþ �s

k�1k2
o
; (9)

where the superscript s indicates the sth epoch, the sub-
script k denotes the kth inner-iteration, zsk�1 is an auxiliary
variable and its update rule is given in Section 3.1.2.

When B ¼ tI (e.g., B is an identity matrix), the solution
to the problem in Eq. (9) can be relatively easily obtained. In
other words, we still apply the simple proximal rule pro-
posed in our previous work [49] to solve such problems. For
this case, we give the following proximal update rule

ysk ¼ Prox
1

bt2

h ð�Azsk�1 þ c� �s
k�1Þ=t

� �
;

where the proximal operator Proxdhð�Þ is defined as

ProxdhðwÞ ¼ argmin
x

n 1

2d
kx� wk2 þ hðxÞ

o
:

However, when B 6¼ tI (e.g., B is not a diagonal matrix),
it is often hard to solve the problem (9) in practice [32]. To
address this issue, we use the inexact Uzawa method [53]
and design the following linearized proximal rule

ysk ¼ argmin
y

(
hðyÞ þ b

2
Azsk�1 þBy� cþ �s

k�1

		 		2
þ us�1

2h
ky� ysk�1k2Qs

)
;

where Qs ¼ nId2 � hb
us�1

BTB with n � 1þ hbkBTBk2
us�1

to ensure

that Qs 
 I, where k � k2 is the spectral norm, i.e., the largest
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singular value of the matrix. The above problem is equiva-
lent to the following problem:

ysk ¼ argminy

n
hðyÞ þ nus�1

2h

			y� ysk�1 þ hb
us�1n

psk

			2o;
(10)

where psk ¼ BT ðAzsk�1 þBysk�1 � cþ �s
k�1Þ. We can easily

obtain the following proximal update rule for Problem (10):

ysk ¼ Prox
h

us�1n

h

h
ysk�1 �

hb

us�1n
BT ðAzsk�1 þBysk�1 � cþ �s

k�1Þ
i
:

From the above analysis, it is clear that we introduce the
linearized proximal operation into the proposed algorithms
(including Algorithms 1 and 2 below) and make our algo-
rithms much more practical than existing stochastic ADMM
algorithms including SVRG-ADMM [22] and the algorithms
proposed in [49]. Then the new algorithms proposed in this
paper as well as their convergence analysis are different
from those in our previous work [49]. In particular, the con-
vergence guarantees of the proposed algorithms become
more challenging.

To ensure linear convergence of the proposed linearized
proximal algorithm for strongly convex problems as SVRG-
ADMM, we also design the following new epoch initializa-
tion strategy for ys0 at each epoch of Algorithm 1 for the gen-
eral case of B 6¼ tI

ys0 ¼ �ByðAzs0 � cÞ; (11)

where B is required to be a matrix of full column rank, and
ð�Þy denotes the pseudo-inverse of a matrix. Note that for the
case of B ¼ tI, we use the epoch initialization settings (e.g.,
ys0 ¼ eys�1 and e�s�1 ¼ � 1

b
ðAT Þyrfðexs�1Þ) in our previous

work [49] to guarantee linear convergence of Algorithm 1,
where the snapshot points eys�1 and exs�1 are defined in Algo-
rithm 1, while only these settings cannot guarantee the con-
vergence of our algorithm for the general case of B 6¼ tI.
Therefore, we present the new initialization setting of ys0 in
Eq. (11) instead of ys0 ¼ eys�1. That is, the only difference in
the initialization settings at the s-epoch for the two cases is
the setting of ys0. Clearly, the epoch initialization techniques
involve the pseudo-inverses of AT and B. In fact, they can be
efficiently pre-computed by the algorithms in [54], [55], espe-
cially randomized algorithmswith onlyOðnÞ complexity.

3.1.2 Update Rule of z

z is an auxiliary variable, and its update rule is given as fol-
lows. Similar to [19], [22], we also use the inexact Uzawa
method [53] to approximate (5), which can avoid computing
the inverse of the matrix ð1

h
Id1 þ bATAÞ. Moreover, the

momentum parameter us (0 � us � 1 and its update rule is
provided in Section 3.1.4) is introduced into the proximal
term 1

2h kz� zsk�1k2Gs
similar to that of (7), and then the prob-

lem with respect to z is formulated as follows:

min
z

nD
z� zsk�1;

erfIkðxs
k�1Þ

E
þ us�1

2h
kz� zsk�1k2Gs

þ b

2
kAzþBysk � cþ �s

k�1k2
o
;

(12)

where erfIkðxsk�1Þ is the stochastic variance reduced gradi-
ent estimator independently introduced in [18], [56], and

Gs ¼ gId1 � hb
us�1

ATA with g � 1þ hbkATAk2
us�1

to ensure that

Gs 
 I similar to [22]. In fact, there is also an alternative to

set Gs as an identity matrix, and then the problem (12) can

be solved through matrix inversion [9], [19].

3.1.3 Our Momentum Accelerated Update Rule for x

In particular, our momentum accelerated update rule for x
is defined as follows:

xs
k ¼ exs�1 þ us�1ðzsk � exs�1Þ ¼ ð1� us�1Þexs�1 þ us�1z

s
k;

(13)
where us�1ðzsk � exs�1Þ is a new momentum term similar to
those as in accelerated deterministic methods [27], which
helps accelerate the convergence speed of our algorithms by
using the iterate of the previous epoch, i.e., exs�1. Note that
us�1 is a momentum parameter, and its update rule is given
below. The momentum term, us�1ðzsk � exs�1Þ, plays a key
role as the Katyusha momentum in [29]. Different from
Katyusha [29], which uses both the Nesterov’s momentum
and Katyusha momentum, our ASVRG-ADMM algorithms
(including Algorithms 1 and 2 below) have only one
momentum term.

3.1.4 Momentum Parameter us
In all epochs of Algorithm 1, the momentum parameter us
can be set to a constant u, which must satisfy the condition
0 � u � 1� dðbÞ=ða� 1Þ, where a ¼ 1

Lh and dðbÞ ¼ n�b
bðn�1Þ. In

particular, we also provide the selecting schemes for the
momentum parameter u and corresponding theoretical
analysis for the two cases of B ¼ tI and B 6¼ tI, which all
are presented in the Supplementary Material, which can be
found on the Computer Society Digital Library at http://
doi.ieeecomputersociety.org/10.1109/TPAMI.2020.3000512.

The detailed procedure for solving the strongly convex
problem (1) is shown in Algorithm 1, where we use the
same epoch initialization technique for e�s as in [22]. Similar
to xs

k, eys ¼ ð1� us �1Þeys�1 þ us �1
m

Pm
k¼1 ysk. When u ¼ 1,

ASVRG-ADMM degenerates to the linearized proximal var-
iant of SVRG-ADMM in [22], as shown in the Supplemen-
tary Material, available online.

3.2 ASVRG-ADMM for Non-Strongly
Convex Problems

In this part, we consider the non-strongly convex (non-SC)
problems of the form (1) when each fið�Þ is convex,
L-smooth, and hð�Þ is not necessarily strongly convex (possi-
bly non-smooth), e.g., graph-guided fused Lasso. The
detailed procedure for solving the non-SC problem (1) is
shown in Algorithm 2, which has slight differences in the
initialization and output of each epoch from Algorithm 1. In
addition, the key difference between them is the update
rule for the momentum parameter us. Different from the
strongly convex case, the momentum parameter us for the
non-SC case is required to satisfy the following inequalities:

1� us

u2s
¼ 1

u2s�1

and 0 � us � 1� dðbÞ
a� 1

; (14)
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where dðbÞ :¼ n�b
bðn�1Þ is a decreasing function with respect to

the mini-batch size b. The condition (14) allows the momen-

tum parameter to decrease, but not too fast, similar to the

requirement on the step-size hk in classical SGD and sto-

chastic ADMM [57]. Unlike deterministic acceleration meth-

ods, us must satisfy both inequalities in (14).
Motivated by the momentum acceleration techniques

in [27], [58] for deterministic optimization, we give the update
rule of themomentumparameter us for themini-batch case

us ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4s�1 þ 4u2s�1

q
� u2s�1

2
and u0 ¼ 1� dðbÞ

a� 1
: (15)

For the special case of b ¼ 1, we have dð1Þ ¼ 1 and u0 ¼ 1� 1
a�1,

while b ¼ n (i.e., the deterministic version), dðnÞ ¼ 0 and u0 ¼
1. Since the sequence fusg is decreasing, us � 1� dðbÞ

a�1 is satis-
fied. That is, us in Algorithm 2 is adaptively adjusted as in (15).

4 CONVERGENCE ANALYSIS

In this section,we theoretically analyze the convergence prop-
erties of our ASVRG-ADMM algorithms (i.e., Algorithms 1
and 2) for SC and non-SC problems with the cases of B 6¼ tI
and B ¼ tI, respectively. We first make the following
assumption for the case of SC problems.

Assumption 3. The matrices A and BT both have full row rank.

The first two assumptions (i.e., Assumptions 1 and 2) are
common in the convergence analysis of first-order optimiza-
tion methods, while the last one (i.e., Assumption 3) has
been used in the convergence analysis of deterministic
ADMM [7], [59], [60] and stochastic ADMM [22] for only
the strongly convex case. Following [22], we first introduce
the following function as a convergence criterion, where
h0ðyÞ2 is the (sub)gradient of hð�Þ at y

P ðx; yÞ :¼ fðxÞ � fðx
Þ � hrfðx
Þ; x� x
i
þhðyÞ � hðy
Þ � hh0ðy
Þ; y� y
i;

where ðx
; y
Þ denotes an optimal solution of Problem (1).
By the convexity of fð�Þ and hð�Þ, P ðx; yÞ � 0 for all x; y 2 Rd.

Note that we present a new linearized proximal technique
in (10) to update ysk, and thus we need to provide new con-
vergence guarantees for our algorithms (i.e., Algorithms 1
and 2), which are different from those in our previous
work [49]. Next, we present five main theoretical results for
the convergence properties of Algorithms 1 and 2. And the
detailed proofs of all the theoretical results are provided in
this paper or the SupplementaryMaterial, available online.

We first sketch the proofs of our main theoretical results as
follows: The proofs of our main results rely on the one-epoch
inequalities in Lemma 4 (B 6¼ tI) below and Lemma 7
(B ¼ tI) in the Supplementary Material, available online.
That is, the proofs of Theorems 1-5 below rely on the one-
epoch inequalities in Lemmas 4 and 7, but require telescoping
such inequalities in different manners. Furthermore, P ðx; yÞ
in Lemma 4 consists of two terms, and thuswe give the upper
bounds of the two terms in Lemmas 2 and 3 to obtain Lemma

4, as well as applying Lemmas 2 and 6 to get Lemma 7 in the
Supplementary Material, available online. In addition, to
remove the strong assumption used in Theorems 3 and 4, we
also design an adaptive strategy of increasing epoch length
for Algorithm 2, and the corresponding theoretical result is
given in Theorem 5, which shows that Algorithm 2 with an
adaptive increasing epoch length attains the same conver-
gence ratewithout the boundedness assumption.

Algorithm 2. ASVRG-ADMM for Non-SC Problems

Input:m, h, b > 0, 1 � b � n.

Initialize: ex0 ¼ z10; y
1
0 ¼ ey0, e�0, u0 ¼ 1� LhdðbÞ

1�Lh .
1: for s ¼ 1; 2; . . . ; T do
2: xs

0 ¼ ð1� us�1Þexs�1 þ us�1z
s
0, �

s
0 ¼ e�s�1;

3: ep ¼ rfðexs�1Þ, n ¼ 1þ hbkBTBk2
us�1

, g ¼ 1þ hbkATAk2
us�1

;
4: for k ¼ 1; 2; . . . ;m do
5: Choose Ik � ½n	 of size b, uniformly at random;

6: erfIkðxs
k�1Þ ¼ 1

jIkj
P

ik2Ik rfikðxs
k�1Þ � rfikðexs�1Þ� �þ ep;

7: ysk ¼ Prox
1

bt2

h ð�Azsk�1 þ c� �s
k�1Þ=t

� �
for the case ofB ¼ tI,

ysk ¼ Prox
h

nus�1

h

h
ysk�1 �

hbBT ðAzs
k�1

þBys
k�1

�cþ�s
k�1

Þ
nus�1

i
for the case

ofB 6¼ tI;
8: zsk ¼ zsk�1 � h

gus�1

h erfIk ðxs
k�1Þ þ bAT ðAzsk�1 þBysk � cþ �s

k�1Þ
i
;

9: xs
k ¼ ð1� us�1Þexs�1 þ us�1z

s
k;

10: �s
k ¼ �s

k�1 þ Azsk þBysk � c;
11: end for
12: exs ¼ 1

m

Pm
k¼1 x

s
k, eys ¼ ð1� us�1Þeys�1 þ us�1

m

Pm
k¼1 y

s
k;

13: e�s ¼ �s
m, y

sþ1
0 ¼ ysm, z

sþ1
0 ¼ zsm, us ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u4
s�1

þ4u2
s�1

p
�u2

s�1
2 ;

14: end for
Output: exT , eyT .
4.1 Key Lemmas

In this part, we give and prove some intermediate key
results for our convergence analysis.

Lemma 1.

E½k erfIkðxsk�1Þ � rfðxsk�1Þk2	
�2LdðbÞ

h
fðexs�1Þ � fðxsk�1Þ þ hrfðxsk�1; x

s
k�1 � exs�1i

i
;

where dðbÞ ¼ n�b
bðn�1Þ � 1 and 1 � b � n.

The proofs of Lemmas 1, 2 and all the theorems below are
provided in the Supplementary Material, available online.
Lemma 1 provides an upper bound on the expected vari-
ance of the mini-batch SVRG estimator erfIkðxsk�1Þ.
Lemma 2. Let ðx
; y
Þ be an optimal solution of Problem (1), and

�
 be the corresponding Lagrange multiplier that maximizes
the dual. Let ’s

k ¼ bð�s
k � �
Þ, and suppose that each fið�Þ is

L-smooth. If the inequality 1� us�1 � dðbÞ
a�1 is satisfied, then

E fðexsÞ � fðx
Þ � rfðx
Þ; exs � x
h i½ 	

� E

"
us�1

m

Xm
k¼1

D
AT’sk; x


 � zsk

E#
� ð1� us�1ÞE fðexs�1Þ � fðx
Þ � hrfðx
Þ; exs�1 � x
i� �
þ u2s�1

2mh
E kx
 � zs0k2Gs

� kx
 � zsmk2Gs

h i
:

2. Note that rfðxÞ is the gradient of a smooth function fð�Þ at x,
while h0ðyÞ denotes a subgradient (or the gradient) of a non-smooth (or
smooth) function hð�Þ at y.
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For the case of B 6¼ tI, we have the following result,
which corresponds to Lemma 7 in the Supplementary Mate-
rial, available online, for the case of B ¼ tI.

Lemma 3. Let fðeys; yskÞg be the sequence generated by Algo-
rithm 1 (or Algorithm 2), we have

E hðeysÞ � hðy
Þ � hh0ðy
Þ; eys � y
i½ 	

� us�1

m

Xm
k¼1

E hBT’s
k; y


 � yski
� �

�ð1� us�1ÞE hðeys�1Þ � hðy
Þ � hh0ðy
Þ; eys�1 � y
i� �
þbus�1

2m
E

"
kAzs0 �Ax
k2 � kAzsm �Ax
k2 þ

Xm
k¼1

k�s
k � �s

k�1k2
#

þ u2s�1

2mh
E ky
 � ys0k2Qs

� ky
 � ysmk2Qs

h i
:

Since a new linearized proximal rule is proposed to
update the variable y for Algorithms 1 and 2 in the case of
B 6¼ tI, we need to give the following proof for Lemma 3,
which is different from Lemma 6 in the Supplementary
Material, available online, for the case of B ¼ tI.

Proof. Since �s
k ¼ �s

k�1 þAzsk þBysk � c, and using the opti-
mality condition of Problem (10) (i.e., h0ðyskÞ þ bBT ðAzsk�1þ
Byk � cþ �k�1Þ þ us�1

h
Qsðysk � ysk�1Þ ¼ 0), we have

hðyskÞ � hðy
Þ
� h0ðyskÞ; ysk � y

� �

¼
*
bBT ðAzsk�1 þByk � cþ �k�1Þ þ us�1Qsðysk � ysk�1Þ

h
; y
 � ysk

+

¼
D
bBT�s

k þ
us�1Qs

h
ðysk � ysk�1Þ; y
 � ysk

E
þ
D
bBT ðAzsk�1 �AzskÞ; y
 � ysk

E
¼ b

2
BT�s

k; y

 � ysk

� �þ us�1

2h
ky
 � ysk�1k2Qs

� ky
 � yskk2Qs


 �
þ b

2
kAzsk�1 �Ax
k2 � kAzsk �Ax
k2 þ k�s

k � �s
k�1k2


 �
;

where the last equality follows from Ax
 þBy
 ¼ c and
Property 1 in the Supplementary Material, available
online. Taking expectation over the random choice of ik,
we have

E hðyskÞ � hðy
Þ � hh0ðy
Þ; ysk � y
i � hBT’sk; y

 � yski

� �
� b

2
E kAzsk�1 � Ax
k2 � kAzsk � Ax
k2
h i

þ 1

2
E
h
bk�s

k � �s
k�1k2 þ

us�1

h
ky
 � ysk�1k2Qs

� ky
 � yskk2Qs


 �i
:

Using the update rule of eys ¼ ð1� us�1Þeys�1 þ us�1
m

Pm
k¼1 y

s
k,

hðeysÞ � ð1� us�1Þhðeys�1Þ þ us�1
m

Pm
k¼1 hðyskÞ, and taking

expectation overwhole history and summing up the above
inequality for all k ¼ 1; . . . ;m, we have

E

"
hðeysÞ � hðy
Þ � hh0ðy
Þ; eys � y
i � us�1

m

Xm
k¼1

hBT’s
k; y


 � yski
#

� us�1

m
E

"Xm
k¼1

hðyskÞ � hðy
Þ þ hh0ðy
Þ � us�1B
T’s

k; y

 � yski

� �#

þ E

"
u2s�1

2h
ky
 � ysk�1k2Qs

� ky
 � yskk2Qs


 �#
þ ð1� us�1ÞE hðeys�1Þ � hðy
Þ � hh0ðy
Þ; eys�1 � y
i� �

� bus�1

2m
E

"
kAzs0 �Ax
k2 � kAzsm � Ax
k2 þ

Xm
k¼1

k�s
k � �s

k�1k2
#

þ ð1� us�1ÞE hðeys�1Þ � hðy
Þ � hh0ðy
Þ; eys�1 � y
i� �
þ u2s�1

2h
ky
 � ysk�1k2Qs

� ky
 � yskk2Qs

h i
:

This completes the proof. tu
For the case of B 6¼ tI, we also have the following one-

epoch inequality, which is a key lemma to prove Theorems
2, 4 and 5 below and is corresponding to Lemma 7 in the
Supplementary Material, available online, for the case of
B ¼ tI, and Lemma 7 is also a main result to prove Theo-
rems 1, 3 and 6 below.

Lemma 4 (One-epoch Upper Bound). Using the same nota-
tion as in Lemma 2, let fðzsk; xs

k; y
s
k; �

s
k; exs; eysÞg be the sequence

generated by Algorithm 1 (or Algorithm 2) with us � 1� dðbÞ
a�1.

Then the following inequality holds for all k

E

"
P ðexs; eysÞ � us�1

m

Xm
k¼1



ðx
 � zskÞTAT’sk þ ðy
 � yskÞTBT’sk

� #

�E

"
P ðexs�1; eys�1Þ
1=ð1� us�1Þ þ u2s�1

2mh



kx
 � zs0k2Gs

� kx
 � zsmk2Gs

�#

þ bus�1

2m
E

"
kAzs0 �Ax
k2 � kAzsm �Ax
k2 þ

Xm
k¼1

k�s
k � �s

k�1k2
#

þ u2s�1

2mh
E Rs � ky
 � ysmk2Qs

h i
;

whereRs is defined as follows:

Rs ¼ skAx
 �Azs0k2; if fðxÞ is SC;
ky
 � ys0k2Qs

; if fðxÞ is non-SC

(
; (16)

and s ¼ kByk22ð2hbkB
TBk2

us�1
þ 1Þ.

Proof. Using Lemmas 2 and 3 and the definition of P ðx; yÞ,
we have

E
h
P ðexs; eysÞ � us�1

m

Xm
k¼1



ðx
 � zskÞTAT’sk þ ðy
 � yskÞTBT’sk

�i

�E

"
P ðexs�1; eys�1Þ
1=ð1� us�1Þ þ

u2s�1 kx
 � zs0k2Gs
� kx
 � zsmk2Gs


 �
2mh

#

þ bus�1

2m
E

"
kAzs0 �Ax
k2 � kAzsm �Ax
k2 þ

Xm
k¼1

k�s
k � �s

k�1k2
#

þ u2s�1

2mh
E ky
 � ys0k2Qs

� ky
 � ysmk2Qs

h i
:

When fð�Þ is m-strongly convex and Ax
 þBy
 ¼ c, we
have y
 ¼ Byðc�Ax
Þ. Using the update rule of ys0 ¼
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Byðc�Azs0Þ and n ¼ 1þ hbkBTBk2
us�1

, we have

ky
 � ys0k2Qs
¼ kByðAzs0 � Ax
Þk2Qs

� kByk22kAzs0 �Ax
k2Qs

� kByk22 nI � h

us�1
BTB

				 				
2

kAzs0 � Ax
k2

� kByk22

 2hbkBTBk2

us�1
þ 1

�
kAzs0 � Ax
k2:

Therefore, the result of Lemma 4 holds. tu

4.2 Linear Convergence

For Algorithm 1, we first give the following results for the
two cases of B ¼ tI and B 6¼ tI, respectively.

Theorem 1 (Case of B ¼ tI). Using the same notation as in
Lemma 2 with u � 1� dðbÞ

a�1, suppose that fð�Þ is m-strongly
convex, each fið�Þ is L-smooth and Assumption 3 holds, and m
is sufficiently large so that

r1 ¼
ukuGþ hbATAk2

hmm|fflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
1

þð1� uÞ|fflfflffl{zfflfflffl}
2

þ Lu

bmsminðAAT Þ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
3

< 1;

(17)
where sminðAAT Þ is the smallest eigenvalue of the positive
semi-definite matrix AAT , and Gs � G as in Eq. (12). Then

E P ðexT ; eyT Þ� � � rT1 P ðex0; ey0Þ:
The theoretical result in our previous work [49] can be

viewed as the special case of Theorem 1 when B ¼ I. From
Theorem 1, we can see that ASVRG-ADMM achieves linear
convergence, which is consistent with that of SVRG-ADMM,
while SCAS-ADMMhas only anOð1=T Þ convergence rate.
Remark 1. Theorem1 shows that our result improves slightly

upon the rate r1 in SVRG-ADMM [22] with the same h and
b. Specifically, r1 in Eq. (17) consists of three components,
which are corresponding to those of Theorem 1 in [22]. In
Algorithm 1, recall that u � 1 and G is defined in Eq. (12).
Thus, the upper bound of Eq. (17) is slightly smaller than
that of Theorem 1 in [22]. In particular, we can set h ¼ 1=8L
(i.e., a ¼ 8) and u ¼ 1� dðbÞ=ða� 1Þ ¼ 1� dðbÞ=7. There-
fore, the second term in Eq. (17) equals to dðbÞ=7, while that
of SVRG-ADMM is approximately equal to 4LhdðbÞ=ð1�
4LhdðbÞÞ � dðbÞ=2. In summary, the convergence speed of
SVRG-ADMMcanbe slightly improvedbyASVRG-ADMM.

Theorem 2 (Case of B 6¼ tI). Using the same notation as in
Lemma 2 with u � 1� dðbÞ

a�1, suppose that fð�Þ is m-strongly
convex, each fið�Þ is L-smooth and Assumption 3 holds, and m
is sufficiently large so that

r2 ¼
u%

hmm
þ ð1� uÞ þ Lu

bmsminðAAT Þ < 1; (18)

where % ¼ kuGþ hðbþ usÞATAÞk2. Then

E P ðexT ; eyT Þ� � � rT2 P ðex0; ey0Þ:
From Theorem 2, ASVRG-ADMM can also achieve linear

convergence for the more complex ADMM-style problem
(1) with B 6¼ tI. It is not hard to see that the convergence

rate r2 in Theorem 2 is slightly larger than that (i.e., r1) of
Theorem 1, meaning slow convergence for more complex
optimization problems, as verified by our experiments.

4.3 Convergence Rate of Oð1=T 2Þ
We first assume that y 2 Y and z 2 Z, where Y and Z are the
convex compact sets with diametersDY ¼ supy1;y22Yky1 � y2k
and DZ ¼ supz1;z22Zkz1 � z2k, respectively, and DL ¼ sup�1;
�2 2 Lk�1 � �2k. The above assumption is called the bound-
edness assumption. We also denote Dx
 ¼ kex0 � x
k,
Dy
 ¼ key0 � y
k and D�
 ¼ ke�0 � �
k, where ðex0; ey0; e�0Þ are
initial points, ðx
; y
Þ is an optimal solution of Problem (1) and
�
 is the corresponding dual variable. The boundedness of
Dx
 ,Dy
 andD�
 are easily satisfied, which is called the basic
conditions in this paper.

For Algorithm 2, we give the following results for the
cases of B ¼ tI and B 6¼ tI, respectively, whose proofs are
provided in the Supplementary Material, available online.

Theorem 3 (Case of B ¼ tI). Let & be a positive constant,
suppose that each fið�Þ is L-smooth, Z and L are the convex
compact sets with diametersDZ andDL, then

E P ðexT ; eyT Þ þ &kAexT þ teyT � ck� �
� 4ða� 1ÞdðbÞ P ðex0; ey0Þ þ &kAex0 þ tey0 � ckð Þ

ða� 1� dðbÞÞ2ðT þ 1Þ2

þ 2LaD2
x


mðT þ 1Þ2 þ
4abðkATAk2D2

Z þD2
LÞ

mða� 1ÞðT þ 1Þ :

(19)

Remark 2. With m ¼ QðnÞ, Theorem 3 shows that the con-
vergence bound consists of the three components, which
converge as Oð1=T 2Þ, Oð1=nT 2Þ and Oð1=nT Þ, respec-
tively, while the three components of SVRG-ADMM con-
verge asOð1=T Þ, Oð1=nT Þ and Oð1=nT Þ. Clearly, ASVRG-
ADMM achieves the convergence rate of Oð1=T 2Þ as
opposed to Oð1=T Þ of SVRG-ADMM and SAG-ADMM
(m � T in general). All the components in the bound of
SCAS-ADMM converge as Oð1=T Þ. Thus, it is clear that
ASVRG-ADMM is at least a factor T faster than existing
stochastic ADMM algorithms including SAG-ADMM,
SVRG-ADMM and SCAS-ADMM. Theorem 3 shows that
the convergence result in our previous work [49] can be
viewed as the special case of Theorem 3. In addition, The-
orems 3 and 4 below require the boundedness assump-
tion and the basic conditions (i.e., Dx
 , Dy
 and D�
 are
bounded by some constants).

Theorem 4 (Case of B 6¼ tI). Using the same notation as in
Lemma 2, and suppose that each fið�Þ is L-smooth, and Y, Z
and L are the convex compact sets with diameters DY , DZ and
DL, then we have

E P ðexT ; eyT Þ þ &kAexT þBeyT � ck� �
� 4ða� 1ÞdðbÞ P ðex0; ey0Þ þ &kAex0 þBey0 � ckð Þ

ða� 1� dðbÞÞ2ðT þ 1Þ2

þ 2ab 2kATAk2D2
Z þ kBTBk2D2

Y þ 2D2
L

� �
mða� 1ÞðT þ 1Þ

þ 2LaðD2
x
 þD2

y
 Þ
mðT þ 1Þ2 :

(20)
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4.4 Oð1=T 2ÞWithout Boundedness Assumption

The result in Theorem 4 shows that ASVRG-ADMM attains
the optimal convergence rate Oð1=T 2Þ for the non-SC prob-
lem (1) with B 6¼ tI. Compared with SVRG-ADMM and
SAG-ADMM, ASVRG-ADMM attains a better convergence
rate for non-SC problems, but with the price on the bound-
edness of the feasible primal sets Z, Y, and the feasible dual
set L. Note that many previous works such as [61], [62] also
require such assumptions of boundedness when proving
the convergence of ADMMs. In order to remove the strong
assumption and further improve our theoretical results, we
design an adaptive strategy of increasing epoch length, i.e.,
msþ1 ¼ dus�1

us
mse, while a constant epoch length m is used in

original Algorithm 2. The increasing epoch length strategy
is similar to that in [63], that is, msþ1 ¼ dus�1

us
mse instead of

msþ1 ¼ 2ms in [63]. By replacing the epoch length m in
Algorithm 2 withms, we can obtain the following improved
theoretical result. It should be noted that the increasing fac-
tor us�1

us
approaches 1 as the number of epochs increases,

which means that the epoch length increases very slowly.
Below we only present the convergence result for the gen-
eral case of B 6¼ tI, the theoretical result for the case of
B ¼ tI and the detailed proofs for all the results are pro-
vided in the Supplementary Material, available online.

Theorem 5 (Without boundedness assumption). Using
the same notation as in Lemma 2, suppose that each fið�Þ is
L-smooth. Let fðexs; eys; e�sÞg be the sequence generated by
Algorithm 2 with our adaptive increasing epoch length strategy
for the case of B 6¼ tI, then

E P ðexT ; eyT Þ þ &kAexT þBeyT � ck� �
� 4ða� 1ÞdðbÞ P ðex0; ey0Þ þ &kAex0 þBey0 � ckð Þ

ða� 1� dðbÞÞ2ðT þ 1Þ2

þ
2ða� 1Þb 2kATAk2D2

x
 þ kBTBk2D2
y
 þ 2D2

�


 �
ða� 1� dðbÞÞm1ðT þ 1Þ2

þ 2LaðD2
x
 þD2

y
 Þ
m1ðT þ 1Þ2 :

(21)

Remark 3. With the setting m1 ¼ Qðn=T Þ to guarantee the
same overall complexity with the original algorithm,
Theorem 5 shows that ASVRG-ADMM with our adaptive
epoch length strategy obtains the rate of Oð1=T 2Þ. The
upper bound only relies on the constants Dx
 , Dy
 and
D�
 , while the theoretical result in Theorem 4 requires
that Y, Z and L are all bounded with the diameters DY ,
DZ and DL. That is, ASVRG-ADMM with our adaptive
epoch length strategy achieves the convergence rate
Oð1=T 2Þwithout the boundedness assumption.

4.5 Discussion

All our algorithms and convergence results can be extended
to the following settings: When the mini-batch size b ¼ n and
m ¼ 1, then dðnÞ ¼ 0, that is, the first term of both (19) and
(20) vanishes, and ASVRG-ADMM degenerates to the deter-
ministic two-block3 ADMM version [64]. The convergence

rate of (20) becomes O



D2
x
þD2

y

ðTþ1Þ2 þ D2

ZþD2
YþD2

L
Tþ1

�
, which is con-

sistent with the result for accelerated deterministic
ADMM [34], [37]. Many empirical risk minimization prob-
lems can be viewed as the special case of Problem (2) when
A ¼ I. Thus, our method can be extended to solve them, and
has an Oð1=T 2 þ 1=ðnT 2ÞÞ rate, which is consistent with the
best-known result as in [29], [30].

5 EXPERIMENTAL RESULTS

In this section, we apply ASVRG-ADMM to solve various
machine learning problems, e.g., non-SC graph-guided
fused Lasso, SC and non-SC graph-guided logistic regres-
sion, and SC graph-guided SVM problems. We compare
ASVRG-ADMM with the state-of-the-art methods: STOC-
ADMM [9], OPG-ADMM [45], SAG-ADMM [19], SCAS-
ADMM [21] and SVRG-ADMM [22]. All methods were
implemented in MATLAB, and the experiments were per-
formed on a PC with an Intel i5-2400 CPU and 16GB RAM.

5.1 Synthetic Data

In this subsection, we evaluate the empirical performance of
the proposed algorithms for solving both SC and non-SC
problems (1) on some synthetic data. Here, each fiðxÞ is the
logistic loss function on the feature-label pair ðai; biÞ, i.e.,
fiðxÞ ¼ log ð1þ expð�bia

T
i xÞÞ (i ¼ 1; 2; . . . ; n) for the non-SC

case and fiðxÞ ¼ log ð1þ expð�bia
T
i xÞÞ þ �2

2 kxk22 for the SC
case, where �2 � 0 is a regularization parameter. We used a
relatively small data set, a9a (about 733K), and a relatively
large data set, epsilon (about 11G), as listed in Table 2. Since
the original SVRG-ADMM [22] cannot be used to solve the
minimization problem (i.e., minx;yf12

Pn
i¼1 fiðxÞ þ �1kyk1g)

with the constraint AxþBy ¼ c, where B 6¼ tI and �1 � 0
is a regularization parameter, we also present its linearized
proximal variant (called SVRG-ADMM+), as shown in the
Supplementary Material, available online. Note that the
constraint matrix A is set to A ¼ ½G; I	 as in [9], [19], [22],
[62], where G is the sparsity pattern of the graph obtained
by sparse inverse covariance selection [65], while both B
and c are randomly generated. In particular, the generated
matrix B has full column rank, but is not an identity matrix.

Fig. 1 shows the training loss (i.e., the training objective
value minus the minimum value) of SVRG-ADMM+ and
ASVRG-ADMM for solving both the SC and non-SC prob-
lems, where the regularization parameters �1 ¼ �2 ¼ 10�4.
All the experimental results show that our ASVRG-ADMM
method (i.e., Algorithms 1 and 2) converges consistently
much faster than SVRG-ADMM+, which empirically veri-
fies our theoretical results of ASVRG-ADMM.

TABLE 2
Summary of All the Real-World Data Sets Used in Our

Experiments

Data sets ] training ] test ]mini-batch

a9a 16,281 16,280 20
epsilon 400,000 100,000 30
w8a 32,350 32,350 20
20newsgroups 13,000 3,242 15
SUSY 3,500,000 1,500,000 100
HIGGS 7,700,000 3,300,000 150

3. Note that the formulation (1) is called two-block because of the
two sets of variables ðx; yÞ, which are updated alternately.
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5.2 Real-World Applications

In this subsection, we apply our ASVRG-ADMM method to
solve a number of real-world machine learning problems
such as graph-guided fused Lasso, graph-guided logistic
regression, graph-guided SVM, generalized graph-guided
logistic regression and multi-task learning.

5.2.1 Graph-Guided Fused Lasso

We evaluate the empirical performance of ASVRG-ADMM
for solving the non-SC graph-guided fused Lasso problem

min
x;y

(
1

n

Xn
i¼1

fiðxÞ þ �1kyk1; s.t., Ax ¼ y

)
; (22)

where fið�Þ is the logistic loss function on the feature-label
pair ðai; biÞ, i.e., fiðxÞ ¼ log ð1þ expð�bia

T
i xÞÞ, and �1 � 0 is

the regularization parameter. As in [9], [22], [62], we set
A ¼ ½G; I	, where G is the sparsity pattern of the graph
obtained by sparse inverse covariance selection [65]. We
used four publicly available data sets4 in our experiments,
as listed in Table 2. The parameter m, as well as b and b, of
ASVRG-ADMM is set to m ¼ d2n=be as in [19], [22]. All the
other algorithms except STOC-ADMM adopted the lineari-
zation of the penalty term b

2 kAx� yk þ �k �1k2 to avoid the
inversion of 1

hk
Id1 þ bATA at each iteration, which can be

computationally expensive for large matrices.

Fig. 2 shows the training loss (i.e., the training objective
value minus the minimum value) and test error of all the
algorithms for the non-SC problem (22) with the regulariza-
tion parameter �1 ¼ 10�5 on the four data sets. SAG-
ADMM could not generate experimental results on the
HIGGS data set because it ran out of memory. These figures
clearly indicate that the variance reduced stochastic ADMM
algorithms (i.e., SAG-ADMM, SCAS-ADMM, SVRG-

ADMM and ASVRG-ADMM) converge much faster than
those without variance reduction techniques, e.g., STOC-
ADMM and OPG-ADMM. In particular, ASVRG-ADMM
consistently outperforms the other algorithms in terms of
convergence speed in all the settings, which empirically
verifies our theoretical result that ASVRG-ADMM has a
faster convergence rate Oð1=T 2Þ, as opposed to the best-
known rate of Oð1=T Þ. Moreover, the test error of ASVRG-
ADMM is consistently better than those of the other
methods.

5.2.2 Graph-Guided Logistic Regression

We also discuss the performance of ASVRG-ADMM for the
SC graph-guided logistic regression problem

min
x;y

(
1

n

Xn
i¼1



fiðxÞ þ �2

2
kxk2

�
þ �1kyk1; s.t., Ax ¼ y

)
:

(23)

Due to limited space and similar experimental phenomena
on the four data sets, we only report the experimental
results on the a9a and w8a data sets in Fig. 3, where
�1 ¼ 10�5 and �2 ¼ 10�2. We can see that SVRG-ADMM
and ASVRG-ADMM achieve comparable performance, and
they significantly outperform the other methods in terms of
convergence speed, which is consistent with their linear
(geometric) convergence guarantees. Moreover, ASVRG-
ADMM converges slightly faster than SVRG-ADMM, which
shows the effectiveness of the proposed momentum trick to
accelerate variance reduced stochastic ADMM, as we
expected.

5.2.3 Graph-Guided SVM

We also evaluate the performance of ASVRG-ADMM for
solving the SC graph-guided SVM problem

min
x;y

(
1

n

Xn
i¼1



½1� bia

T
i x	þ þ �2

2
kxk22

�
þ �1kyk1

)
;

s.t., Ax ¼ y;

(24)

where ½x	þ ¼ maxð0; xÞ is the non-smooth hinge loss. To
effectively solve (24), we use the smooth Huberized hinge
loss in [66] to approximate the hinge loss. For the 20news-
groups data set,5 we randomly divide it into 80 percent
training set and 20 percent test set. Following [9], we set
�1 ¼ �2 ¼ 10�5, and use the one-versus-rest scheme for the
multi-class classification.

Fig. 4 shows the average prediction accuracies and stan-
dard deviations of testing accuracies over 10 different runs.
Since STOC-ADMM, OPG-ADMM, SAG-ADMM and
SCAS-ADMM consistently perform worse than SVRG-
ADMM and ASVRG-ADMM in all settings, we only report
the results of STOC-ADMM. We can see that SVRG-ADMM
and ASVRG-ADMM consistently outperform the classical
SVM and STOC-ADMM. Moreover, ASVRG-ADMM per-
forms much better than the other methods in all settings,
which further verifies the effectiveness of ASVRG-ADMM.

Fig. 1. Comparison of the linearized proximal SVRG-ADMM and our
ASVRG-ADMM algorithms for both SC and non-SC problems on the two
data sets: a9a (top) and epsilon (bottom).

4. http://www.csie.ntu.edu.tw/�cjlin/libsvmtools/datasets/ 5. http://www.cs.nyu.edu/�roweis/data.html
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5.2.4 Generalized Graph-Guided Logistic Regression

Moreover, we apply ASVRG-ADMM to solve the non-SC
graph-guided logistic regression problem as in [67]

min
x;y

(
1

n

Xn
i¼1

fiðxÞ þ �1kxk1 þ �2kyk1; s.t., Ax ¼ y

)
: (25)

All the problems in (22), (23) and (24) can be cast as the form
(2), while Problem (25) can be cast as the form (1), i.e., minx;v
ffðxÞ þ kvk1; s.t.CxþBv ¼ 0g, where v ¼ ½�1z

T ; �2y
T 	T and z

are slack variables,C ¼ ½Idx ;AT 	T ,B ¼ �
1
�1
Idx 0

0 1
�2
Idy

" #
.

The experimental results on the a9a data set are shown in
Fig. 5, from which we can see that SVRG-ADMM+ and
ASVRG-ADMM converge significantly faster than STOC-

ADMM+. Note that SVRG-ADMM+ and STOC-ADMM+
are the linearized proximal variants of SVRG-ADMM and
STOC-ADMM. Moreover, ASVRG-ADMM outperforms
them in terms of both convergence speed and test error,
which shows the effectiveness of our momentum trick to
accelerate variance reduced stochastic ADMM.

5.2.5 Multi-Task Learning

Finally, we consider the multi-task learning problem and can
cast it as the non-SC constrained problem: minX;Y f

PN
i¼1

fiðXÞ þ �1kY k
; s.t:;X ¼ Y g, where X;Y 2 Rd�N , N is the
number of tasks, fiðXÞ is the multinomial logistic loss on the
ith task, and kY k
 is the nuclear norm. The experimental
results in Fig. 6 show that ASVRG-ADMM outperforms the

Fig. 2. Comparison of different stochastic ADMM methods for non-SC graph-guided fused Lasso problems on the four data sets. The y-axis repre-
sents the objective value minus the minimum value (top) or test loss (bottom), and the x-axis corresponds to the running time (seconds).

Fig. 3. Comparison of the stochastic ADMM methods for SC graph-
guided logistic regression problems on a9a (top) and w8a (bottom).

Fig. 4. Accuracy comparison of multi-class classification on 20news-
groups: accuracy versus running time (left) or number of epochs (right).

Fig. 5. Comparison of all the methods for generalized graph-guided
fused Lasso on a9a, where regularization parameters �1 ¼ �2 ¼ 10�5.
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other methods including SVRG-ADMM in terms of both con-
vergence speed and test error.

6 CONCLUSIONS AND FURTHER WORK

In this paper, we proposed an efficient accelerated stochas-
tic variance reduced ADMM (ASVRG-ADMM) method, in
which we combined both our proposed momentum acceler-
ation trick and the variance reduction stochastic
ADMM [22]. We also designed two different update rules
for the general ADMM (i.e., B 6¼ tI) and special ADMM
(i.e., B ¼ tI) problems, respectively. That is, we presented a
new linearized proximal scheme for the case of B 6¼ tI, and
adopted a simple proximal scheme in our previous
work [49] for the case of B ¼ tI. Moreover, we theoretically
analyzed the convergence properties of the proposed linear-
ized proximal accelerated SVRG-ADMM algorithms, which
show that ASVRG-ADMM achieves linear convergence and
Oð1=T 2Þ rates for strongly convex and non-strongly convex
cases, respectively. In particular, ASVRG-ADMM is at least
a factor T faster than existing stochastic ADMM methods
for non-strongly convex problems.

Our empirical study showed that the convergence speed
of ASVRG-ADMM is much faster than those of the state-of-
the-art stochastic ADMM methods such as SVRG-ADMM.
We can apply our proposed momentum acceleration trick
to accelerate existing incremental gradient descent algo-
rithms such as [68], [69] for solving regularized empirical
risk minimization problems. An interesting direction of
future work is the research of our proposed momentum
acceleration trick for accelerating incremental gradient
descent ADMM algorithms such as SAG-ADMM [19] and
SAGA-ADMM [52]. In addition, it is also interesting to
extend our algorithms and theoretical results from the
two-block version to the multi-block ADMM case [70].
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