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Abstract—Multi-way or tensor data analysis has attracted increasing attention recently, with many important applications in practice.

This article develops a tensor low-rank representation (TLRR) method, which is the first approach that can exactly recover the clean

data of intrinsic low-rank structure and accurately cluster them as well, with provable performance guarantees. In particular, for tensor

data with arbitrary sparse corruptions, TLRR can exactly recover the clean data under mild conditions; meanwhile TLRR can exactly

verify their true origin tensor subspaces and hence cluster them accurately. TLRR objective function can be optimized via efficient

convex programing with convergence guarantees. Besides, we provide two simple yet effective dictionary construction methods, the

simple TLRR (S-TLRR) and robust TLRR (R-TLRR), to handle slightly and severely corrupted data respectively. Experimental results

on two computer vision data analysis tasks, image/video recovery and face clustering, clearly demonstrate the superior performance,

efficiency and robustness of our developed method over state-of-the-arts including the popular LRR and SSC methods.

Index Terms—Tensor low-rank representation, low-rank tensor recovery, tensor data clustering

Ç

1 INTRODUCTION

THIS paper studies the problem of recovering 3-way ten-
sor data from noisy observations with corruption and

clustering them as well. Formally, suppose one is provided
with a 3-way noisy tensor XX 2 Rn1�n2�n3 which is composed
of a clean low-rank tensor LL0 and an additional sparse noise
component EE0:

XX ¼ LL0 þ EE0: (1)

W.l.o.g., we assume samples are distributed along the sec-
ond dimension (or mode) of XX , i.e., XXð:; t; :Þ denotes the tth
sample as shown in Fig. 1, and the samples LL0ð:; t; :Þ are
drawn from one of k independent linear tensor subspaces
(see Section 5.2). We aim to exactly recover the low-rank
tensor LL0 from XX and cluster n2 samples LL0ð:; t; :Þ into k
clusters according to their affiliation with the k tensor sub-
spaces. This problem is important for many applications,
including image/video denoising [1], [3], data clustering [4],
[5], saliency detection [6], and visual tracking [7].

This problem is well studied in the matrix domain. For
instance, the matrix-based low-rank representation (LRR)
algorithm [3], [4] clusters vector-valued samples into corre-
sponding subspaces by seeking low-rank linear representa-
tions of all the samples w.r.t. a given dictionary. The
representation coefficients encode subspace membership of
the samples on which standard clustering methods can be
applied to obtain sample clusters. But LRR and its var-
iants [8], [9] are limited to 2-way data. Usually realistic data
are in multi-way, e.g., videos, image collections and finance
data. Naively flattening them into a big matrix and applying
LRR-alike algorithms would lead to performance drop
because the data intrinsic multi-way structure is destroyed
[10], [11], [12], [13]. Recently, some tensor analysis based
works, e.g., [13], [14], are proposed to recover the clean data
LL0 from XX . However, these methods do not learn the rela-
tions among samples and cannot cluster them either. Later,
Fu et al. [15] integrated Tuker decomposition [16] with
sparse coding [17] to simultaneously learn the low-rank spa-
tial relations among samples and the linear relations of sam-
ples in the feature space for tensor data clustering. But their
proposed TLRRSC method still requires reshaping 2-way
data into vectors and thus suffers degraded perfor-
mance [10], [11], [13]. Zhang et al. [18] proposed a low-rank
tensor constrained multi-view subspace clustering method
(LT-MSC), which performs LRR on the data matrix in each
view with a unified low-rank constraint on the tensor con-
sisting of all representation matrices. However, LT-MSC
requires several kinds of features to construct the multi-
view data. Besides, both TLRRSC and LT-MSC have no the-
oretical guarantee for data recovery and clustering. Though
deep learning has achieved great success in many applica-
tions [19], [20], it cannot well solve the recovery and cluster-

ing problems of the high-dimensional but small-scale tensor
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data considered in this work. This is because it is hard to
well train a network under this setting due to insufficient
training samples. For example, one cannot train a network
on a single corrupted image to denoise it.

In this work, we develop the first algorithmic solution to
the problem (1) with both theoretical performance guaran-
tees and practical efficacy. The developed Tensor Low-Rank
Representation (TLRR) method can recover the clean tensor
of low-rank structure and infer the clusters of samples. Con-
cretely, based on the recently developed tensor nuclear
norm [13], we propose to seek the following low-rank repre-
sentation on the raw tensor data (see illustration in Fig. 1):

min
ZZ;EE

kZZk� þ �kEEk1; s.t. XX ¼ AA � ZZ þ EE; (2)

where kZZk� and kEEk1 respectively denote the tensor nuclear
norm [13] and the tensor ‘1 norm (see more details in
Table 1); � denotes the tensor product defined in Defini-
tion 1; each slice AAð:; t; :Þ in AA 2 Rn1�n4�n3 denotes a repre-
sentation base and ZZð:; t; :Þ gives the corresponding
representation.

We prove that under mild conditions, TLRR exactly
recovers the clean data LL0 via LL0¼AA � ZZ? or LL0¼XX � EE? ,
where (ZZ? ; EE? ) is the minimizer to problem (2). This exact
recovery result allows the tubal rank (see Definition 3) of LL0

and the amount of noise to be as high as O minðn1; n2Þ=ð
log ðn3maxðn1; n2ÞÞÞ and O n1n2n3ð Þ, respectively. That is,
our TLRR can handle the challenging case where the num-
ber of noisy entries is at the same order as the total entry
number of the observed tensor and the underlying clean
data LL0 have a high tubal rank. We also prove when the
data are noise-free, the representation coefficient ZZ? has a
tensor block-diagonal structure formed by nonzero entries
(see ZZ in Fig. 1). It directly gives the tensor subspace (see
Section 5.2) that a specific sample locates in and thus the
clustering results over the samples in the tensor. Accord-
ingly, clustering can benefit from the exact recovery guar-
antee, as if LL0 can be exactly recovered, then the learned
ZZ? would be tensor block-diagonal. Compared with the
procedure of first applying data recovery methods, e.g.,
[13], [14], [21], to denoise data and then performing cluster-
ing on the recovered clean data, our TLRR can simulta-
neously achieve recovery and clustering of low-rank tensor
data with theoretic guarantees and experimentally vali-
dated efficacy.

The dictionary AA plays an important role in TLRR. We
propose two simple yet effective dictionary construction
approaches to enable the samples in XX to be linearly repre-
sented by the constructed dictionary. When the observed
tensor XX is not grossly corrupted, we directly use XX itself as

the dictionary. This gives the first variant of TLRR called
simple TLRR (S-TLRR). When corruptions are severe, i.e.,
sparse noise with large magnitude, we propose to take the
estimated clean data by R-TPCA [13] as the dictionary AA,
giving the second method called robust TLRR (R-TLRR).
For both methods, the learned representation ZZ? indicates
the similarity between samples and can be used for data
clustering. Note, R-TLRR can also work on the data that are
not severely corrupted, though it might be less computa-
tionally efficient than S-TLRR since it needs more efforts to
construct the dictionary.

Finally, considering the high cost of directly solving our
problem by standard convex optimization techniques, we
propose to reformulate it into an equivalent one with reduced
size, which can be solved efficiently by the alternating direc-
tion method of multipliers (ADMM) [22]. Accordingly, we
significantly reduce the computational complexity from
Oððn1 þ n2Þn2

2n3Þ to OðrAAn1n2n3Þ at each iteration, where the
tubal rank rAA of dictionaryAA is usually much smaller than n2.

To sum up, this paper makes the following contributions.

1) For the first time, we propose a tensor low-rank
representation learning method for effective and
robust low-rank tensor analysis with theoretical
guarantees. TLRR can not only exactly recover the
clean low-rank data but also reveal the data cluster
structure. The latter feature is absent from existing
low-rank tensor analysis methods.

2) We develop an efficient algorithm to optimize our
problem. Instead of directly solving the original
problem, we manage to simplify it and reduce the
computational complexity from Oððn1 þ n2Þn2

2n3Þ to
OðrAAn1n2n3Þ.

3) We propose to use tensor linear representation for
characterizing the linear relations among tensor sam-
ples, and theoretically show its advantages over vec-
tor linear representation when capturing complex
data relations.

4) We provide theoretical performance guarantees for
TLRR. Specifically, TLRR can exactly recover the
clean data LL0 with high probability, even in challeng-
ing situations where the tubal rank of LL0 and the
amount of noise are very high.

5) We also prove that for noise-free data, the minimizer
to the TLRR model is tensor block-diagonal and

Fig. 1. Illustration of the proposed TLRR method for tensor data recovery
and clustering. By exploiting intrinsic low-rank structure of the input ten-
sor data XX , TLRR can effectively recover the underlying low-rank tensor
LL in presence of sparse noise EE, and cluster the samples in XX (encoded
by ZZ under dictionaryAA).

TABLE 1
Notational Convention in This Article
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indicates clustering structure of tensors straightfor-
wardly, under a reasonable assumption on the tensor
subspaces that samples locate in.

Extensive experimental results show that our method
outperforms state-of-the-art subspace methods on the two
important visual tasks, image/video recovery and face
clustering.

2 RELATED WORK

As aforementioned, LRR [3], [4] can cluster vector-valued
samples XX into corresponding subspaces through seeking
low-rank linear representationsZZ w.r.t. a given dictionaryAA:

min
ZZ

kZZk� þ �kEEk1; s.t. XX ¼ AAZZ þ EE: (3)

Here k � k� and k � k1 respectively denote the matrix nuclear
and ‘1 norms. But LRR and its variants [8], [9] can only pro-
cess 2-way data and cannot effectively handle common
multi-way data (tensor), e.g., videos, image collections and
finance data. Besides, if one reshapes tensor data into a big
matrix and then applies the above matrix-based methods,
the performance would severely drop due to destroying the
low-rank structure and losing vital information [10], [11],
[12], [13]. Thus, their application scope is limited.

Recently, Lu et al. [13] extended R-PCA [21] from the 2-
way matrix to 3-way tensor data and considered the follow-
ing robust tensor PCA (R-TPCA) problem:

min
LL;EE

kLLk� þ �kEEk1; s.t. XX ¼ LL þ EE:

Under certain conditions, R-TPCA can recover the clean
data LL0 from noisy observation XX . Comparatively, our
TLRR can handle data sampled from a mixture of multiple
tensor subspaces (see Theorem 3) thus has wider applica-
tions for realistic data analysis than R-TPCA. Moreover,
TLRR can also cluster tensor data while R-TPCA cannot.
Finally, TLRR provides different and more general theoreti-
cal recovery guarantees, and it degenerates to R-TPCA
when taking an identity tensor as the dictionary AA.

Besides the one used in this paper, there are several dif-
ferent definitions of tensor rank, leading to different low-
rank tensor analysis methods. The CP rank [23], defined as
the smallest number of factors in rank-one tensor decompo-
sition, is generally NP-hard to compute [24], [25]. The
Tucker rank [16] is defined on the unfolding matrices to
depict the rank of a tensor. As minimizing the rank function
is complex due to its combinational nature, Liu et al. [26]
used the sum of the nuclear norm (SNN)

Pk
i¼1 kXXik� to

approximate the tensor rank in tensor completion problems.
Later Huang et al. [14] and Goldfarb et al. [27] adopted
SNN to recover low-rank tensor. But Romera et al. [28]
proved that SNN is not a tight convex relaxation ofPk

i¼1 rankðXXiÞ. Song et al. [29] extended matrix CUR decom-
position [30] to tensor CURT decomposition and proposed
an algorithm to compute a low-rank CURT approximation
to a tensor. But both this method and SNN [14] cannot learn
the relations among samples, in contrast to our TLRR.
Finally, if applying data recoverymethods, e.g., R-TPCA [13]
and SNN [14], to clustering, one needs to first apply them
to denoise data and then cluster estimated clean data.

Comparatively, our TLRR simultaneously recovers the clean
data and clusters them. TLRR offers stronger clean data
recovery capacity by considering more complex data struc-
ture. TLRR also directly guarantees tensor block-diagonal
structures of its optimal solution, indicating the clustering
structure of tensors straightforwardly (see Section 5.2).

Recently, Fu et al. [15] proposed a tensor low-rank represen-
tation and sparse coding based method (TLRRSC) for data
clustering. Specifically, they arranged n samples of feature
dimension nk into a tensor XX 2 Rn1�n2�����nk , where n ¼
n1n2 � � �nk�1. Then they adopted a low-rank Tucker decompo-
sition on the spatial modes (modes 1 to k�1) to depict the low-
rank spatial relations among samples, and used sparse cod-
ing [17] to capture the linear relations of samples in the feature
space (mode k). However, TLRRSC still needs to reshape 2-
way data into vectors. Zhang et al. [18] proposed a low-rank
tensor constrained multi-view subspace clustering method.
LT-MSC first extracts several kinds of features to construct the
multi-view data, and then restrains the learned representation
tensor constructed by the representation matrix for each view
data to be lowTucker rank. Differently, our TLRRdirectly con-
siders the multi-way structure of the raw tensor data and
avoids ad hoc extracting features. Besides, our TLRR has theo-
retical guarantees for data recovery and clustering which are
missing in both TLRRSCand LT-MSC.

3 NOTATIONS AND PRELIMINARIES

In this section, we summarize the notations, definitions and
preliminaries throughout this paper, which can avoid re-
introduction and help readers locate them.

3.1 Notations

Table 1 summarizes the notations used in this paper.
II 2Rn�n�n3 denotes the identity tensor whose first frontal
slice is an n� n identity matrix, and the entries in the other
frontal slices are all zeros. The conjugate transpose BB� 2
Cn2�n1�n3 of tensor BB 2 Cn1�n2�n3 is obtained by conjugate
transposing each frontal slice of BB and then reversing the
order of transposed frontal slices 2 through n3. The inner
product of two tensors BB 2 Rn1�n2�n3 and CC 2 Rn1�n2�n3 is
defined as hBB; CCi¼Pn3

i¼1hBBðiÞ; CCðiÞi.
Now we introduce the Discrete Fourier Transformation

(DFT) on a tensor used in Section 3.2. Let �B�B2Cn1�n2�n3 be
the DFT of BB 2 Rn1�n2�n3 along the 3rd dimension. Define
the DFT matrix:

FFn3 ¼ ½ff1; . . . ; ffi; . . . ; ffn3
� 2 Rn3�n3 ; (4)

where ffi ¼ ½v0�ði�1Þ;v1�ði�1Þ; � � � ;vðn3�1Þ�ði�1Þ� 2 Rn3 with

v ¼ e�ð2p ffiffiffiffiffi�1
p

=n3Þ. Thenwe have �B�Bði; j; :Þ¼FFn3BBði; j; :Þ. Indeed,
we can compute �B�B directly by the Matlab command
�B�B ¼ fftðBB; ½ �; 3Þ and use the inverse DFT to obtain

BB ¼ ifftð�B�B; ½ �; 3Þ. Then the tensor spectral norm of BB is defined

as kBBk ¼ k�B�Bk [13]. For brevity, we define �B�B 2 Cn1n3�n2n3 as

�B�B ¼ bdiagð�B�BÞ¼
�B�B
ð1Þ

�B�B
ð2Þ

. .
.

�B�B
ðn3Þ

2
6664

3
77752Cn1n3�n2n3 ; (5)
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where bdiagð�Þ unfolds the tensor �B�B to a block-diagonal

matrix �B�B. Then we define the block circulant matrix

bcircðBBÞ of BB as

bcircðBBÞ ¼
BBð1Þ BBðn3Þ � � � BBð2Þ

BBð2Þ BBð1Þ � � � BBð3Þ

..

. ..
. . .

. ..
.

BBðn3Þ BBðn3�1Þ � � � BBð1Þ

2
6664

3
7775 2 Rn1n3�n2n3 :

Then we define the operator unfold and its inverse operator
fold as

unfoldðBBÞ¼
BBð1Þ

BBð2Þ

..

.

BBðn3Þ

2
6664

3
77752Rn1n3�n2 ; foldðunfoldðBBÞÞ ¼ BB:

Based on the definitions of �B�B, bcircðBBÞ and unfoldðBBÞ, we
can define the tensor rank and nuclear norm as introduced
below.

3.2 Preliminaries

We start with explaining t-product for tensor product com-
putation and then give necessary definitions for developing
TLRR.

Definition 1 (t-product) [31]. The t-product between two ten-
sors BB 2 Rn1�n2�n3 and CC 2 Rn2�n4�n3 is defined as BB � CC ¼
foldðbcircðBBÞ � unfoldðCCÞÞ 2 Rn1�n4�n3 .

Indeed, t-product is equivalent to the matrix multiplica-
tion in the Fourier domain, i.e., FF ¼ BB � CC and �F�F ¼ �B�B�C�C are
equivalent [31]. A tensor PP 2 Rn�n�n3 is orthogonal if
PP� � PP ¼ PP � PP� ¼ II holds. A tensor is f � diagonal if its
each frontal slice is diagonal. Then we can define t-SVD for
tensor SVD as follows.

Definition 2 (t-SVD and skinny t-SVD) [31], [32], [33].
For any BB 2 Rn1�n2�n3 , it can be factorized by t-SVD as
BB ¼ UU � SS � VV�, where UU 2 Rn1�n1�n3 and VV 2 Rn2�n2�n3 are
orthogonal, and SS 2 Rn1�n2�n3 is f-diagonal. Then the skinny
t-SVD of BB is BB ¼ UUs � SSs � VV�

s , where UUs ¼ UUð:; 1 : r; :Þ,
SSs ¼ SSð1 : r; 1 : r; :Þ, and VVs ¼ VVð:; 1 : r; :Þ in which r denotes
the tensor tubal rank of BB (see Definition 3).

Based on t-SVD, we can describe the low-rank structure
of a tensor by defining following two tensor ranks.

Definition 3 (Tensor average and tubal rank) [10], [13].
For any BB 2 Rn1�n2�n3 , let rr ¼ ðrankð�B�Bð1ÞÞ; � � � ; rankð�B�Bðn3ÞÞÞ.
The tensor average rank of BB is defined as

rankaðBBÞ ¼ 1

n3

Xn3

i¼1
rri ¼ 1

n3
rankð�B�BÞ:

The tensor tubal rank ranktðBBÞ is defined as the number of
nonzero singular tubes of SS, i.e.,

ranktðBBÞ ¼ #fi : SSði; i; :Þ 6¼ 0g ¼ maxðrr1; . . . ; rrn3Þ;
where SS is from the t-SVD of BB ¼ UU � SS � VV�.

To pursue a low-rank tensor, one can minimize the ten-
sor rank defined as above which however is NP-hard. To
alleviate the optimization difficulty, we instead minimize

the tensor nuclear norm kBBk� defined below, which is a con-
vex envelop of the tensor average rank within the unit ball
of the tensor spectral norm [13].

Definition 4 (Tensor nuclear norm) [13], [34], [35]. The
tensor nuclear norm kBBk� of a tensor BB 2 Rn1�n2�n3 is defined as
the average of the nuclear norm of all the frontal slices of �B�B, i.e.,

kBBk� ¼
1

n3

Xn3
i¼1

k�B�BðiÞk� ¼
1

n3
k�B�Bk�;

which is the convex envelop of the tensor average rank within
the unit ball of the tensor spectral norm.

Next, we introduce the pseudo-inverse of a tensor.

Definition 5 (Tensor pseudo-inverse). For an arbitrary ten-
sor BB 2 Rn1�n2�n3 , its pseudo-inverse is defined as a tensor
BBy 2 Rn2�n1�n3 which satisfies (a) BB � BBy � BB ¼ BB, (b)
BBy � BB � BBy ¼ BBy, (c) BB � BBy ¼ �BB � BBy��, (d) BBy � BB ¼�BBy � BB��:
The pseudo-inverse of a tensor BB can be computed fron-

tal-slice-wisely after DFT. See more details in Section 4.1 in
supplementary, which can be found on the Computer Soci-
ety Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TPAMI.2019.2954874. Finally, we introduce a
lemma that is essential for developing TLRR method and
following theoretical analysis.

Lemma 1 [31]. Suppose BB 2 Rn1�n2�n3 , CC 2 Rn2�n4�n3 are two
arbitrary tensors. Let FF ¼ BB � CC. Then, we have

1) kBBk2F ¼ 1
n3
k�BBk2F and hBB; CCi ¼ 1

n3
h�B�B; �C�Ci;

2) FF ¼ BB � CC and �F�F ¼ �B�B �C�C are equivalent to each other.

Lemma 1 is induced by tensor product definition and the
orthogonality of FFn3=

ffiffiffiffiffi
n3

p
, i.e. FF �

n3
FFn3 ¼ FFn3FF

�
n3

¼ n3IIn3 .

4 TENSOR LINEAR REPRESENTATION

In this work, we propose a method for pursuing tensor
low-rank linear representation. Before introducing the pro-
posed method, here we explain the intuition behind the
tensor linear representation XX¼AA � ZZ, which generalizes
the data linear representation from the vector space to the
tensor space. We introduce two operators: vecð�Þ and
ivecð�Þ. Let XXðtÞ be the tth lateral slice XXð:; t; :Þ (see Table 1).
As shown in Fig. 2, vec vectorizes each sample XXðtÞ in XX ,
while ivec is its inverse operation.

For any sample XXðtÞ, if its vectorization xxðtÞ ¼ vecðXXðtÞÞ
can be linearly represented by the bases in AA 2 Rn1n3�p0 :

xxðtÞ ¼ AAzzðtÞ; 8t ¼ 1; . . . ; n2; (6)

Fig. 2. Illustration of the vec, ivec and squeeze operations.
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then one can always find two tensorsAA andZZ such that tensor
linear representationXX ¼ AA � ZZ holds, as stated in Theorem1.

Theorem 1. If Eqn. (6) holds, then there exist two tensors
AA 2 Rn1�p0�n3 and ZZ 2 Cp0�n2�n3 such that

XXðtÞ ¼ ivecðxxðtÞÞ ¼ AA � ZZðtÞ; ð8t ¼ 1; . . . ; n2Þ; (7)

where AA can be found through AAðtÞ ¼ ivecðAAð:; tÞÞ and ZZ can
be computed as ZZðtÞ ¼ ifftð�Z�ZðtÞ; ½ �; 3Þ in which �Z�ZðtÞð:; t; jÞ
¼ zzðtÞ ðj ¼ 1; � � � ; n3Þ. However, if there exists a ZZðtÞ such
that Eqn. (7) holds, Eqn. (6) may not hold.

The proof of Theorem 1 can be found in Section 5 in sup-
plementary material, available online. Theorem 1 implies
that if vectorized data samples can be linearly represented
in the vector space, the tensor linear representation (7) for
original tensor data also holds. One appealing advantage of
tensor linear representation is that it gets rid of vectorizing
tensor data for describing and analyzing their relationship.
Thus using tensor linear representation effectively avoids
destroying the multi-way structure and losing information
[10], [11], [13]. Moreover, Theorem 1 also implies that the
tensor linear representation can capture more complex data
relations that cannot be depicted by vector linear represen-
tation. In this sense, tensor linear representation is more
general and advantageous over vector linear representation
for tensor data analysis.

Example 1. We give an example to demonstrate the above
mentioned advantages of the tensor linear representation
over vector linear representation. We first investigate
whether tensor linear representation can well learn the lin-
ear relations and the vector subspace structure in the data
with vector linear relations. Toward this goal, we generate a
testing data matrixXX ¼ ½XX1; XX2; . . . ; XXk� withXXi ¼ AAiZZi 2
Rn1n3�s where AAi 2 Rn1n3�p0 is a random orthogonal matrix
and ZZi 2 Rp0�s is an i.i.d. Nð0; 1Þ matrix. In this way, the
samples inXX obeyvector linear representation, and samples
in XXi are drawn from the ith vector subspace spanned by
AAi. Thenwe solve the LRRmodel Eqn. (3) to obtain its mini-
mizer ðZZ�; EE�Þ and report the reconstruction error

kAAZZ� �XXkF in Fig. 3a to measure whether vector linear
representation can learn the linear relations among data XX.
Next, we respectively useXX and AA to construct their tensor
versions XX 2 Rn1�ks�n3 and AA 2 Rn1�kp0�n3 . We also solve
the TLRRmodel Eqn. (2) to obtain its optimizer ðZZ�; EE�Þ and
report the reconstruction error kAA � ZZ� � XXkF in Fig. 3a. In
the experiments, we set n1 ¼ n3 ¼ 100, p0 ¼ s ¼ 10 and
k ¼ 5. By comparison, we can observe that the reconstruc-
tion error of TLRR is as small as that of LRR, demonstrating
the representation capacity of tensor linear representation to
the data with vector linear relations. Moreover, in Fig. 3a we

also display the sample similarity matrices eZZ ¼ 1
2 ðjZZ�j þ

jZZ�jT Þ in LRR and bZZ ¼ 1
2n3

Pn3
i¼1ðjZZ�ð:; :; iÞj þ jZZ�ð:; :; iÞjT Þ

in TLRR, where each ZZ�ð:; :; iÞ learnt by TLRR captures the

sample relations (see details in Section 5.1). From Fig. 3a,

one can observe that tensor linear representation is capable

of capturing the vector subspace structure in XX and even

learns better block-diagonal structure than LRR. On the con-

trary, we investigate the learning capacity of vector linear
representation to the data with tensor linear relations. We

generate XX ¼ ½XX1; . . . ;XXk� with XX i ¼ AAi � ZZi, where

AAi 2 Rn1�p0�n3 is a random orthogonal tensor and ZZi 2
Rp0�s�n3 are from i.i.d.Nð0; 1Þ. Accordingly, the samples in

XX have tensor linear relations and samples in XX i lie in the

ith tensor subspace (see Definition 6). Then by performing

TLRR on XX , the learnt similarity matrix bZZ has block-diago-

nal structure as shown in Fig. 3b which indicates the tensor
subspace structures. Please refer to Section 5.2. Then, we

vectorizeXX andAA to solve LRR and report its reconstruction

error and the learnt eZZ in Fig. 3b. Comparatively, vector lin-

ear representation has much larger reconstruction error

than that of TLRR, which means it cannot learn the linear

relationship of sampleswith tensor linear relations. Further-

more, the learnt structure of bZZ in LRR also does not reveal

the tensor subspace structure in XX . So these results well
demonstrate the superiority of tensor linear representation

on complex tensor data over vector linear representation.

5 TLRR FOR DATA CLUSTERING

In this section, we elaborate how TLRR formulated in Eqn. (2)
can be applied for tensor data clustering. Specifically, we first
introduce the TLRR based clustering algorithm in Section 5.1,
and then theoretically analyze its clustering performance in
Section 5.2. Finally, Section 5.3 interprets the TLRRbased clus-
tering algorithm from multi-view aspect, which can help
understand the advantages of TLRR overmatrix LRR [1], [4].

5.1 Algorithm for Clustering

Herewe elaborate the TLRRbased clustering algorithmwhich
is used for clustering tensor data in this work. For clustering,
here we take the data XX or the recovered datum by other
methods, e.g., R-TPCA [13], as the dictionary AA. In this case,
each of the frontal slices ZZðiÞ

? 2 Rn2�n2 ði ¼ 1; . . . ; n3Þ of the
learned representationZZ? is a similaritymatrix of samples. To
apply the existing clustering tools, such as Ncut [36], we com-
bine allZZðiÞ

? into one affinitymatrix bZZ:
bZZ ¼ 1

2n3

Pn3
i¼1

�jZZðiÞ
? j þ jðZZðiÞ

? Þ�j�: (8)

Now we give our clustering algorithm below.

Fig. 3. Comparison of vector linear representation and tensor linear repre-
sentation. (a) Reports the reconstruction errors of LRR and TLRR which
respectively are based on vector and tenslr linear representations, the
learnt block-diagonal structures by LRR and TLRR, when the testing data
have vector linear relations. (b) Reports the results under the samemetrics
on the data with tensor linear relations.Best viewed in color pdf file.
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Algorithm 1. Data Clustering

Input: data XX , dictionary AA, and number k of clusters.
1. Obtain the minimizer ZZ? to problem (2).
2. Construct a similarity matrix bZZ by (8).
3. Perform Ncut on bZZ to cluster the samples into k clusters.
Output: clustering results.

In this work, we use Algorithm 1 to cluster tensor data
and investigate its practical performance in Section 9.1. In
the following subsection, we theoretically analyze its clus-
tering performance.

5.2 Tensor Block-Diagonal Property

Here we analyze the performance of Algorithm 1 by analyz-
ing the minimizer’s structure of the TLRR model. We start
with a simpler case where the tensor data are noise-free and
the TLRR problem (2) degenerates to

min
ZZ

kZZk�; s.t. XX ¼ AA � ZZ: (9)

If sparse corruptions are present, one can solve the original
problem (2). Now we analyze the structure of the minimizer
to noiseless TLRR Eqn. (9) for data clustering.

To analyze tensor data, here we develop certain new con-
cepts and tools in tensor space which are consistent with
those in the vector space. A tensor space is a set of tensors
that is closed under finite tensor addition and scalar multi-
plication. Here the tensor space specially refers to the set
S ¼ f8SS 2 Rn1�1�n3g. A set of tensors fDDð1Þ; . . . ;DDðpÞg � S,
where DDðtÞ is the tth lateral slice of DD 2 Rn1�p�n3 , is said to
be linearly independent if there is not a nonzero CC 2 Rp�1�n3

satisfying DD � CC ¼ 00.

Definition 6 (Tensor subspace). Given a set fDDð1Þ; . . . ;
DDðpÞg � S in which the elements DDðiÞ are linearly independent,
the set KK ¼ fYY jYY ¼ DD � CC; 8CC 2 Rp�1�n3g is called a tensor
subspace of dimension dimðKKÞ ¼ p. Here DDð1Þ; . . . ;DDðpÞ are the
basis spanning KK.

The defined tensor subspace includes the tensor 00 and is
closed under tensor addition and scalar multiplication. Also
when n3 ¼ 1, the tensor subspace reduces to the subspace
defined on vectors. Next, we define the tensor direct sum,
which also accords with the direct sum defined on the vec-
tor subspace when n3 ¼ 1.

Definition 7 (Tensor direct sum). KK ¼ 	k
j¼1KKj is called the

direct sum of tensor subspaces fKK1; . . . ;KKkg, if for any FF
2 Rn1�1�n3 in KK, there is a unique FF j 2 Rn1�1�n3 in KKj for
1 
 j 
 k such that FF ¼ Pk

j¼1 FF i.

If the tensor subspaces fKK1; � � � ;KKkg obey the conditionPk
j¼1 KKj ¼ 	k

j¼1KKj, they are said to be independent. Now we
present our main results in Theorem 2 which guarantee the
tensor block-diagonal structure of the learnt representation
and indicate the clustering structure of tensors.

Theorem 2. Suppose XX ¼ ½XX 1; . . . ;XXk�, and the samples
ðXX jð:; i; :ÞÞ in XX j 2 Rn1�mj�n3 are drawn from the jth tensor
subspace KKj whose pj basis composes AAj 2 Rn1�pj�n3 . Then if
fKK1; . . . ;KKkg are independent, the minimizer ZZ? to problem (9)
is tensor block-diagonal (see “ZZ” in Fig. 1). Namely, each frontal
sliceZZðiÞ

? ofZZ? has the following block-diagonal structure:

ZZðiÞ
? ¼

ðZZðiÞ
? Þ1 00 � � � 00

00 ðZZðiÞ
? Þ2 � � � 00

..

. ..
. . .

. ..
.

00 00 � � � ðZZðiÞ
? Þk

2
6664

3
77752R

ð
P

j
pjÞ�ð

P
j
mjÞ;

where ðZZðiÞ
? Þj 2 Rpj�mj is a coefficient matrix. Then the DFT

result �Z�Z? of ZZ? has the same block-diagonal structure as ZZ? .

We defer the proof of Theorem 2 to Section 6 in supp-
lementary, available online. The subspace independence
assumption here is not strict. Indeed, its vector version is
a common assumption in sparse and low-rank data
analysis [1], [2], [3]. Fig. 8 in Section 9.1 displays the block-
diagonal structure learnt by TLRR on real face data, verify-
ing the validity of the tensor subspace assumption and
Theorem 2 as well.

Theorem 2 is useful for clustering, since the block-diago-
nal structure of ZZ? directly indicates the tensor subspace
membership of a specific sample, according to which one
can easily obtain the clusters. Specifically, for the tth sample
XXðtÞ, we have

XXðtÞ ¼ AA � ZZ? ðtÞ ¼
Xk

j¼1
AAj � ZZj

? ðtÞ; 8t ¼ 1; . . . ; n2;

(10)
where ZZj

? ðtÞ ¼ ZZ? ð1þPj�1
i¼1 pi :

Pj
i¼1 pi; t; :Þ. By Theorem 2, if

XXðtÞ is drawn from the sth subspace KKs, ZZs
? ðtÞ will have non-

zero entries while ZZj
? ðtÞ ðj 6¼ sÞ will be 00. Then according to

the nonzero entries in ZZ? ðtÞ, we can cluster XXðtÞ accurately.
If we take the raw datum XX itself as the dictionary, the

learned representation ZZ? is also block-diagonal, as the sam-
ples are from independent tensor subspaces. Besides, by
replacing AA with XX in Eqn. (10), we have XXðtÞ ¼

Pn2
j¼1 XXðjÞ

�ZZ? ðj; t; :Þ. So the coefficient ZZ? ðj; t; :Þ depicts the similarity
between samples XXðtÞ and XXðjÞ. To perform clustering (e.g.
using Ncut) on the learnt representationZZ? , following Eqn. (8)
we combine the two vectors ZZ? ðt; j; :Þ and ZZ? ðj; t; :Þ into a
value bZZðt; jÞ ¼ 1

n3

Pn3
i¼1 ðjZZ? ðt; j; iÞj þ jZZ? ðj; t; iÞjÞ, which

measures the similarity between the samples XXðtÞ and XXðjÞ.
Also, if XXðtÞ and XXðjÞ are drawn from different tensor subspa-

ces, bZZðt; jÞ would be zero. Then, clustering can be performed
on the similaritymatrix bZZ.

For corrupted data, our Theorem 3 in Section 6.2 shows
that TLRR can exactly recover the clean low-rank data under
mild conditions. Then if the conditions in Theorem 2 are
satisfied, theminimizerZZ? will be tensor block-diagonal. We
will discuss this later inmore details in Section 6.2.

5.3 Multi-View Interpretation on TLRR

To better understand TLRR, we give another explanation
from the multi-view aspect. By tensor nuclear norm defini-
tion kZZk� ¼ 1

n3
k �Z�Zk� and the block-diagonal structure of �X�X,

�A�A and �Z�Z (see their definitions in Eqn. (5)), we rewrite Eqn.
(9) into its equivalent form:

min
�Z�ZðiÞ

k �Z�ZðiÞk�; s.t. �X�X
ðiÞ ¼ �A�A

ðiÞ �Z�ZðiÞ
; ði ¼ 1; . . . ; n3Þ: (11)

On the other hand, when performing DFT on XX , the tth
column of �X�X

ðiÞ
is from the tth sample XXðiÞ. This is because

we have
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�X�X
ðiÞ ¼ MM1ffi;MM

2ffi; . . . ;MM
tffi; . . . ;MM

pffi

� �
:

Here ffi is the ith column of the DFT matrix FFn3 defined
in Eqn. (4), and MMt ¼ squeezeðXXðtÞÞ 2 Rn1�n3 where the
operation squeeze transforms the tth sample XXðtÞ into a
matrix (see Fig. 2). So in this sense, �X�X

ðiÞ
can be viewed as

the new features of samples in XX under the ith Fourier basis
ffi. Similarly, �A�A

ðiÞ
can be viewed as a new dictionary under

the Fourier basis ffi. Thus, from a multi-view aspect, the

frontal slice �Z�Z
ðiÞ

(i ¼ 1; . . . ; n3) learnt by model Eqn. (11) can

be regarded as n3 different representation matrices under

n3 different views and may better depict the relations

among samples. Thus, the tth lateral �Z�ZðtÞ is the representa-

tion tensor of the tth sample XXðtÞ. Conducting inverse DFT

on �Z�ZðtÞ gives ZZðtÞ ¼ 1
n3
FF �

n3
squeezeð�Z�ZðtÞÞ. This combines all

the representation information under n3 different views.
Such a mechanism also makes the advantage of TLRR stand

out, as compared with matrix LRR [1], [4] which only learns

the representation under a single view, TLRR aims at seek-

ing n3 representations under n3 different views and may

better reveal the relationship among samples. This advan-

tage is actually testified by Example 1 in Section 4 : TLRR

can learn more accurate subspace structures in the simula-

tion data with vector or tensor linear relations, and thus it
can better capture sample relations. Here we further dem-

onstrate the advantage of TLRR on a realistic face dataset,

namely FRGC 2.0 [37]. It consists of 60 classes and each class

has 20 images of size 32� 36. Here we use the raw data

itself as the dictionary and then apply LRR and TLRR. In

LRR we need to vectorize each image. See more experimen-

tal details in Section 9.1. From Fig. 4a, one can observe that

for clustering accuracy, TLRR makes 9.6 percent improve-
ment over LRR. This is because compared with LRR consid-

ering data from one single view, TLRR considers the data

under n3 ð¼ 36Þ different views and seeks n3 representa-

tions which can better capture sample relations. This can be

illustrated by observing Fig. 4a and 4b: compared with each

single similarity matrix ZZð:; :; iÞ in Fig. 4b, the uniform simi-

larity matrix bZZ ¼ 1
2n3

Pn3
i¼1ðjZZð:; :; iÞj þ jZZð:; :; iÞjT Þ in Fig. 4a

can achieve better clustering results, as the representations

obtained from different views could provide complemen-

tary information and boost the clustering performance.

6 TLRR FOR EXACT DATA RECOVERY

Here we provide the theoretical performance guarantees
for TLRR on data recovery. We prove that under mild con-
ditions TLRR in Eqn. (2) can exactly recover the intrinsic

low-rank data LL0 lying in multiple tensor subspaces, even
in presence of gross noise EE0.

6.1 Incoherence Condition for TLRR

In this subsection, we introduce the incoherence condition
of TLRR for exactly data recovery. Intuitively, exactly sepa-
rating XX into the low-rank term LL0 plus the sparse term EE0

requires LL0 to be not too sparse. Similar consideration is
made for the matrix case in [3], [21]. To formally character-
ize this intuition, we present the incoherence condition for
low-rank tensors. Let r ¼ ranktðLL0Þ. We define row incoher-
ence parameter m1, column incoherence parameter m2, and
total incoherence parameter m3 as follows.

m1ðLL0Þ ¼ n2n3

r
max

j¼1;���;n2
kVV�

0 � en2j k2F ;

m2ðLL0Þ ¼ n1n3

r
max

i¼1;���;n1
kUU�

0 � en1i k2F ;

m3ðLL0Þ ¼ n1n2n
2
3

r
kUU0 � VV�

0k1
� �2

;

where the standard basis en2j and e
n1
i are defined in Table 1. A

small value of mðLL0Þ ¼ maxðm1ðLL0Þ;m2ðLL0Þ;m3ðLL0ÞÞ implies
the low-rank termLL0 is not sparse. Such a condition is also crit-
ical for other tensor analysismethods, e.g., R-TPCA [13].

As TLRR involves an extra dictionary AA, we need to
develop a new necessary incoherence condition that cannot
be straight-forwardly generalized from the matrix case or
the one used in R-TPCA [13]. Let ranktðAAÞ ¼ rAA. Then we
define a new row incoherence parameter related to AA:

mAA
1 ðLL0Þ¼m1ðLL0Þ max

i¼1;���;n1
kUU�

AA � en1i k2F¼
rAA
n1n3

m1ðLL0Þm2ðAAÞ:

The incoherence condition of TLRR for exact recovery only
requires maxðm2ðLL0Þ;mAA

1 ðLL0ÞÞ to be sufficiently small and
does not rely on m3ðLL0Þ. So it is a looser condition compared
with the exact recovery condition in R-TPCA [13].

6.2 Exact Recovery Performance Guarantee

We summarize the exact recovery results of TLRR in Theo-
rem 3. Let nð1Þ ¼ maxðn1; n2Þ and nð2Þ ¼ minðn1; n2Þ. Recall
PPUUð�Þ is a projection operator defined in Table 1.

Theorem 3. Assume the support setV of EE0 is uniformly distrib-

uted, PPUUAAðUU0Þ ¼ UU0, and AA obeys that the ranks of �A�A
ðiÞ

ði¼1; . . .; n3Þ are equal. Let mAA ¼ maxðm2ðLL0Þ;mAA
1 ðLL0ÞÞ. If

ranktðLL0Þ 

rrnð2Þ

mAAlog ðnð1Þn3Þ and jVj 
 rsn1n2n3;

where rr and rs are constants, then with probability at least
1� n�10

ð1Þ , ðZZ? ; EE? Þ, where ZZ? ¼ AAy � LL0 and EE? ¼ EE0; is the
unique optimal solution to problem (2) with � ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
nð1Þn3

p
.

Theorem 3 shows that TLRR can exactly recover the low-
rank clean data LL0 even when the amount of noise is at the
same order as the entry number of the observed tensor and
the tubal rank is as high as Oðnð2Þ=log ðnð1Þn3ÞÞ. Also the
exact recovery does not require previously knowing the
location of noise (the corrupted elements). This is very use-
ful for data denoising in practice where noise is difficult to

Fig. 4. Comparison of clustering accuracies of LRR and TLRR on the
FRGC 2.0 dataset [37].
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detect. This theorem also implies that applying TLRR to
recover clean data can also benefit subsequent data cluster-
ing: if the clean data LL0 is exactly recovered, by Theorem 2
in Section 5.2 the optimal solution ZZ? would be tensor
block-diagonal. Thus getting data clusters becomes
straightforward.

The condition PPUUAAðUU0Þ ¼ UU0 in Theorem 3 is necessary
and reasonable—each authentic sample in LL0 that is drawn
from a particular subspace should be linearly representable
by the bases in AA. The condition on the ranks of �A�A

ðiÞ ði ¼
1; . . . ; n3Þ is indispensable for exact recovery, as the equality
LL0 ¼ AA � ZZ? ¼ AA � AAy � LL0 implies AA � AAy ¼ II , requiring

that the ranks of �A�A
ðiÞ ði ¼ 1; . . . ; n3Þ are equal. This condition

is also necessary for R-TPCA, as R-TPCA can be viewed as a
special case of TLRR by choosing the identity tensor II as the
dictionary, naturally satisfying the condition. Also if AA ¼ II ,
Theorem 3 still holds and it gives guarantees on exact recov-
ery for R-TPCA.1 Theorem 3 is also applicable when n3 ¼ 1.
Thus performance guarantees for matrix LRR [3], [4] can be
derived as a special case of our results.

The proof of Theorem 3 is given in Section 7 of supple-
mentary, available online. It is worthy mentioning that the
proof is carefully and elaborately conducted based on the
interaction between both the original and Fourier domains.
This can be intuitively interpreted from the fact that for the
TLRR model (2), its equivalent form, namely

minZZ;EE
1

n3

�
k �Z�Zk� þ �kbcircðEEÞk1

�
; s.t. XX ¼ AA � ZZ þ EE;

(12)

is a mixed model, as the low-rank term is performed on the
Fourier domain while the sparse regularization is in the
original domain. Interpreting the tensor nuclear norm of ZZ
as a matrix nuclear norm of �Z�Z in the Fourier domain allows
us to use some properties of matrix nuclear norm in the
proof. But the analysis of the sparse term is still in the origi-
nal domain, as the ‘1-norm has no equivalent form in the
Fourier domain. So this requires us to finish the proof based
on the interaction between both domains. Compared with
matrix LRR [3], [4], our proof is more challenging, as 1) our
proof stretches across two domains while the proof of LRR
only involves the original domain; 2) the structures of �Z�Z
and bcircðEEÞ are more complicated than those in LRR (3),
thus making the proof of TLRR harder than those in LRR.
For instance, our proofs (e.g., in Lemma 9 of supplementary,
available online) require to upper bound the norms of ran-
dom tensors, which involves block circulant matrices and
the Fourier transformation and needs to carefully consider
their properties and structures. Note, these two factors
also make the clustering performance analysis of TLRR in
Section 5 and the optimization algorithm design and analy-
sis in Section 7 more challenging than LRR.

6.3 Comparison Between TLRR and R-TPCA

Since both TLRR and R-TPCA [13] are based on the recently
proposed tensor tubal rank and t-SVD [31] and can be used

for data recovery, here we compare their recovery ability by
analyzing their incoherence parameters.

We find with the increasing number of tensor subspaces
in data, m1ðLL0Þ increases notably while m2ðLL0Þ is nearly con-
stant. This observation coincides with the matrix case in [3].
We explain this below. Assume LL0 obeys the assumptions
on XX in Theorem 2. Then VV0 is tensor block-diagonal:

VV0 ¼
VV1 00 � � � 00
00 VV2 � � � 00

..

. ..
. . .

. ..
.

00 00 � � � VVk

2
6664

3
7775;

whereVVi ði ¼ 1; . . . ; kÞ is of size pi �mi � n3.When the tensor
subspace number k is large, VV0 would be very sparse and
kVV�

0 � en2j k2F ¼ kVV0ð:; j; :Þk2F would be close to 1, leading to a
large incoherence parameter m1ðLL0Þ � n2n3=r. In contrast, UU0

is generally not block-diagonal and is indeed not sparse. Actu-
ally, when the rank of LL0 is fixed, UU0 is invariant to the tensor
subspace number. This is because UU0 just needs to span the
tensor subspaces that samples lie in and only depends on the
tensor rank of LL0. So m2ðLL0Þ is nearly constant. This observa-
tion is also verified by empirical studies shown in Fig. 5. It also
explains why T-RPCA is less successful when dealing with
more tensor subspaces. For exact recovery, R-TPCA requires

ranktðLL0Þ 

r0rnð2Þ

mðLL0Þðlog ðnð1Þn3ÞÞ2
:

Here r0r is a constant, but mðLL0Þ ð� m1ðLL0ÞÞ is usually large.
Conversely, with the help of AA, the incoherence parame-

ter mAA
1 ðLL0Þ can be small. Though m1ðLL0Þ may become large

when the tensor subspace number increases, m2ðAAÞ is con-
stant and rAA=ðn1n3Þ remains small. Thus, Theorem 3 guar-
antees stronger data recovery power of TLRR over R-TPCA.
Besides, R-TPCA requires an extra condition: m3ðLL0Þ should
be sufficiently small. Such a restrictive condition is not nec-
essary for TLRR. Finally, TLRR can not only exactly recover
the clean data LL0 but also learn the relationship among sam-
ples in LL0, which benefit clustering and also other tasks, e.g.,
classification and metric learning.

7 OPTIMIZATION TECHNIQUE

Here we propose an efficient algorithm to solve (2), and
then analyze its convergence behavior and computational
complexity.

Fig. 5. Illustration of effects of the tensor subspace number k on m1ðLL0Þ
and m2ðLL0Þ. We produce a random tensor LL0 2 R1000�1000�10 with
ranktðLL0Þ ¼ 100. We increase the subspace number k and set the sam-
ple number as 100=k per subspace (see case (a) in Section 9.2.1 for
details of producing testing data).

1. We derive the guarantees by adopting the least square proof
framework instead of Golfing proof scheme [38] in R-TPCA due to the
different dual certificates of TLRR and R-TPCA.
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7.1 Optimization Algorithms

ADMM [22] is a straightforward optimization approach to
solve problem (2). But when the sample number n2 is large,
directly applying ADMM is highly computationally expen-
sive, as it requires to compute n3 SVD over n2 � n2 matrices at
each iteration. To reduce the computational cost, we provide a
new and equivalent reformulation for Eqn. (2). Assume
UUAA � SSAA � VV�

AA is the skinny t-SVD of AA (ref. Definition 2).
Then, we respectively replace AA and ZZ in Eqn. (2) with
DD ¼ UUAA � SSAA 2 Rn1�rAA�n3 and VVAA � ZZ0, where rAA ¼ ranktðAAÞ
andZZ0 2 RrAA�n2�n3 is a variable needed to be optimized. This
gives the following equivalent formulation:

min
ZZ0;EE

kZZ0k� þ �kEEk1; s.t. XX ¼ DD � ZZ0 þ EE: (13)

Using such reformulation, we only need to compute SVD
for matrices with a significantly reduced size of rAA�n2 at
each iteration. So we first solve Eqn. (13) to obtain its mini-
mizer ðZZ0

? ; EE? Þ and then recover the minimizer ðVVAA � ZZ0
? ; EE? Þ

to problem (2). The optimality of such a solution is guaran-
teed by Theorem 4.

Theorem 4. Assume the pair ðZZ0
? ; EE? Þ is an optimal solution to

problem (13). Then, the pair ðVVAA � ZZ0
? ; EE? Þ is the minimizer

to problem (2).

The proof of Theorem 4 can be found in Section 8 of
supplementary, available online. To apply ADMM on the
size-reduced problem (13), we first introduce one auxiliary
variables JJ to decouple the variables from the objective and
the constraint. Then one can update variables more easily.
Problem (13) can be rewritten as

min
JJ ;ZZ0;EE

kZZ0k� þ �kEEk1; s.t. ZZ0 ¼ JJ ;XX ¼ DD � JJ þ EE:

(14)

To tackle the hard constraints, we resort to augmented
Lagrangian multiplier method and solve the following
problem instead:

HðJJ ;ZZ0; EE;YY1;YY2Þ¼kZZ0k� þ �kEEk1 þ
	YY1;ZZ0�JJ 


þ b

2
ZZ0�JJk k2F þ 	YY2;XX�DD�JJ �EE
þ b

2
XX �DD�JJ � EEk k2F;

where YY1 and YY2 are the Lagrange multipliers introduced
for the two constraints respectively, and b is an auto-
adjusted penalty parameter. Then we solve the problem
through alternately updating two blocks, namely JJ and
(ZZ0; EE), in each iteration to minimize HðJJ ;ZZ0; EE;YY1;YY2Þ
with other variables fixed. Algorithm 2 summarizes the
whole optimization procedure. Both problems (15) for
updating JJ kþ1 and (16) for updating the block (ZZ0

kþ1; EEkþ1)
have closed form solutions. Note, problem (16) can be split
into subproblems for ZZ0 and EE as these two variables are
independent in this problem. Accordingly, we update the
variable ZZ0 and EE independently. See detailed optimization
of JJ kþ1 and (ZZ0

kþ1; EEkþ1) in Section 3 in supplementary,
available online.

7.2 Convergence and Complexity Analysis

Since problem (14) is a convex problem which involves two
blocks of variables, JJ and ðZZ0; EEÞ, and only includes linear

constraints, convergence analysis results in [22] guarantee the
solution ofAlgorithm2would converge to the global optimum.

Algorithm 2. Tensor LRR (TLRR)

Input: Input XX 2 Rn1�n2�n3 , dictionary AA 2 Rn1�n4�n3 .
Initialize: DD¼UUAA � SSAA with skinny t-SVD UUAA � SSAA � VV�

AA of AA,
JJ 0¼ZZ0

0¼YY1
0¼00, EE0¼YY2

0¼00, �¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3maxðn1; n2Þ

p
, g¼1:1,

b0¼1e� 5, bmax¼1eþ 8, �¼1e� 8, and k¼0.
While not converged do
1. Fix ZZ0

k and EEk. Update JJ kþ1 by solving

JJkþ1¼ argmin
JJ

���ZZ0
k þ

YY1
k

bk

�JJ
���2
F
þ

���XX�EEk þ YY2
k

bk

� DD�JJ
���2
F
: (15)

2. Fix JJ kþ1. Update the block ðZZ0; EEÞ by solving

ðZZ0
kþ1; EEkþ1Þ¼ argmin

ZZ0 ;EE
kZZ0k� þ�kEEk1 þ

bk
2

���ZZ0 �JJkþ1 þ YY1
k

bk

���2
F

þ bk

2

���EE �XX þDD � JJ kþ1 � YY2
k

bk

���2
F
:

(16)

3. Update Lagrange multipliers with GGkþ1¼DD � JJ kþ1þEEkþ1:

YY1
kþ1¼YY1

kþbk ZZ0
kþ1�JJ kþ1

� �
; YY2

kþ1¼YY2
kþbk XX�GGkþ1ð Þ:

4. bkþ1 ¼ minðgbk;bmaxÞ.
5. Check the convergence conditions:

max
�kJJ kþ1�JJ kk1; kZZ0

kþ1�ZZ0
kk1; kEEkþ1�EEkk1

�
�;

max
�kJJ kþ1�ZZ0

kþ1k1; kXX�DD � JJ kþ1�EEkþ1k1
�
�:

6. k ¼ kþ 1.
end while
Output: ZZ? ¼ VVAA � ZZ0

kþ1, EE? ¼EEkþ1, LL? ¼XX�EE? .

At each iteration, when updating JJ kþ1, computing its
closed form solution to problem (15) costs O rAAðn1 þ n2Þð
n3 log ðn3Þ: þrAAn1n2n3Þ. The major cost of computing the
closed form solution ðZZ0

kþ1; EEkþ1Þ to problem (22) includes
n3 SVD on rAA � n2 matrices of cost Oðr2AAn2n3Þ and tensor
product of cost O rAAn1n2n3þð rAAðn1 þ n2Þn3 log ðn3ÞÞ. So the
cost of Algorithm 2 is O rAAn1n2n3ð þrAAðn1 þ n2Þn3 log ðn3ÞÞ
for each iteration. Comparedwith directly solving problem (2)
whose iteration cost is O ðn1 þ n2Þn2

2n3

� �
, the reform-

ulation Eqn. (13) reduces the cost significantly. Compared
with R-TPCA [13]which is a counterpart of TLRR butwithout
a dictionary, the convergence speed of TLRR is usually
slower, since 1) TLRR has to update three variables (JJ ,ZZ0 and
EE) due to the dictionary instead of two variables (the clean
data and the noise) in R-TPCA, and 2) empirically ADMM
withmore variables needs more iterations to achieve a certain
optimization accuracy �. But experiment results in Section 9
show that TLRR only runs a little slower than R-TPCA but
providesmuch better clustering and recovery results.

8 DICTIONARY CONSTRUCTION

A qualified dictionary AA is necessary in TLRR, as the bases
in AA should be able to linearly represent each authentic
sample in the clean data LL0. In this way, the clean data can
be exactly recovered and the learnt relationship among
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samples is accurate. Here we provide two different
approaches to construct the dictionary AA.

The first one uses the raw tensor data XX as the dictionary
AA, which is similar to the strategy used by LRR [1]. We call
this method S-TLRR with “S” denoting “simple”. In this
case, the learned representation ZZ? indicates the similarity
between samples and can be used for clustering (see details
in Section 5.2).

However, when the data are heavily corrupted, taking
the contaminated data as the dictionary would harm the
performance—the learned relationship among samples
using a grossly corrupted dictionary would be far less
accurate. This is also reflected by Theorem 3 that shows
TLRR requires PPUUAAðUU0Þ ¼ UU0 for exact recovery, i.e., the
dictionary AA and the clean samples should share their ten-
sor subspaces. In this challenging scenario, we propose to
use the estimation LL0 for clean data LL0 from R-TPCA as
the dictionary. Though R-TPCA hardly recovers LL0 for a
large number of subspaces (see Section 6.3), it can remove
noise from XX to some extent and provide a less noisy dic-
tionary LL0 than XX . This method is termed as Robust-TLRR
or R-TLRR in short.

Algorithm 3. Dictionary Construction

Input: Tensor data XX 2Rn1�n2�n3 .
1. Utilize R-TPCA to estimate LL0 with regularization parameter

�¼1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n3maxðn1; n2Þ

p
.

2. Estimate the tubal rank rLL0 of LL0.
3. Truncate LL0 to obtain an approximation tensor LL00 which

obeys ranktðLL00Þ 
 rLL0 :

LL00 ¼ argmin
LL

kLL � LL0k2F ; s.t. ranktðLL00Þ 
 rLL0 : (17)

Output: dictionary AA ¼ LL00.

Algorithm 3 describes the steps of using R-TPCA [13] to
construct the dictionary AA. We first use R-TPCA to denoise
data XX for obtaining an estimation LL0 to the clean data LL0,
and then take a rank-truncated LL0 as the dictionary. As for
Steps 2 and 3, we adopt the following strategies.

Step 2 For each frontal slice ð �L�L0ÞðiÞ of 
L
L0
, we first compute

the nonzero singular values fsi
1; . . . ; s

i
ni
g (in a

descending order) of ð �L�L0ÞðiÞ, and then let ccij ¼
si
j=s

i
jþ1 ð1 
 j 
 ni � 1Þ, ji� ¼ argmaxjc

i
j and ci� ¼ ci

ji�
.

If ðni � 1Þci�=
P

j 6¼ji� c
i
j < 10 (need not truncation),

then let ji� ¼ ni. Finally, we obtain the estimated
tubal rank rLL0 ¼ maxðj1�; � � � ; jn3� Þ.

Step 3 By Theorem 2.3.1 in [12], problem (17) inAlgorithm 3
has closed form solution: LL00¼PrLL0

j¼1 UU0ð:; j; :Þ � SS0

ðj; j; :Þ � ðVV0ð:; j; :ÞÞ�, where UU0 � SS0 � ðVV0Þ� is the t-
SVD ofLL0.

As Step 2 may reduce the estimated tubal rank of LL0,
together with Step 3 the tubal rank rAA of the dictionary and
consequently the coherence parameter mAA

1 ðLL0Þ would be
reduced. This will benefit R-TLRR for exactly recovering LL0

with relatively higher rank (see conditions in Theorem 3).
The above dictionary construction method has another

appealing property. In applications, we find that the con-
structed dictionary AA ¼ LL00 usually satisfies the exact recov-

ery condition in Theorem 3—the ranks of �A�A
ðiÞ ði ¼ 1; . . . ; n3Þ

are equal. The reason is that after Steps 2 and 3 in Algo-
rithm 3, all frontal slices ð �L�L00ÞðiÞ ði ¼ 1; . . . ; n3Þ of the esti-
mated data LL00 have the same rank since the ranks of
ð �L�L00ÞðiÞ ði ¼ 1; . . . ; n3Þ are usually larger than the computed
truncation rank rLL0 . To verify this, we randomly select two
images (Fig. 6a) from the Berkeley Segmentation dataset [39]
and plot the singular values of �X�X in Fig. 6b. We observe that
most of these singular values are very close to 0 and much
smaller than the leading singular values. Also, by Defini-
tion 3, the tensor tubal rank ranktðXXÞ ¼ maxðrr1; . . . ; rrn3Þ,
where rri is the rank of �X�X

ðiÞ
. So we compute the singular

value vector ssi (elements are in a descending order) of �X�X
ðiÞ

and plot vv ¼ Pn3
i¼1 ssi in Fig. 6c. We find that the tubal rank

of these images is indeed very low, since most values in vv
are almost zero. So by the truncation operation in Steps 2
and 3, the estimated tubal rank rLL0 would be much smaller
than the rank of all frontal slices ð �L�L00ÞðiÞ ði ¼ 1; . . . ; n3Þ.
Thus, the constructed dictionary AA ¼ LL00 can obey the con-
dition that the ranks of �A�A

ðiÞ ði ¼ 1; . . . ; n3Þ are equal to each
other. Accordingly, the exactly recovery performance can
be guaranteed.

9 EXPERIMENTS

We compare our S-TLRR and R-TLRR with state-of-the-arts
for data recovery on both synthetic and real data. In all the
experiments, we fix the regularization parameters of R-
PCA [21], LRR [1] and R-LRR [3] (R-LRR uses the estimated

data by R-PCA as its dictionary) as 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðn0

1; n
0
2Þ

p
, where

n0
1 � n0

2 is the data matrix size processed by them. For R-
TPCA [13], S-TLRR and R-TLRR, the parameter takes

Fig. 6. Illustration of the low tubal rank property of the images in Berkeley
Segmentation dataset. (a) Two randomly selected images. (b) Plots the sin-
gular values of �X�X obtained by conducting linear transformation on the DFT
result �X�X of image tensor XX . (c) Displays

Pn3
i¼1 ssi, where ssi is the singular

value vector (in a descending order) of the ith frontal slice �X�X
ðiÞ

of �X�X .

Fig. 7. Experimental settings of the three testing datasets.
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1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
maxðn1; n2Þn3

p
. These parameter settings are provided

by the authors [3], [13], [21] and our Theorem 3. We manu-
ally tune the parameters of other compared methods. The
code is available at https://panzhous.github.io/.

9.1 Application to Data Clustering

We first apply S-TLRR and R-TLRR for data clustering. See
their detailed clustering steps in Algorithm 1. We evaluate
them on face data, as most authentic face images approxi-
mately lie in a union of low-rank linear subspaces [40], [41],
[42], [43]. Table 7 describes the testing datasets: Extended
YaleB (uncropped) [44], FRGC 2.0 [37] and FRDUE.2 For
FRDUE, we respectively use its first 100 and all classes for
testing. Here we compare our methods with other sparse
and low-rank based methods, including LSA [45], LSR1

[46], LSR2 [46], SSC [2], EnSC [47], R-PCA [21], LRR [1],
R-LRR [3], TLRRSC [15] and R-TPCA [13]. For our methods,
we organize the images along the 2nd dimension. Such
organization can well capture the linear representation rela-
tions among samples (see Section 5.3). We use three metrics:
accuracy (ACC) [2], normalized mutual information
(NMI) [48] and purity (PUR) [49], to evaluate the clustering
performance. We run all the experiments for 20 times and
report the average performance.

From the clustering results in Table 2, one can observe
that R-TLRR always achieves the best clustering performance
and S-TLRR also outperforms others in most cases. On
the widely used ACC metric, R-TLRR respectively improves
by 4.5, 4.1, 4.6 and 3.9 percent over the runner-up on the
four testing cases (top-down). These results clearly prove
the superior performance and robustness of our methods.
These results come from the following advantages of our
method. 1) S-TLRR and R-TLRR effectively exploit the multi-
dimensional structure of the tensor data. In contrast, the
matricization based methods directly unfold the tensor data
along certain mode which would destroy the multi-way low-

rank data structure and lead to degraded performance [12],
[13]. 2) Unlike R-TPCA that assumes data are from a single
tensor subspace, our methods consider the mixture structure
in data (more consistent with reality) and learn more accu-
rate relations among samples. Also, the results show that the
robust versions, i.e., R-TLRR and R-LRR, usually outperform
their counterparts, i.e., S-TLRR and LRR, since directly using
the corrupted sample data as the dictionary would lead to
inaccurate representation. TLRRSC [15] does not perform
well, for the following three reasons. 1) It reshaps the 2-way
face images into vectors and destroys the intrinsic multi-way
data structure. 2) Randomly arranging the samples in the
first ðk� 1Þ modes may give non-low-rank tensor structure.
3) The Frobenius norm in TLRRSC can deal with Gaussian
noise but cannot well handle the complex noise in face
images [21]. Table 2 also reports the algorithm running time.
Note, the computational time of R-TLRR contains the time
cost for dictionary construction and solving the TLRR prob-
lem (13). Besides, R-TLRR is always much faster than its
counter-part R-LRR, and S-TLRR runs faster than LRR in
most cases. Though LSR1, LSR2, and EnSC are also efficient,
tuning their critical regularization parameters requires signif-
icant additional effort.

We further display the block-diagonal structures learned
by some compared methods in Fig. 8. For expediently plot-
ting the representation tensors in our methods, we simply
plot bZZ defined in Eqn. (8). Due to space limit, we only dis-
play the coefficients among the first 10 classes in FRGC 2.0,
e.g., bZZ(1:200, 1:200) in our methods. We can observe better
grouping effects of S-TLRR and R-TLRR over others. It also
helps explain the superiority of our methods and reasonabil-
ity of the tensor subspace assumption—the block-diagonal
structures learned by our methods coincide with Theorem 2.

To verify that TLRR can clean and cluster data simulta-
neously, we use FRGC 2.0 for evaluation. Here we use its
original images of sizes 72� 64. For each image, we respec-
tively randomly set 0 � 35 percent of pixels to random val-
ues in [0,255] and then apply these compared methods.
From Fig. 9, we find under different noise ratios, R-TLRR

TABLE 2
Clustering Results (ACC, NMI, and PUR) and the Algorithm Running Time (in Seconds) on the Three Testing Databases

Dataset Metric LSA LSR1 LSR2 SSC EnSC R-PCA LRR R-LRR TLRRSC R-TPCA S-TLRR R-TLRR

Extended YaleB

ACC 0.461 0.819 0.813 0.821 0.828 0.708 0.753 0.803 0.662 0.720 0.845 0.873
NMI 0.660 0.882 0.876 0.885 0.890 0.820 0.871 0.888 0.787 0.832 0.897 0.927
PUR 0.535 0.843 0.837 0.841 0.850 0.728 0.796 0.825 0.673 0.744 0.857 0.877
Time 722.8 0.22 0.26 2027.4 42.3 1728.5 274.1 1813.6 728.2 200.7 555.3 697.6

FRGC 2.0

ACC 0.540 0.865 0.863 0.861 0.870 0.735 0.795 0.830 0.602 0.812 0.891 0.911
NMI 0.772 0.927 0.921 0.924 0.933 0.873 0.901 0.922 0.841 0.906 0.947 0.963
PUR 0.614 0.868 0.858 0.865 0.870 0.765 0.825 0.855 0.657 0.838 0.910 0.929
Time 574.5 0.24 0.25 676.3 32.6 1611.4 304.7 1734.6 901.4 49.8 141.6 162.4

ACC 0.553 0.763 0.744 0.796 0.800 0.626 0.707 0.753 0.673 0.658 0.825 0.846
FRDUE NMI 0.769 0.918 0.911 0.921 0.920 0.821 0.884 0.920 0.858 0.837 0.927 0.943
(100 classes) PUR 0.541 0.821 0.806 0.831 0.836 0.716 0.773 0.792 0.726 0.740 0.852 0.874

Time 1350.2 0.96 0.88 844.9 16.5 354.06 190.0 397.1 568.2 36.6 117.9 147.2

ACC 0.490 0.740 0.712 0.773 0.779 0.632 0.702 0.721 0.635 0.695 0.785 0.818
FRDUE NMI 0.678 0.900 0.895 0.905 0.907 0.814 0.830 0.894 0.817 0.880 0.914 0.932
(all classes) PUR 0.513 0.801 0.781 0.816 0.829 0.725 0.770 0.775 0.704 0.752 0.821 0.852

Time 2926.6 1.03 0.98 1011.5 21.0 472.9 305.3 569.6 755.4 49.2 183.9 205.2

2. http://cswww.essex.ac.uk/mv/allfaces/
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always achieves the best results, while S-TLRR cannot work
well with high noise ratio. This is because R-TLRR uses a
more qualified dictionary and Theorem 3 guarantees the
exact recovery of TLRR when the noise ratio is relatively
low and the dictionary is sufficiently good. We also com-
pute the error err ¼ kLL0

? �LL? kF =ðn1n2n3Þ for performance
measure, where LL0

? is the recovered data by R-TLRR with-
out corruption and LL? denotes the estimated clean data by
R-TLRR with sparse noise (5 � 35 percent). From Fig. 10, we
can see err is very small, implying that R-TLRR can recover
the low-rank clean data from noisy cases. So the learned
representations under different noise ratios are similar, pro-
viding almost the same performance.

9.2 Application to Data Recovery

9.2.1 Application to Synthetic Data Recovery

Here we evaluate TLRR and compare it with R-TPCA. R-
TLRR uses the recovered data by R-TPCA as the dictionaryAA
which (approximatively) meets the condition PPUU0

ðUUAAÞ ¼ UUAA,
while S-TLRR does not. Sowe verify Theorem 3 onR-TLRR.

We generate LL0 and EE0 as follows. We produce 6 random
low-rank tensors fLL1; . . . ;LL6g with LLi ¼ BBi � CCi, where the
entries of BBi 2 Rn1�ri�n3 and CCi 2 Rri�mi�n3 are from i.i.d.
Nð0; 1Þ. So LLi is a low-rank tensor of mi samples and tubal
rank ri. Then let LL0 ¼ ½LL1; . . . ;LL6� 2 Rn1�n2�n3 , where
n2 ¼

P6
i¼1 mi and ranktðLL0Þ ¼

P6
i¼1 ri. As for EE0, its support

set V is chosen uniformly at random. We test two kinds of
noise: (a) similar to [3], we normalize the values of entries in
LL0 such that kLL0k1 ¼ 1 and i.i.d. produce the noise in EE0 as
�1 with probability 0.5; (b) LL0 is not normalized and the
noise in EE0 is also drawn from i.i.d. Nð0; 1Þ. For simplicity,
we set n1 ¼ 240, n3 ¼ 20, mi ¼ 500 and ri ¼ r which varies
from 1 to 24. The fraction r ¼ jVj=ðn1n2n3Þ ranges from 2.5
to 65 percent with increment 2.5 percent. Similar to [3], for
each pair ðr; rÞ, we simulate 20 test instances and declare a

trial successful if the recovered LL? obeys kLL? � LL0kF=
kLL0kF 
 0:05.

Fig. 11 reports the experimental results. In both cases, R-
TLRR exactly recovers the clean data (gray and block areas)
when the tubal rank ranktðLL0Þ is relatively low and the ratio
r of noise is small, as implied by Theorem 3. Also, R-TLRR
outperforms R-TPCA, as there are some cases (gray areas)
that R-TLRR succeeds while R-TPCA fails. This coincides
with the conclusion in Section 6.3 that R-TLRR has a stron-
ger recovery ability than R-TPCA. The results also show
validity of the dictionary built by T-RPCA.

9.2.2 Application to Image/Video Denoising

Here we evaluate the denoising performance of R-TLRR. As
analyzed in Section 9.2.1, S-TLRR uses corrupted data as its
dictionary and cannot be applied for exact recovery. We use
the Berkeley segmentation dataset [39] and YUV video
sequences3 for testing. Berkeley dataset contains 200 color
images of various natural scenes. The YUV dataset includes
26 videos. See details in Section 2 of supplementary, avail-
able online. In the experiments, we organize the color
images along the channel direction to form a w� n� h ten-
sor with images size w� h and channel number n. Similarly,
for videos, w� h and n respectively represent the frame size
and frame number. We use the peak signal-to-noise ratio
(PSNR) to evaluate the denoising performance:

PSNR ¼ 10 log 10 n1n2n3kLL0k21=kLL? � LL0k2F
� 


;

where LL? is the recovered tensor of LL0 2 Rn1�n2�n3 .

Fig. 9. Clustering results (ACC, NMI, and PUR) on noisy FRGC 2.0. Best
viewed in �2 sized color pdf file.

Fig. 8. Comparison of block-diagonal structures learned by the
compared methods. Best viewed in color pdf file.

Fig. 10. Recovery performance of R-TLRR on FRGC 2.0. (a) Images of
0, 10, 20, and 30 percent corruptions (from left to right). (b) Recovered
images in (a) by R-TLRR (from left to right).

Fig. 11. Comparison between R-TPCA and R-TLRR. White Region: Both
R-TPCA and R-TLRR succeed. Gray Regions: R-TLRR succeeds while
R-TPCA fails. Black Regions: Both R-TPCA and R-TLRR fail. (a) Nor-
malize LL0 such that kLL0k1 ¼ 1 and i.i.d. produce �1 noise in EE0 with
probability 0.5. (b) Produce i.i.d.Nð0; 1Þ noise in EE0.

3. http://trace.eas.asu.edu/yuv/
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Our method and other low-rank based methods can be
applicable for image/video denoising. Many works [3],
[13], [21] validated that image and video data can be well
approximated by low-rank matrices/tensors. Moreover,
from the previous result in Fig. 6, the images in Berkeley
dataset have low tubal rank structure. See details at the end
of Section 8. So low-rank based methods are applicable to
them. The low tubal rank structure of the testing video data
is also notable but is not revealed here due to the similar
results as images.

Image Denoising. For each testing image, we randomly set
5 � 30 percent of pixels to random values in [0,255] and
then apply these compared methods to recover it. The cor-
rupted locations are unknown for these compared methods.

Fig. 12 reports the average PSNR values (on top of each
bar) achieved by the comparedmethods. R-TLRR always per-
forms the best and it improves the average PSNR values by
about 1.5 dBs over the runner-up under different noise ratios.
Besides, R-TLRR mostly outperforms others on every image.
For instance, when the noise ratio is 20 percent, R-TLRR
makes at least 2.0, 1.5, 1.0 and 0.5 dBs improvements than the
second best on 41, 105, 174, and 194 images, respectively. See
more details in Section 2 in supplementary, available online.

Fig. 13 displays the denoising results with their PSNR val-
ues when the noise ratio is 20 percent. R-TLRR performs
much better the others. It preserves more details. For instance,

it well recovers the contours of hydrophyte leaves and the
spots of deers. R-TLRR improves by at least 2.4 dB over the
second best R-TPCA on the testing images. As R-PCA and
LRR recover the R, G and B channels separately and do not
fully utilize the structure information, their performance is
worse than the tensor based methods. Matricization based
methods, e.g., SNN may destroy the data structure and lose
optimality of the low-rank property [11], [12]. Conversely, our
R-TLRR avoids the low-rank structure information loss [12],
[13], hence giving better performance. R-TLRR also outper-
forms R-TPCA, according with Theorem 3 in Section 6.3:
when given a qualified dictionary, R-TLRR has a stronger
recovery guarantee than R-TPCA. This also demonstrates that
the dictionary pursued by R-TPCA is qualified.

Video Denoising. We also randomly set 5 � 30 percent of
pixels in each video sequence to random values in [0,255].
From the denoising results in Fig. 14, one can see that our R-
TLRR always outperforms other methods and it respec-
tively improves the average PSNR values on the 26 videos
by about 1.9, 1.8, 1.7, 1.5, 1.3 and 0.8 dBs over the second
best method, i.e., R-TPCA, for the six noise ratios. More-
over, tensor based methods, i.e., SNN, R-TPCA and our
method, outperform matrix based methods, i.e., RPCA and
LRR. Table 3 reports the PSNR values under noise ratio
20 percent. R-TLRR achieves the best denoising results on
all testing videos.

Fig. 12. Comparison of the image denoising performance. We apply the compared methods to recover the 200 images corrupted by 5 � 30 percent
noise in Berkeley dataset and report the average PSNR values on the 200 images. Best viewed in �2 sized color pdf file.

Fig. 13. Examples of image denoising under noise ratio 20 percent. (a) Original image. (b) Corrupted image. (c)-(g) are the recovered results by the
compared methods. (h) PSNR values on the above six images. Best viewed in �2 sized color pdf file.
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10 CONCLUSION

In this paper, we proposed a new tensor low-rank representa-
tion method for tensor data denoising and clustering. TLRR
takes advantage of the multi-dimensional structure in tensor
data and directly performs the low-rank representation on
raw tensor data. In this way, it avoids destroying the tensor
structure like other matrix basedmethods (e.g., LRR) and bet-
ter preserves the low-rank structure. Unlike R-TPCA, TLRR
considers the mixture structure in data, more consistent with
practical data distribution, and thus obtains better perfor-
mance. We further prove the tensor block-diagonal property
of the optimal solution to the TLRR problem and analyze the
exact recovery ability of TLRR theoretically. By comparison,
when equipped with a qualified dictionary, TLRR has stron-
ger recovery power than R-TPCA. Finally, we develop two
variants of TLRR, i.e., S-TLRR and R-TLRRwith different dic-
tionary construction strategies. Extensive data clustering and
recovery experiments testify the superiority of ourmethods.

ACKNOWLEDGMENTS

Jiashi Feng was partially supported by NUS IDS R-263- 000-
C67-646, ECRA R-263-000-C87-133, MOE Tier-II R-263-000-
D17-112 and AI.SG R-263-000-D97-490. Z. Lin is supported

by NSF China (grant no.s 61625301 and 61731018), Major
Scientific Research Project of Zhejiang Lab (grant no.
2019KB0AC01), Zhejiang Lab (grant no. 2019KB0AB02), and
Beijing Academy of Artificial Intelligence.

REFERENCES

[1] G. Liu, Z. Lin, andY. Yu, “Robust subspace segmentation by low-rank
representation,” inProc. Int. Conf.Mach. Learn., 2010, pp. 663–670.

[2] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algo-
rithm, theory, and applications,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

[3] G. Liu, Q. Liu, and P. Li, “Blessing of dimensionality: Recovering
mixture data via dictionary pursuit,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2016.

[4] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[5] Y. Cui, C. Zheng, and J. Yang, “Identifying subspace gene clusters
from microarray data using low-rank representation,” PloS One,
vol. 8, no. 3, 2013, Art. no. e59377.

[6] C. Lang, G. Liu, J. Yu, and S. Yan, “Saliency detection by multitask
sparsity pursuit,” IEEE Trans. Image Process., vol. 21, no. 3,
pp. 1327–1338, Mar. 2012.

[7] T. Zhang, B. Ghanem, S. Liu, and N. Ahuja, “Low-rank sparse
learning for robust visual tracking,” in Proc. Eur. Conf. Comput.
Vis., 2012, pp. 470–484.

[8] G. Liu and S. Yan, “Latent low-rank representation for subspace
segmentation and feature extraction,” in Proc. IEEE Conf. Comput.
Vis., 2011, pp. 1615–1622.

[9] M. Yin, J. Gao, and Z. Lin, “Laplacian regularized low-rank repre-
sentation and its applications,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 38, no. 3, pp. 504–517, Mar. 2016.

[10] M. Kilmer, K. Braman, N. Hao, and R. Hoover, “Third-order ten-
sors as operators on matrices: A theoretical and computational
framework with applications in imaging,” SIAM J. Matrix Anal.
Appl., vol. 34, no. 1, pp. 148–172, 2013.

[11] C. Mu, B. Huang, J. Wright, and D. Goldfarb, “Square deal: Lower
bounds and improved relaxations for tensor recovery,” in Proc.
Int. Conf. Mach. Learn., 2013, pp. 73–81.

[12] Z. Zhang, G. Ely, S. Aeron, N. Hao, and M. Kilmer, “Novel meth-
ods for multilinear data completion and de-noising based on ten-
sor-SVD,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2014,
pp. 3842–3849.

[13] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysis: Exact recovery of corrupted low-
rank tensors via convex optimization,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., 2016, pp. 5249–5257.

[14] B. Huang, C. Mu, D. Goldfarb, and J. Wright, “Provable low-rank
tensor recovery,”Optim. Online, vol. 4252, 2014, Art. no. 2.

[15] Y. Fu, J. Gao, D. Tien, Z. Lin, and H. Xia, “Tensor LRR and sparse
coding-based subspace clustering,” IEEE Trans. Neural Netw.
Learn. Syst., vol. 27, no. 10, pp. 2120–2133, Oct. 2016.

[16] L. Tucker, “Some mathematical notes on three-mode factor
analysis,” Psychometrika, vol. 31, no. 3, pp. 279–311, 1966.

[17] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding algo-
rithms,” in Proc. Conf. Neutral Inf. Process. Syst., 2007, pp. 801–808.

[18] C. Zhang, H. Fu, S. Liu, G. Liu, and X. Cao, “Low-rank tensor con-
strained multiview subspace clustering,” in Proc. IEEE Conf.
Comput. Vis., 2016, pp. 1582–1590.

[19] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

Fig. 14. Comparison of the video denoising performance. We apply the compared methods to recover the 26 videos corrupted by 5 � 30 percent
noise in YUV dataset and report the average PSNR values on the 26 videos. Best viewed in �2 sized color pdf file.

TABLE 3
PSNR Values on the YUV Video Sequences

ID Video name R-PCA R-LRR SNN R-TPCA R-TLRR

1 Akiyo 26.2 26.6 30.24 34.8 36.5
2 Big Buck Bunny 33.2 33.3 20.9 34.9 36.5
3 Bridge (close) 25.8 26.3 29.7 36.2 37.6
4 Bridge (far) 30.7 30.8 35.6 43.3 44.1
5 Bus 23.2 24.2 17.1 23.3 23.9
6 Carphone 24.6 25.9 28.3 30.7 32.4
7 Claire 26.9 28.5 32.4 36.0 37.6
8 Coastguard 25.0 25.7 25.4 27.7 28.5
9 Container 23.0 23.9 27.8 36.4 38.3
10 Elephants Dream 33.8 34.0 22.2 37.7 40.7
11 Flower 22.6 22.7 22.3 23.6 24.7
12 Foreman 25.1 25.7 26.2 29.6 31.4
13 Grandma 25.2 26.5 31.3 37.2 38.8
14 Hall 23.9 24.7 28.1 31.6 33.2
15 Highway 27.7 27.7 28.7 31.0 31.8
16 Miss America 27.3 29.2 31.3 34.1 36.1
17 Mobile 20.4 20.7 21.2 26.1 27.7
18 Mother Daughter 28.0 28.5 31.1 34.4 36.0
19 News 22.7 24.2 26.9 30.3 32.6
20 Paris 21.4 22.6 17.8 26.9 29.0
21 Salesman 23.6 24.6 27.8 32.6 34.4
22 Silent 27.0 27.8 29.9 32.6 34.1
23 Stefan 22.2 23.3 18.4 23.4 23.8
24 Suzie 28.7 29.6 29.6 30.9 32.8
25 Tempete 23.6 24.3 17.9 27.6 28.9
26 Waterfall 27.7 28.3 20.7 35.6 37.4

ZHOU ET AL.: TENSOR LOW-RANK REPRESENTATION FOR DATA RECOVERY AND CLUSTERING 1731

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:18:05 UTC from IEEE Xplore.  Restrictions apply. 



[20] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., 2016, pp. 770–778.

[21] E. Cand�es, X. Li, Y. Ma, and J. Wright, “Robust principal compo-
nent analysis?,” J. ACM, vol. 58, no. 3, 2011, Art. no. 11.

[22] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Proc. Conf.
Neutral Inf. Process. Syst., 2011, pp. 612–620.

[23] H. Kiers, “Towards a standardized notation and terminology in
multiway analysis,” J. Chemometrics, vol. 14, no. 3, pp. 105–122, 2000.

[24] C. Hillar and L. Lim, “Most tensor problems are NP-hard,”
J. ACM, vol. 60, no. 6, 2013, Art. no. 45.

[25] J. Landsberg, Tensors: Geometry and Applications, Providence, RI,
USA: American Mathematical Society, 2012.

[26] J. Liu, P. Musialski, P. Wonka, and J. Ye, “Tensor completion for
estimating missing values in visual data,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2013.

[27] D. Goldfarb and Z. Qin, “Robust low-rank tensor recovery:
Models and algorithms,” SIAM J. Matrix Anal. Appl., vol. 35, no. 1,
pp. 225–253, 2014.

[28] B. Romera-Paredes andM. Pontil, “A new convex relaxation for ten-
sor completion,” Proc. Conf. Neutral Inf. Process. Syst., pp. 2967–2975,
2013.

[29] Z. Song, D. P. Woodruff, and P. Zhong, “Relative error tensor low
rank approximation,” in Proc. Conf. Symp. Discrete Algorithms,
pp. 2772–2789, 2019.

[30] M. Mahoney and P. Drineas, “CUR matrix decompositions for
improved data analysis,” Proc. Nat. Acad. Sci., vol. 106, no. 3,
pp. 697–702, 2009.

[31] M. Kilmer and C. Martin, “Factorization strategies for third-order
tensors,” Linear Algebra Appl., vol. 435, no. 3, pp. 641–658, 2011.

[32] T. Kolda and B. Bader, “Tensor decompositions and applications,”
SIAM Rev., vol. 51, no. 3, pp. 455–500, 2009.

[33] P. Zhou and J. Feng, “Outlier-robust tensor PCA,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2017, pp. 1–9.

[34] C. Lu, J. Feng, Y. Chen, W. Liu, Z. Lin, and S. Yan, “Tensor robust
principal component analysiswith a new tensor nuclear norm,” IEEE
Trans. Pattern Anal.Mach. Intell., vol. 35, no. 1, pp. 208–220, Jan. 2018.

[35] P. Zhou, C. Lu, Z. Lin, and C. Zhang, “Tensor factorization for
low-rank tensor completion,” IEEE Trans. Image Process., vol. 27,
no. 3, pp. 1152–1163, Mar. 2017.

[36] J. Shi and J. Malik, “Normalized cuts and image segmentation,” IEEE
Trans. Pattern Anal.Mach. Intell., vol. 22, no. 8, pp. 888–905, Aug. 2000.

[37] P. J. Phillips et al., “Overview of the face recognition grand
challenge,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2005,
pp. 947–954.

[38] D. Gross, “Recovering low-rankmatrices from few coefficients in any
basis,” IEEE Trans. Inf. Theory, vol. 57, no. 3, pp. 1548–1566,Mar. 2011.

[39] D. Martin, C. Fowlkes, D. Tal, and J. Malik, “A database of human
segmented natural images and its application to evaluating seg-
mentation algorithms and measuring ecological statistics,” in
Proc. IEEE Int. Conf. Comput. Vis., 2001, pp. 416–423.

[40] P. Zhou, Z. Lin, and C. Zhang, “Integrated low-rank-based dis-
criminative feature learning for recognition,” IEEE Trans. Neural
Netw. Learn. Syst., vol. 27, no. 5, pp. 1080–1093, May 2016.

[41] J. Wright, A. Yang, A. Ganesh, S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 31, no. 2, pp. 210–227, Feb. 2009.

[42] P. Zhou, C. Fang, Z. Lin, C. Zhang, and E. Chang, “Dictionary learn-
ing with structured noise,” Neurocomputing, vol. 273, pp. 414–423,
2017.

[43] P. Zhou, C. Zhang, and Z. Lin, “Bilevel model based discrimina-
tive dictionary learning for recognition,” IEEE Trans. Image Pro-
cess., vol. 26, no. 3, pp. 1173–1187, Mar. 2017.

[44] A. Georghiades, P. Belhumeur, and D. Kriegman, “From few to
many: Illumination cone models for face recognition under vari-
able lighting and pose,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 23, no. 6, pp. 643–660, Jun. 2001.

[45] J. Yan and M. Pollefeys, “A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate and
non-degenerate,” in Proc. Eur. Conf. Comput. Vis., 2006, pp. 94–106.

[46] C. Lu, H. Min, Z. Zhao, L. Zhu, D. Huang, and S. Yan, “Robust
and efficient subspace segmentation via least squares regression,”
in Proc. Eur. Conf. Comput. Vis., 2012, pp. 347–360.

[47] C. You, C. Li, D. Robinson, and R. Vidal, “Oracle based active set
algorithm for scalable elastic net subspace clustering,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 3928–3937.

[48] N. Vinh, J. Epps, and J. Bailey, “Information theoretic measures for
clusterings comparison: Variants, properties, normalization and cor-
rection for chance,” J.Mach. Learn. Res., vol. 11, pp. 2837–2854, 2010.

[49] C. Manning, P. Raghavan, and H. Schutze, Introduction to Informa-
tion Retrieval. Cambridge, U.K.: Cambridge Univ. Press, 2010.

Pan Zhou received master’s degree in computer
science from Peking University, in 2016. Now, he is
working toward the PhD degree in the Department
of Electrical and Computer Engineering (ECE),
National University of Singapore, Singapore. His
research interests include computer vision,machine
learning, and optimization. He was the winner of the
Microsoft Research Asia Fellowship in 2018.

Canyi Lu received the PhD degree from the
National University of Singapore, in 2017. He is
currently a postdoctoral research associate with
Carnegie Mellon University. His current research
interests include computer vision, machine learn-
ing, pattern recognition, and optimization. He was
the winner of the Microsoft Research Asia
Fellowship in 2014. He is a member of the IEEE.

Jiashi Feng received the PhD degree from the
National University of Singapore (NUS), in 2014.
He was a postdoctoral research follow with the
University of California at Berkeley, Berkeley. He
joined NUS as a faculty member, where he is cur-
rently an assistant professor with the Department
of Electrical and Computer Engineering. His
research areas include computer vision, machine
learning, robust learning, and deep learning.

Zhouchen Lin (M’00-SM’08-F’18) is currently a
professor with the School of Electronics Engineer-
ing and Computer Science, Peking University. His
research interests include computer vision, image
processing, machine learning, pattern recognition,
and numerical optimization. He is an area chair of
CVPR 2014/2016/2019/2020, ICCV 2015, NIPS
2015/2018/2019, ICML 2020, AAAI 2019/2020,
and IJCAI 2020, and a senior program committee
member of AAAI 2016/2017/2018, and IJCAI 2016/
2018. He is an associate editor of the IEEE Trans-

actions on Pattern Analysis and Machine Intelligence and the International
Journal of Computer Vision. He is a fellow of the IAPR and the IEEE.

Shuicheng Yan is a chief technology officer of
YITU Tech Company, and also the dean’s chair
associate professor with the National University of
Singapore. His research areas include machine
learning, computer vision and multimedia, and he
has authored/co-authored hundreds of technical
papers over a wide range of research topics, with a
Google Scholar citation more than 20,000 times
and H-index 66. He is ISI Highly-cited researcher
of 2014, 2015, and 2016, respectively. His team
received seven times winner or honorable-mention

prizes in PASCAL VOC and ILSVRC competitions, along with more than
10 times best (student) paper prizes. He is also an IAPR fellow and a fellow
of the IEEE.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

1732 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 5, MAY 2021

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:18:05 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


