
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020 4855

Decentralized Accelerated Gradient Methods
With Increasing Penalty Parameters

Huan Li , Member, IEEE, Cong Fang, Wotao Yin , and Zhouchen Lin , Fellow, IEEE

Abstract—In this article, we study the communication, and
(sub)gradient computation costs in distributed optimization. We
present two algorithms based on the framework of the accelerated
penalty method with increasing penalty parameters. Our first al-
gorithm is for smooth distributed optimization, and it obtains the

near optimalO(
√

L
ε(1−σ2(W))

log 1
ε
) communication complexity,

and the optimal O(
√

L
ε
) gradient computation complexity for

L-smooth convex problems, where σ2(W) denotes the second
largest singular value of the weight matrix W associated to the
network, and ε is the target accuracy. When the problem is μ-
strongly convex, and L-smooth, our algorithm has the near op-

timal O(
√

L
μ(1−σ2(W))

log2 1
ε
) complexity for communications,

and the optimal O(
√

L
μ
log 1

ε
) complexity for gradient compu-

tations. Our communication complexities are only worse by a
factor of (log 1

ε
) than the lower bounds. Our second algorithm is

designed for nonsmooth distributed optimization, and it achieves
both the optimalO(1

ε
√

1−σ2(W)
) communication complexity, and

O(1
ε2

) subgradient computation complexity, which match the
lower bounds for nonsmooth distributed optimization.

Index Terms—Distributed accelerated gradient algorithms,
accelerated penalty method, optimal (sub)gradient computation
complexity, near optimal communication complexity.

Manuscript received February 25, 2020; revised July 6, 2020; accepted August
16, 2020. Date of publication August 21, 2020; date of current version September
11, 2020. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Alexander Bertrand. The work of Huan
Li was supported by Zhejiang Lab under Grant 2019KB0AB02. The work
of Zhouchen Lin was supported by NSF China under Grants 61625301 and
61731018, and in part by the Major Research Project of Zhejiang Lab under
Grants 2019KB0AC01 and 2019KB0AB02, and Beijing Academy of Artificial
Intelligence. (Corresponding author: Zhouchen Lin.)

Huan Li is with the Institute of Robotics and Automatic Information Systems,
College of Artificial Intelligence, Nankai University, Tianjin 300071, China,
with the College of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, Nanjing 210016, China, and also with the Key
Laboratory of Machine Perception (MOE), School of EECS, Peking University,
Beijing 100871, China (e-mail: lihuan_ss@126.com).

Cong Fang is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: fangcong@pku.edu.cn).

Wotao Yin is with the Department of Mathematics, University of California,
Los Angeles, CA 90095 USA (e-mail: wotaoyin@math.ucla.edu).

Zhouchen Lin is with the Key Laboratory of Machine Perception
(MOE), School of EECS, Peking University, Beijing 100871, China (e-mail:
zlin@pku.edu.cn).

This article has supplementary downloadable material available at https:
//ieeexplore.ieee.org., provided by the author. The material includes some addi-
tional experimental results. This material is 1.64 MB in size.

Digital Object Identifier 10.1109/TSP.2020.3018317

I. INTRODUCTION

IN this article, we consider the following distributed convex
optimization problem:

min
x∈Rn

1

m

m∑
i=1

Fi(x) ≡ fi(x) + hi(x), (1)

where m agents form a connected and undirected network G =
(V, E), V = {1, 2, . . .,m} is the set of agents and E ⊂ V × V is
the set of edges, Fi is the local objective function only available
to agent i andx is the decision variable. fi is a convex and smooth
function while hi is a convex but possibly nonsmooth one. We
consider distributed algorithms using only local computations
and communications, i.e., each agent i makes its decision only
based on the local computations on Fi (i.e., the gradient of fi
and the subgradient of hi) and the local information received
from its neighbors in the network. A pair of agents can ex-
change information if and only if they are directly connected
in the network. Distributed computation has been widely used
in signal processing [1], automatic control [2], [3] and machine
learning [4]–[6].

A. Literature Review

Among the classical distributed first-order algorithms, two
different types of methods have been proposed, namely, the
primal-only methods and the dual-based methods.

The distributed subgradient method is a representative primal-
only distributed optimization algorithm over general net-
works [14], while its stochastic version was studied in [15],
and asynchronous variant in [16]. In the distributed subgradient
method, each agent performs a consensus step and then follows
a subgradient descent with a diminishing step-size. To avoid
the diminishing step-size, three different types of methods have
been proposed. The first type of methods [7], [17]–[19] rely
on tracking differences of gradients, which keep a variable
to estimate the average gradient and use this estimation in
the gradient descent step. The second type of methods, called
EXTRA [20], [21], introduce two different weight matrices as
opposed to a single one with the standard distributed gradient
method [14]. EXTRA also uses the gradient tracking. The third
type of methods employ a multi-consensus inner loop [8], [22]
and thus improve the consensus of the variables at each outer
iteration.

The dual-based methods introduce the Lagrangian function
and work in the dual space. Many classical methods can be used
to solve the dual problem, e.g., the dual subgradient ascent [23],
dual gradient ascent [24], accelerated dual gradient ascent [9],

1053-587X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1286-6552
https://orcid.org/0000-0001-6697-9731
https://orcid.org/0000-0003-1493-7569
mailto:lihuan_ss@126.com
mailto:fangcong@pku.edu.cn
mailto:wotaoyin@math.ucla.edu
mailto:zlin@pku.edu.cn
https://ieeexplore.ieee.org

4856 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

TABLE I
COMPLEXITY COMPARISONS BETWEEN ACCELERATED DUAL ASCENT, DN-C, DNGD, THE PRIMAL-DUAL METHOD AND OUR METHODS (APM-C,APM) FOR

DISTRIBUTED CONVEX PROBLEMS

[12], the primal-dual method [13], [25], and ADMM [26]–[31].
In general, most dual-based methods require the evaluation of
the Fenchel conjugate of the local objective function fi(x) and
thus have a larger gradient computation cost per iteration than
the primal-only algorithms for smooth distributed optimization.
For nonsmooth problems, the authors of [11], [13], [25] studied
the communication-efficient primal-dual method. Specifically,
they use the classical primal-dual method [32] in the outer
loop and the subgradient method in the inner loop. The authors
of [13] used Chebyshev acceleration [33] to further reduce the
computation complexity while the authors of [11] did it via
carefully setting the parameters.

Among the methods described above, the distributed Nesterov
gradient with consensus iterations (D-NC) proposed in [8] and
the distributed Nesterov gradient descent (DNGD) proposed
in [7] employ Nesterov’s acceleration technique in the primal
space, and the accelerated dual ascent proposed in [12] use
the standard accelerated gradient descent in the dual space.
Moreover, D-NC attains the optimal gradient computation com-
plexity for nonstrongly convex and smooth problems, and the
accelerated dual ascent achieves the optimal communication
complexity for strongly convex and smooth problems, which
match the complexity lower bounds [10], [12]. For nonsmooth
problems, the primal-dual method proposed in [11], [13] and
the smoothed accelerated gradient sliding method in [9] achieve
both the optimal communication and subgradient computation
complexities, which also match the lower bounds [13]. We
denote the communication and computation complexities as the
numbers of communications and (sub)gradient computations
to find an ε-optimal solution x such that 1

m

∑m
i=1 Fi(x)−

minx
1
m

∑m
i=1 Fi(x) ≤ ε, respectively.

B. Contributions

In this article, we study the decentralized accelerated gra-
dient methods with near optimal complexities from the per-
spective of the accelerated penalty method. Specifically, we
propose an Accelerated Penalty Method with increasing penal-
ties for smooth distributed optimization by employing a multi-
Consensus inner loop (APM-C). The theoretical significance
of our method is that we show the near optimal communication
complexities and the optimal gradient computation complexities
for both strongly convex and nonstrongly convex problems.
Our communication complexities are only worse by a logarithm
factor than the lower bounds.

Table I summarizes the complexity comparisons to the state-
of-the-art distributed optimization algorithms (the notations in
Table I will be specified precisely soon), namely, DNGD, D-NC,
and the accelerated dual ascent reviewed above, as well as the
complexity lower bounds. Our complexities match the lower
bounds except that the communication ones have an extra factor
of log 1

ε . The communication complexity of the accelerated dual
ascent matches ours for nonstrongly convex problems and is
optimal for strongly convex problems (thus better than ours by
log 1

ε). On the other hand, our gradient computation complexities
match the lower bounds and they are better than the compared
methods. It should be noted that due to term log2 1

ε , our commu-
nication complexity for strongly convex problems is not a linear
convergence rate.1

Our framework of accelerated penalty method with increasing
penalties also applies to nonsmooth distributed optimization.

1The authors of [7] did not give the dependence on 1− σ2(W). It does not
mean that their complexity has no dependence on 1− σ2(W).

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4857

It drops the multi-consensus inner loop but employs an inner
loop with several runs of subgradient method. Both the optimal
communication and subgradient computation complexities are
achieved, which match the lower bounds for nonsmooth dis-
tributed optimization. Although the theoretical complexities are
the same with the methods [9], [11], our method gives the users
a new choice in practice.

C. Notations and Assumptions

Throughout the article, the variable x ∈ Rn is the decision
variable of the original problem (1). We denote x(i) ∈ Rn to
be the local estimate of the variable x for agent i. To simplify
the algorithm description in a compact form, we introduce the
aggregate variable x, aggregate objective function f(x) and
aggregate gradient ∇f(x) as

x =

⎛⎜⎝xT
(1)

...
xT
(m)

⎞⎟⎠ , f(x) =

m∑
i=1

fi(x(i)),∇f(x) =

⎛⎜⎝∇f1(x(1))
T

...
∇fm(x(m))

T

⎞⎟⎠,

where x ∈ Rm×n, whose value at iteration k is denoted by xk.
For the double loop algorithms, we denote xk,t as its value
at the kth outer iteration and tth inner iteration. Assume that
the set of minimizers is non-empty. Denote x∗ as one min-
imizer of problem (1), and let x∗ = 1(x∗)T ∈ Rm×n, where
1 = (1, 1, . . . , 1)T ∈ Rm is the vector with all ones. Denote
∂hi(x) as the subdifferential of hi(x) at x, and specifically,
∇̂hi(x) ∈ ∂hi(x) as its one subgradient. For hi, we introduce
its aggregate objective function h(x) and aggregate subgradient
∇̂h(x) as

h(x) =

m∑
i=1

hi(x(i)) and ∇̂h(x) =

⎛⎜⎝ ∇̂h1(x(1))
T

...
∇̂hm(x(m))

T

⎞⎟⎠ .

We use ‖ · ‖ and ‖ · ‖1 as the l2 Euclidean norm and l1 norm for
a vector, respectively. For matrices x and y, we denote ‖x‖F
as the Frobenius norm, ‖x‖2 as the spectral norm and 〈x,y〉 =
trace(xTy) as their inner product. Denote I ∈ Rm×m as the
identity matrix and Ni as the neighborhood of agent i in the
network. Define

α(x) =
1

m

m∑
i=1

x(i) (2)

as the average across the rows of x. Define two operators

Π = I − 1

m
11T and U =

√
I −W (3)

to measure the consensus violation, where W is the weight
matrix associated to the network, which describes the informa-
tion exchange through the network. Especially, ‖Πx‖F directly
measures the distance between x(i) and α(x). We follow [12]
to define

√
A = V

√
ΛV T , given the eigenvalue decomposition

A = V ΛV T of the symmetric positive semidefinite matrix A.
We make the following assumptions for each function fi(x).
Assumption 1:
1) fi(x) is μ-strongly convex: fi(y) ≥ fi(x) +

〈∇fi(x), y − x〉+ μ
2 ‖y − x‖2. Especially, we allow

μ to be zero through this article, and in this case we say
fi(x) is convex.

2) fi(x) is L-smooth: fi(y) ≤ fi(x) + 〈∇fi(x), y − x〉+
L
2 ‖y − x‖2.

In Assumption 1, μ and L are the strong-convexity constant
and smoothness constant, respectively. Assumption 1 yields that
the aggregate function f(x) is also μ-strongly convex and L-
smooth. For the nonsmooth function hi(x), we follow [25] to
make the following assumptions.

Assumption 2:
1) hi(x) is convex.
2) hi(x) is M -Lipschitz continuous: hi(y) ≤ hi(x) +〈

∇̂hi(x), y − x
〉
+M‖y − x‖.

We can simply verify that h(x) is (
√
mM)-Lipschitz con-

tinuous. For the weight matrix W , we make the following
assumptions.

Assumption 3:
1) W ∈ Rm×m is a symmetric matrix with Wi,j = 0 if and

only if agents i and j are neighbors or i = j. Otherwise,
Wi,j = 0.

2) I � W � 0, and W1 = 1.
Examples satisfying Assumption 3 can be found in [20]. We

denote by 1 = σ1(W) ≥ σ2(W) ≥ · · · ≥ σm(W) the spectrum
of W . Note that for a connected and undirected network, we
always haveσ2(W) < 1, and 1

1−σ2(W) is a good indication of the
network connectivity. For many commonly used networks, we
can give order-accurate estimate on 1

1−σ2(W) [34, Proposition 5].

For example, 1
1−σ2(W) = O(m logm) for the geometric graph,

and 1
1−σ2(W) = O(1) for the expander graph and Erdős−Rényi

random graph. Moreover, for any connected and undirected
graph, 1

1−σ2(W) = O(m2) in the worst case [34].
In this article, we focus on the communication and

(sub)gradient computation complexity development for the pro-
posed algorithms. We define one communication to be the
operation that all the agents exchange information with their
neighbors once, i.e.,

∑
j∈Ni

Wijx(j) for all i = 1, 2, . . .,m. One
(sub)gradient computation is defined to be the (sub)gradient
evaluations of all the agents once, i.e., ∇fi(x(i)) (∇̂hi(x(i)))
for all i.

II. DEVELOPMENT OF THE ACCELERATED PENALTY METHOD

A. Accelerated Penalty Method for Smooth Distributed
Optimization

In this section, we consider the smooth distributed optimiza-
tion, i.e., hi(x) = 0 in problem (1). From the definition of Π in
(3), we know that x(1) = · · · = x(m) is equivalent to Πx = 0.
Thus, we can reformulate the smooth distributed problem as

min
x∈Rm×n

f(x) s.t. Πx = 0. (4)

Problem (4) is a standard linearly constrained convex problem,
and many algorithms can be used to solve it, e.g., the primal-dual
method [13], [25], [35], [36] and dual ascent [9], [12], [23].
In order to propose an accelerated distributed gradient method
based on the gradient of f(x), rather than the evaluation of
its Fenchel conjugate or proximal mapping, we follow [37]
to use the penalty method to solve problem (4) in this article.
Specifically, the penalty method solves the following problem

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4858 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

instead:

min
x∈Rm×n

f(x) +
β

2
‖Πx‖2F , (5)

whereβ is a large constant. However, one big issue of the penalty
method is that problems (4) and (5) are not equivalent for finiteβ.
When solving problem (5), we can only obtain an approximate
solution of (4) with small ‖Πx‖F , rather than ‖Πx‖F → 0, and
the algorithm only converges to a neighborhood of the solution
set of problem (1) [37]. Moreover, to find an ε-optimal solution
of (4), we need to pre-define a large β of the order 1

ε [37].
Thus, the parameter setting depends on the precision ε. When
β is fixed as a constant of the order 1

ε , we can only get the
ε-accurate solution after some fixed iterations described by ε, and
more iterations will not give a more accurate solution. Please see
Section II-C1 for more details. To solve the above two problems,
we use the gradually increasing penalty parameters, i.e., at the
kth iteration, we use β = β0

ϑk
with fixed β0 and diminishing

ϑk → 0. The increasing penalty strategy has two advantages:
1) The solution of (5) approximates that of (4) infinitely when
the iteration number k is sufficiently large. 2) The parameter
setting does not depend on the accuracy ε. The algorithm can
be run without defining the accuracy ε in advance. It can reach
arbitrary accuracy if run for arbitrarily long time.

We use the classical accelerated proximal gradient method
(APG) [38] to minimize the penalized objective in (5), i.e., at
the kth iteration, we first compute the gradient of f(x) at some
extrapolated point, and then compute the proximal mapping of
β0

2ϑk
‖Πx‖2F at some z, defined as

argmin
x∈Rm×n

β0

2ϑk
‖Πx‖2F +

L

2
‖x− z‖2F . (6)

Due to the special form of Π defined in (3), a simple calcula-

tion yields Lϑkz+β01α(z)
T

Lϑk+β0
as the solution of (6), where α(x) is

defined in (2). However, in the distributed setting, we can only
compute α(z) approximately in finite communications. Thus,
we use the inexact APG to minimize (5), i.e., we compute the
proximal mapping inexactly. Specifically, the algorithm frame-
work consists of the following steps:

yk = xk +
Lθk − μ

L− μ

1− θk−1

θk−1
(xk − xk−1), (7a)

zk = yk − 1

L
∇f(yk), (7b)

xk+1 ≈ argmin
x∈Rm×n

β0

2ϑk
‖Πx‖2F +

L

2

∥∥x− zk
∥∥2

F
, (7c)

where the sequences {θk} and {ϑk} and the precision in step
(7c) will be specified in Theorems 1 and 2 latter. Now, we
consider the subproblem in procedure (7c). As discussed above,
we only need to approximate α(zk), which can be obtained by
the classical average consensus [39] or the accelerated average
consensus [40]. We only consider the accelerated average con-
sensus, which consists of the following iterations:

zk,t+1 = (1 + η)Wzk,t − ηzk,t−1, (8)

where we initialize at zk,0 = zk,−1 = zk. The advantage of
using the special Π in (4) is that we only need to call the classic
average consensus to solve the subproblem in (7c), which has
been well studied in the literatures, including the extensions

Algorithm 1: Accelerated Penalty Method with Consensus
(APM-C).

Initialize x0
(i) = x−1

(i) for all i, and η =
1−
√

1−σ2
2(W)

1+
√

1−σ2
2(W)

.

for k = 0, 1, 2, · · · do
yk(i) = xk

(i) +
Lθk−μ
L−μ

1−θk−1

θk−1
(xk

(i) − xk−1
(i)) ∀i,

zk(i) = yk(i) − 1
L∇fi(y

k
(i)) ∀i,

zk,0(i) = zk,−1
(i) = zk(i) ∀i,

for t = 0, 1, . . . , Tk − 1 do
zk,t+1
(i) = (1 + η)

∑
j∈Ni

Wijz
k,t
(j) − ηzk,t−1

(i) ∀i,
end for

xk+1
(i) =

Lϑkz
k
(i)

+β0z
k,Tk
(i)

Lϑk+β0
∀i.

end for

over directed network and time-varying network [41]. In fact,
in Lemma 6, we only require ‖zk,Tk − 1α(zk)‖2F to be within
some precision for the method used in the inner loop. Any
average consensus method over undirected graph, directed graph
or time-varying graph can be used in the inner loop, as long as
it has a linear convergence.

Combing (7a)–(7c) and (8), we can give our method, which is
presented in a distributed way in Algorithm 1. We use notations
x−1 and zk,−1 in Algorithm 1 only for the writing consistency
when beginning the recursions from k = 0 and t = 0.

1) Complexities: In this section, we discuss the complexities
of Algorithm 1. We first consider the strongly convex case and
give the complexities in the following theorem.

Theorem 1: Assume that Assumptions 1 and 3 hold with
μ > 0. Setting θk = θ =

√
μ
L for all ∀k, ϑk = (1− θ)k+1, and

Tk = O(
k
√

μ/L√
1−σ2(W)

). Then, Algorithm 1 needs O(
√

L
μ log 1

ε)

gradient computations and O(
√

L
μ(1−σ2(W)) log

2 1
ε) total com-

munications to achieve an ε-optimal solution x such that

1

m

m∑
i=1

fi(α(x))− 1

m

m∑
i=1

fi(x
∗) ≤ ε

1

m

m∑
i=1

∥∥x(i) − α(x)
∥∥2 ≤ ε2. (9)

When we drop the strong-convexity assumption, we have the
following theorem.

Theorem 2: Assume that Assumptions 1 and 3 hold with
μ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1, 1−θk

θ2
k

=

1
θ2
k−1

, and ϑk = θ2k. Setting Tk = O(logk√
1−σ2(W)

) and β0 ≥

L‖∇f(x∗)‖2F . Then, Algorithm 1 needs O(
√

L
ε) gradient com-

putations and O(
√

L
ε(1−σ2(W)) log

1
ε) total communications to

achieve an ε-optimal solution x such that (9) holds.

B. Accelerated Penalty Method for Nonsmooth Distributed
Optimization

In this section, we consider the nonsmooth problem (1). From
Assumption 3 and the definition in (3), we know I � U � 0, and

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4859

x(1) = · · · = x(m) is equivalent to Ux = 0 [12]. Thus, similar
to (4), we can reformulate problem (1) as

min
x∈Rm×n

F (x) ≡ f(x) + h(x) s.t. Ux = 0. (10)

Similar to Section II-A, we also further rewrite the problem
as a penalized problem and use APG with increasing penalties
to minimize the penalized objective F (x) + β0

2ϑk
‖Ux‖2F . How-

ever, due to the nonsmooth term h(x), we cannot compute the
proximal mapping of h(x) + β0

2ϑk
‖Ux‖2F efficiently. Thus, we

use a slightly different strategy here. Specifically, we first com-
pute the gradient of f(x) + β0

2ϑk
‖Ux‖2F at some extrapolated

point y, i.e., ∇f(y) + β0

ϑk
U2y, and then compute the inexact

proximal mapping ofh(x). We describe the iterations as follows:

yk = xk +
θk(1− θk−1)

θk−1
(xk − xk−1), (11a)

sk = ∇f(yk) +
β0

ϑk
U2yk, (11b)

xk+1 ≈ argmin
x∈Rm×n

h(x) +
〈
sk,x

〉
+

(
L

2
+

β0

2ϑk

)
‖x− yk‖2F .

(11c)

The reason why we useU in (10), rather thanΠ, is thatU2yk can
be efficiently computed, which corresponds to the gossip-style
communications. Otherwise, we need to compute the average
across yk(1), . . ., y

k
(m), which cannot be achieved with closed

form solution in the distributed environment.
When the proximal mapping of h(x), i.e., Proxh(z) =

argminx∈Rm×n h(x) + 1
2‖x− z‖2 for some z, has closed form

solution or can be easily computed, step (11c) has a low com-
putation cost, which reduces to

xk+1=Proxh

(
yk− 1

L+β0/ϑk

(
∇f(yk)+

β0

ϑk
U2yk

))
.

(12)

We can see that when we set a large penalty parameter β, i.e.,
exchange β0

ϑk
with a largeβ such thatβ � L in (12), (12) approx-

imately reduces to xk+1 ≈ Proxh(y
k − U2yk) and ∇f(yk) is

flooded by the large penalty parameters. This is another reason
to use the increasing penalty parameters.

When the proximal mapping of h(x) does not have a closed
form solution, we borrow the idea of gradient and commu-
nication sliding proposed in [25], [42]–[44], which skips the
computations of ∇f and the inter-node communications from
time to time so that only O(1/ε) gradient evaluations and com-
munications are needed in the O(1/ε2) iterations required to
solve problem (10). Specifically, we incorporate a subgradient
descent procedure to solve the subproblem in (11c) with a
sliding periodTk, which is also adopted by [13]. The subgradient
descent is described as follows for Tk iterations:

zk,t+1 = argmin
z∈Rm×n

〈
∇̂h(zk,t), z

〉
+

〈
sk, z

〉
+

(
L

2
+

β0

2ϑk

)
‖z−yk‖2F +

1

2ηk
‖z−zk,t‖2F .

We describe the method in a distributed way in Algorithm 2.
1) Complexities: Introduce constants R1 and R2 such that

‖x0
(i) − x∗‖2 ≤ R2

1 and ‖∇fi(x
∗)‖2 ≤ R2

2 for all i, (13)

Algorithm 2: Accelerated Penalty Method (APM).

Initialize x0
(i) = x−1

(i) , and z−1,T−1

(i) = x0
(i) for all i.

for k = 0, 1, 2, . . . ,K do
yk(i) = xk

(i) +
θk(1−θk−1)

θk−1
(xk

(i) − xk−1
(i)) ∀i,

sk(i) = ∇fi(y
k
(i)) +

β0

ϑk
(yk(i) −

∑m
j=1 Wi,jy

k
(j)) ∀i,

zk,0(i) = zk−1,Tk−1

(i) ∀i,
for t = 0, 1, . . . , Tk − 1 do

zk,t+1
(i) = argminz∈Rn

〈
∇̂hi(z

k,t
(i)) + sk(i), z

〉
+ (L2 + β0

2ϑk
)‖z − yk(i)‖2 + 1

2ηk
‖z

− zk,t(i) ‖2 ∀i.
end for

xk+1
(i) =

∑Tk−1

t=0 zk,t+1
(i)

Tk
∀i.

end for

and assume R1 ≥ 1 for simplicity. Then, we describe the con-
vergence rate for Algorithm 2 in the following theorem.

Theorem 3: Assume that Assumptions 1, 2 and 3 hold
with μ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1,
1−θk
θk

= 1
θk−1

, and ϑk = θk. Set Tk = K(1− σ2(W)), ηk =
θk

KM
√

1−σ2(W)
, and β0 = max{M,L}√

1−σ2(W)
, where K is the number

of outer iterations. Then, for Algorithm 2, we have

1

m

m∑
i=1

Fi

(
α(xK)

)− 1

m

m∑
i=1

Fi(x
∗)

≤ β0

K

(
31 +

8

K
√

1− σ2(W)

)(
R1 +

R2

L

)2

,

and

1

m

m∑
i=1

∥∥∥xK
(i) − α(xK)

∥∥∥2

≤ 16β2
0

K2 M2

(
R1 +

R2

L

)2

.

Consider the simple problem of computing the average
of x(1), . . . , x(m). The accelerated averaged consensus [40]
needs O(1√

1−σ2(W)
log 1

ε) iterations to find an ε-accurate

solution. Thus, it is reasonable to assume K ≥ 1√
1−σ2(W)

.

Moreover, from the L-smoothness of fi(x), we know R2

is often of the order O(LR1). Thus, Theorem 3 estab-
lishes the O(max{M,L}

ε
√

1−σ2(W)
) communication complexity and

the
∑K

k=1 Tk = K2(1− σ2(W)) = O(max{M,L}2
ε2) subgradi-

ent computation complexity such that (9) holds for nonsmooth
distributed optimization.

In Theorem 3, we set Tk and ηk dependent on the number of
outer iterations. As explained in Section II-A, it is a unpractical
parameter setting and moreover, the large Tk and 1

ηk
make the

algorithm slow in practice. In the following corollary, we give
a more reasonable setting of the parameters at an expense of
higher complexities by the order of log 1

ε , i.e., logK.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4860 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Corollary 1: Under the settings in Theorem 3 but with Tk =
1−σ2(W)

θk
and ηk =

θ2
k

M
√

1−σ2(W)
, we have

1

m

m∑
i=1

Fi

(
α(xK)

)− 1

m

m∑
i=1

Fi(x
∗)

≤ β0 logK

K

(
31 +

8

K
√

1− σ2(W)

)(
R1 +

R2

L

)2

,

and

1

m

m∑
i=1

∥∥∥xK
(i) − α(xK)

∥∥∥2

≤ 16β2
0 logK

K2 M2

(
R1 +

R2

L

)2

.

When f(x) is strongly convex, we can prove a faster O(1
k2)

convergence rate for Algorithm 2 with θk = 2
k+2 and ϑk = θ2k.

However, the quickly diminishing step-size in step (11c) makes
the algorithm slow in practice. So we omit the discussion for the
strongly convex case.

C. Relations of APM-C and APM to the Existing
Algorithm Frameworks

1) Difference From the Classical Penalty Method: To the
best of our knowledge, most traditional work analyze the penalty
method with a fixed penalty parameter [45], [46]. Let’s discuss
the disadvantage of the large and fixed penalty parameter. Take
problem (4) as an example. Let {x∗, λ∗} be a pari of KKT point
of problem (4) and x̂∗ be the minimizer of problem (5), from the
proof in [45, Proposition 10], we have

f(x∗) = f(x∗) +
β

2
‖Πx∗‖2F ≥ f(x̂∗) +

β

2
‖Πx̂∗‖2F .

So for any ε-accurate solution x of problem (5), we have

f(x) +
β

2
‖Πx‖2F − f(x∗)

≤ f(x) +
β

2
‖Πx‖2F − f(x̂∗)− β

2
‖Πx̂∗‖2F ≤ ε.

On the other hand, since x∗ = argminx f(x) + 〈λ∗,Πx〉 and
Πx∗ = 0, we have

f(x∗) = f(x∗) + 〈λ∗,Πx∗〉 ≤ f(x) + 〈λ∗,Πx〉
⇒ −‖λ∗‖F ‖Πx‖F ≤ f(x)− f(x∗).

So β
2 ‖Πx‖2F − ‖λ∗‖F ‖Πx‖F ≤ ε, which leads to

‖Πx‖F ≤ 2‖λ∗‖F
β

+

√
2ε

β
= O(ε+

√
εε)

and

|f(x)− f(x∗)| ≤ max{ε, ε+√
εε}

by β = 1
ε . We can see that the accuracy is dominated by

max{ε, ε}, and more iterations with smaller ε will not produce
a more accurate solution.

On the other hand, even if ε = 0 and x = x̂∗ with infinite
iterations, we have ∇f(x) + βΠx = 0, which only leads to
‖Πx‖F = ε‖∇f(x)‖F = O(ε) and |f(x)− f(x∗)| ≤ ε, rather
than ‖Πx‖F = 0 and |f(x)− f(x∗)| = 0.

2) Difference From the Classical Accelerated First-Order
Algorithms: We extend the classical accelerated gradient
method [38], [47]–[50] from the unconstrained problems to

the linearly constrained problems via the perspective of the
penalty method. However, since we use the increasing penalty
parameters at each iteration, i.e., the penalized objective varies
at different iterations, the conclusion in [38], [49], [50] for the
unconstrained problems cannot be directly used for procedures
(7a)–(7c) and (11a)–(11c). The increasing penalty parameters
make the convergence analysis more challenging.

3) Difference From the Accelerated Gradient Sliding
Method: [9] combined Nesterov’s smoothing technique [51]
with the accelerated gradient sliding methods [42]–[44] to solve
the nonsmooth problem (10) with f(x) = 0. In fact, when
fixing the penalty parameter as a large one of the order O(1/ε),
Algorithm 2 is similar to the one in [9, Section 6.3]. However,
our method adopts increasing penalty parameters such that it
avoids having to set a large inner iteration number Tk and a
small step-size ηk at the beginning of the outer loop, as shown
in Corollary 1. On the other hand, when f(x) = 0, as explained
in Section II-B, ∇f(yk) is flooded if we set a large and fixed
penalty parameter.

4) Difference From the D-NC and D-NG in [8]: Algorithm 1
can be seen as an improvement over the D-NC proposed in [8].
Both Algorithm 1 and D-NC use Nesterov’s acceleration tech-
nique and multi-consensus, and both attain the optimal compu-
tation complexity for the nonstrongly convex problems. How-
ever, Algorithm 1 is motivated by a constraint-penalty approach
while D-NC is developed from the inexact accelerated gradient
method [49] directly. Moreover, Algorithm 1 can solve both the
strongly convex and nonstrongly convex problems while [8] only
studied the nonstrongly convex case.

As for Algorithm 2, consider the simple case with h(x) = 0

and β0

ϑk
= k+1

c , then steps (11b) and (11c) become

xk+1 =
Lyk + (k + 1)Wyk/c

L+ (k + 1)/c
− ∇f(yk)

L+ (k + 1)/c
.

Thus, when (k + 1)/c � L, we have xk+1 ≈ Wyk −
c

k+1∇f(yk) and it approximates the D-NG in [8]. Algo-
rithm 2 gives a different explanation of the D-NG, and it
improves the D-NG in the sense that it handles a possible
nondifferentiable function hi(x). The complexity of D-NG is
O(1

ε(1−σ2(W))1+ξ log
1
ε), where ξ is a small constant. Our com-

plexity, i.e.,O(1

ε
√

1−σ2(W)
), is better because theirs has the extra

log 1
ε factor and is more sensitive to 1− σ2(W).

III. PROOF OF THEOREMS

A. Supporting Lemmas

Before providing a comprehensive convergence analysis for
Algorithms 1 and 2, we first present some useful technical
lemmas. We first give the following easy-to-identify identifies.

Lemma 1: For anyx,y, z,w ∈ Rm×n, we have the following
two identities:

2〈x−z,y−z〉=‖x−z‖2F+‖y−z‖2F−‖x−y‖2F ,
2〈x−z,y−w〉=‖y−z‖2F−‖w−z‖2F+‖x−w‖2F−‖x−y‖2F .

In the following Lemma, we bound the Lagrange multiplier,
which is useful for the complexity analysis in the distributed
optimization community.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4861

Lemma 2: Assume that Assumptions 1, 2 and 3 hold with
μ ≥ 0. Then, we have the following properties:

1) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ f(x) + 〈λ,Πx〉, such that ‖λ∗‖F ≤
‖∇f(x∗)‖F .

2) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ f(x) + 〈λ,Ux〉, such that ‖λ∗‖F ≤
‖∇f(x∗)‖F√
1−σ2(W)

.

3) There exists a pair of KKT points (x∗, λ∗) of saddle point
problem minx maxλ F (x) + 〈λ,Ux〉, such that ‖λ∗‖F ≤√

mM+‖∇f(x∗)‖F√
1−σ2(W)

.

The proof can be found in [25, Theorem 2]. The following
lemma is a corollary of the saddle point property.

Lemma 3: [52] If f(x) is convex and (x∗, λ∗) is a pair of KKT
points of saddle point problem minx maxλ f(x) + 〈λ,Ax〉,
then we have f(x)− f(x∗) + 〈λ∗, Ax〉 ≥ 0 for all x.

The following lemma bounds the consensus violation of
‖Πx‖F from ‖Ux‖F .

Lemma 4: Assume that Assumption 3 holds. Then, we have
‖Πx‖F≤ 1√

1−σ2(W)
‖Ux‖F .

Proof: From Assumption 3, we know U1 = 0, U = UT ,
and rank(U) = m− 1. For any x ∈ Rm×n, denote x = Πx =
x− 1

m11Tx. Since 1Tx = 0, we know x is orthogonal to the
null space of U , and thus it belongs to the row (i.e., column)
space of U . Let V ΣV T = U be its economical SVD with
V ∈ Rm×(m−1). Then we have

‖Ux‖2F = ‖Ux‖2F =

n∑
i=1

xT
i U

2xi =

n∑
i=1

(V Txi)
TΣ2(V Txi)

≥ (1− σ2(W))
n∑

i=1

‖V Txi‖2F = (1− σ2(W))‖V Tx‖2F
a
= (1− σ2(W))‖x‖2F = (1− σ2(W))‖Πx‖2F ,

where we denote xi to be the ith column of x, and
a
= follows

from the fact that x belongs to the column space of U , i.e., there
exists α ∈ R(m−1)×n such tht x = V α. �

At last, we present the following lemma, which can be used to
analyze the algorithms with inexact subproblem computation.

Lemma 5: [50] Assume that (sk) is a sequence with in-
creasing scalars and (vk), (αi) are sequences with nonnega-
tive scalars, v20 ≤ s0. If v2k ≤ sk +

∑k
i=1 αivi, then we have

vk ≤ 1
2

∑k
i=1 αi +

√
(12

∑k
i=1 αi)2 + sk.

B. Complexity Analysis for Algorithm 1

1) Inner Loop: Before proving the convergence of procedure
(7a)–(7c), we first establish the required precision to approxi-
mate α(zk) for an εk-accurate solution of the subproblem in
(7c).

Lemma 6: Let zk,Tk be obtained by (8) and xk+1 =
Lϑkz

k+β0z
k,Tk

Lϑk+β0
. If ‖zk,Tk − 1α(zk)T ‖2F ≤ 2ϑkεk

β0
, then we have

L

2

∥∥xk+1 − zk
∥∥2

F
+

β0

2ϑk
‖Πxk+1‖2F

≤ min
x∈Rm×n

L

2

∥∥x− zk
∥∥2

F
+

β0

2ϑk
‖Πx‖2F + εk. (14)

Proof: Define xk,∗ = argminx
L
2 ‖x− zk‖2F + β0

2ϑk
‖Πx‖2F ,

x̃k,∗ = 1
m11Txk,∗, and z̃k = 1

m11T zk. From the optimality
condition of xk,∗, we have

0 = L(xk,∗ − zk) +
β0

ϑk
Π2xk,∗. (15)

From Π = Π2 and its definition, we have 0 = L(xk,∗ − zk) +
β0

ϑk
(xk,∗ − x̃k,∗), which leads to xk,∗ = Lϑkz

k+β0x̃
k,∗

Lϑk+β0
. Multi-

plying both sides of (15) by 1
m11T , and using 1TΠ = 0, we

have x̃k,∗ = z̃k, which further gives xk,∗ = Lϑkz
k+β0z̃

k

Lϑk+β0
. On the

other hand, we have
L

2

∥∥xk+1 − zk
∥∥2

F
+

β0

2ϑk
‖Πxk+1‖2F

− L

2

∥∥xk,∗ − zk
∥∥2

F
− β0

2ϑk
‖Πxk,∗‖2F

a
= L

〈
xk,∗ − zk,xk+1 − xk,∗〉+ L

2
‖xk+1 − xk,∗‖2F

+
β0

ϑk

〈
Π2xk,∗,xk+1−xk,∗〉 + β0

2ϑk
‖Π(xk+1−xk,∗)‖2F

b
=

L

2
‖xk+1 − xk,∗‖2F +

β0

2ϑk
‖Π(xk+1 − xk,∗)‖2F

c
=

β2
0

(Lϑk+β0)2

(
L

2
‖zk,Tk − z̃k‖2F +

β0

2ϑk
‖Π(zk,Tk − z̃k)‖2F

)
d≤ β2

0

2ϑk(Lϑk + β0)
‖zk,Tk− z̃k‖2F ≤ β0

2ϑk
‖zk,Tk− z̃k‖2F .

(16)

where we use Lemma 1 in
a
=, (15) in

b
=, the definition of xk+1

and xk,∗ = Lϑkz
k+β0z̃

k

Lϑk+β0
in

c
=, and ‖Πz‖F ≤ ‖z‖F in

d≤. �
Now we consider the iteration number of the accelerated

average consensus in (8) to solve the subproblem in (7c) such
that (14) is satisfied. From [40, Proposition 3], we have

‖zk,Tk − 1α(zk)T ‖F ≤
(

σ2(W)

1 +
√

1− σ2
2(W)

)Tk

‖Πzk‖F

≤
(

σ2(W)

1+
√

1−σ2(W)

)Tk

‖Πzk‖F=
(
1−

√
1−σ2(W)

)Tk‖Πzk‖F.

(17)
Thus, from Lemma 6, we only need

Tk =
1

−2 log
(
1−√

1− σ2(W)
) log

β0‖Πzk‖2F
2ϑkεk

(18)

such that (14) is satisfied.
At last, we study the property when the proximal mapping

in (7c) is inexactly computed. When it is computed exactly,
i.e., εk = 0 in (14), we have L(xk+1 − zk) + β0

ϑk
Π2xk+1 = 0.

However, when it is computed inexactly, we should modify
the conclusion accordingly. Specifically, we give the following
lemma.

Lemma 7: Assume that (14) holds. Then, there exists δk with

‖δk‖F ≤
√

2εk
L and β0

ϑk
‖Πδk‖2F ≤ 2εk such that

L(xk+1 − zk + δk) +
β0

ϑk
Π2(xk+1 + δk) = 0. (19)

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4862 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Proof: Define δk = xk,∗ − xk+1. From (14) and equation
b
=

in (16), we have ‖δk‖F ≤
√

2εk
L and β0

ϑk
‖Πδk‖2F ≤ 2εk. From

(15) and the definition of δk, we have (19). �
2) Outer Loop: Now we are ready to analyze procedure (7a)–

(7c). Define

wk+1 ≡ xk+1

θk
− 1− θk

θk
xk for any k ≥ 0 and w0 = x0.

From the definition of yk in (7a), we can give the following
easy-to-identify identities.

Lemma 8: For procedure (7a)–(7c), we have

x∗ +
(1− θk)L

Lθk − μ
xk − L− μ

Lθk − μ
yk = x∗ −wk,

θkx
∗ + (1− θk)x

k − xk+1 = θk
(
x∗ −wk+1

)
.

Let (x∗, λ∗) be a pair of KKT points of saddle point problem
minx maxλ f(x) + 〈λ,Πx〉 satisfying Lemma 2. Define

ρk+1 = f(xk+1)− f(x∗) +
〈
λ∗,Πxk+1

〉
. (20)

From Lemma 3, we know ρk+1 ≥ 0.
We first give the following lemma, which describes a progress

in one iteration of procedure (7a)–(7c).
Lemma 9: Assume that Assumption 1 holds with μ ≥ 0. Let

sequences {θk} and {ϑk} satisfy 1−θk
ϑk

= 1
ϑk−1

and θk ≥ μ
L .

Then, under the assumption of (14), we have

ρk+1 +
ϑk

2β0

∥∥∥∥β0

ϑk
Πxk+1 − λ∗

∥∥∥∥2

F

+
Lθ2k
2

‖wk+1 − x∗‖2F

≤ (1− θk)ρk +
ϑk

2β0

∥∥∥∥ β0

ϑk−1
Πxk − λ∗

∥∥∥∥2

F

+ εk

+
(Lθk−μ)θk

2

∥∥wk−x∗∥∥2

F
+Lθk

√
2εk
L

‖wk+1−x∗‖F .
(21)

Proof: From the smoothness and convexity of f(x), we have

f(xk+1)

≤ f(yk) +
〈∇f(yk),xk+1 − yk

〉
+

L

2
‖xk+1 − yk‖2F

= f(yk)+
〈∇f(yk),x−yk

〉
+

〈∇f(yk),xk+1−x〉
+

L

2
‖xk+1−yk‖2F

≤ f(x)− μ

2
‖x−yk‖2F +

〈∇f(yk),xk+1−x
〉

+
L

2
‖xk+1−yk‖2F . (22)

Plugging zk = yk − 1
L∇f(yk) and (19) into the above inequal-

ity, we have

f(xk+1)− f(x)

≤ β0

ϑk

〈
Πxk+1+Πδk,Πx−Πxk+1

〉
+L

〈
xk+1−yk,x−yk

〉
+ L

〈
δk,x− xk+1

〉− μ

2
‖x− yk‖2F − L

2
‖xk+1 − yk‖2F

When we apply (23) first with x = xk and then with x = x∗, we
obtain two inequalities. Multiplying the first inequality by (1−

θk), multiplying the second by θk, adding them together with〈
λ∗,Πxk+1 − (1− θk)Πx

k
〉

to both sides, and using Πx∗ = 0,
we have

f(xk+1)− (1− θk)f(x
k)− θkf(x

∗)

+
〈
λ∗,Πxk+1 − (1− θk)Πx

k
〉

≤
〈
β0

ϑk
(Πxk+1 +Πδk)− λ∗, (1− θk)Πx

k −Πxk+1

〉
+ L

〈
xk+1 − yk, (1− θk)x

k + θkx
∗ − yk

〉
+ L

〈
δk, (1− θk)x

k + θkx
∗ − xk+1

〉
− μθk

2
‖x∗ − yk‖2F − L

2
‖xk+1 − yk‖2F

a
=

ϑk

β0

〈
β0

ϑk
(Πxk+1 +Πδk)− λ∗,

β0

ϑk−1
Πxk − β0

ϑk
Πxk+1

〉
+ L

〈
xk+1 − yk, (1− θk)x

k + θkx
∗ − yk

〉
+ L

〈
δk, (1− θk)x

k + θkx
∗ − xk+1

〉
− μθk

2
‖x∗ − yk‖2F − L

2
‖xk+1 − yk‖2F ,

where we use 1−θk
ϑk

= 1
ϑk−1

in
a
=. Applying the identities in

Lemma 1 to the two inner products, we have

ρk+1 − (1− θk)ρk

≤ ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Πxk−λ∗

∥∥∥∥2

F

+

∥∥∥∥β0

ϑk
Πxk+1−β0

ϑk
(Πxk+1+Πδk)

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Πxk+1−λ∗

∥∥∥∥2

F

−
∥∥∥∥ β0

ϑk−1
Πxk− β0

ϑk
(Πxk+1+Πδk)

∥∥∥∥2

F

]

+
L

2

[‖(1−θk)xk+θkx
∗−yk‖2F−‖(1−θk)xk+θkx

∗−xk+1‖2F
]

+ L
〈
δk, (1− θk)x

k + θkx
∗ − xk+1

〉− μθk
2

‖x∗ − yk‖2F
b≤ ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Πxk−λ∗

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Πxk+1−λ∗

∥∥∥∥2

F

+
β2
0

ϑ2
k

‖Πδk‖2F
]

+
Lθ2k
2

[∥∥∥∥yk

θk
− 1− θk

θk
xk − x∗

∥∥∥∥2

F

− ‖wk+1 − x∗‖2F
]

− Lθk
〈
δk,wk+1 − x∗〉− μθk

2
‖x∗ − yk‖2F .

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4863

where
b≤ follows from the second identity in Lemma 8. By

reorganizing the terms in yk

θk
− 1−θk

θk
xk − x∗ carefully, we have

Lθ2k
2

∥∥∥∥yk

θk
− 1− θk

θk
xk − x∗

∥∥∥∥2

F

=
Lθ2k
2

∥∥∥∥ μ

Lθk

(
yk−x∗)+(

1− μ

Lθk

)

×
(
L− μ

Lθk−μy
k−(1−θk)L

Lθk−μ xk−x∗
)∥∥∥∥2

F

c≤ μθk
2

‖yk−x∗‖2F+
(Lθk−μ)θk

2

×
∥∥∥∥ L− μ

Lθk−μy
k−(1−θk)L

Lθk−μ xk−x∗
∥∥∥∥2

F

d
=

μθk
2

‖yk − x∗‖2F +
(Lθk − μ)θk

2

∥∥wk − x∗∥∥2

F
,

where we let μ
Lθk

≤ 1, and use Jensen’s inequality for ‖ · ‖2F in
c≤, and the first identify in Lemma 8 in

d
=. Plugging it into the

above inequality and using the bounds for ‖δk‖F and ‖Πδk‖F
in Lemma 7, we get (21). �

Due to the term ‖wk+1 − x∗‖F on the right hand side of (21),
recursion (21) cannot be directly telescoped unless we assume
the boundness of ‖wk+1 − x∗‖F . Lemma 5 can be used to avoid
such boundness assumption. Now, we use Lemmas 9 and 5 to
analyze procedure (7a)–(7c). The following theorem shows the
convergence for strongly convex problems.

Theorem 4: Assume that Assumptions 1, 3 and (14) hold
with μ > 0, and εk ≤ (1− (1 + τ)θ)k+1 holds for all k ≤ K,
where 1 > τ > 0 can be any small constant. Let sequences {θk}
and {ϑk} satisfy θk = θ =

√
μ
L for all k, and ϑk = (1− θ)k+1.

Then, we have

f(xK+1)− f(x∗) ≤ C2(1− θ)K+1,

‖ΠxK+1‖F ≤ C3(1− θ)K+1,

‖xK+1 − x∗‖2F ≤ C4(1− θ)K+1,

f
(
α(xK+1)

)− f(x∗) ≤ C5(1− θ)K+1 +
LC2

3

2
(1− θ)2K+2,

where C2 = C6 + ‖λ∗‖FC3, C3 =
√
2β0C6+‖λ∗‖F

β0
, C4 =

2C6

μ , C5 = (‖∇f(x∗)‖F + L
√
C4)C3 + C2 and C6 =

18
τ2θ2 + 2(f(x0)− f(x∗) +

〈
λ∗,Πx0

〉
) + 1

β0
‖β0Πx

0 −
λ∗‖2F + μ‖x0 − x∗‖2F .

Proof: The setting of θ =
√

μ
L satisfies

(Lθ − μ)θ = Lθ2(1− θ). (23)

Sequences {θk} and {ϑk} satisfy the requirement in Lemma 9.
Define the Lyapunov function �k+1 as follows:

�2k+1 =
ρk+1 +

ϑk

2β0

∥∥∥ β0

ϑk
Πxk+1 − λ∗

∥∥∥2

F
+ Lθ2

2 ‖wk+1 − x∗‖2F
(1− θ)k+1

,

where ρk is defined in (20). Dividing both sides of (21) by (1−
θ)k+1, and using (23) and ϑk = (1− θ)ϑk−1, we have

�2k+1−�2k ≤ εk
(1− θ)k+1

+
Lθ

(1− θ)k+1

√
2εk
L

‖wk+1−x∗‖F .
Summing over k = 0, 1, . . . ,K, we have

�2K+1 − �20

≤
K∑

k=0

εk
(1− θ)k+1

+

K∑
k=0

Lθ

(1− θ)k+1

√
2εk
L

‖wk+1 − x∗‖F

=
K∑

k=0

εk
(1− θ)k+1

+
K+1∑
k=1

2
√
εk−1

(1− θ)k/2

√
Lθ2

2(1− θ)k
‖wk−x∗‖F

a≤
K∑

k=0

εk
(1− θ)k+1

+
K+1∑
k=1

2
√
εk−1

(1− θ)k/2
�k,

where we use the definition of �k and ρk ≥ 0 in
a≤. Let-

ting sk+1 =
∑k

t=0
εt

(1−θ)t+1 + �20 and αk =
2
√
εk−1

(1−θ)k/2 , then we

have �2k+1 ≤ sk+1 +
∑k+1

i=1 αi�i and �20 = s0. From Lemma 5,

we have �k+1 ≤ 1
2

∑k+1
i=1 αi +

√
(12

∑k+1
i=1 αi)2 + sk+1. Let-

ting εk ≤ (1− (1 + τ)θ)k+1, and after some simple computing,
we obtain

�2K+1 ≤
(

K+1∑
k=1

2
√
εk−1

(1− θ)k/2

)2

+
K∑

k=0

2εk
(1− θ)k+1

+ 2�20

≤ 18

τ2θ2
+ 2�20 ≡ C6.

From the definition of �K+1 and ρk ≥ 0, we get the
second conclusion. From the definition of ρk+1, we have
f(xk+1)− f(x∗) ≤ ρk+1 + ‖λ∗‖F ‖Πxk+1‖F , which further
leads to the first conclusion. Sincef(x) + 〈λ∗,Πx〉 isμ-strongly
convex over x and x∗ = argminx f(x) + 〈λ∗,Πx〉, we have
μ
2 ‖xK+1 − x∗‖2F ≤ f(xK+1) +

〈
λ∗,ΠxK+1

〉− f(x∗)−
〈λ∗,Πx∗〉 = ρK+1 ≤ C6(1− θ)K+1, i.e., the third conclusion.
For the fourth conclusion, we have

f
(
α(xK+1

)− f(x∗)

= f
(
α(xK+1

)− f(xK+1) + f(xK+1)− f(x∗)

b≤ 〈∇f(xK+1),−ΠxK+1
〉
+
L

2

∥∥ΠxK+1
∥∥2

F
+f(xK+1)−f(x∗)

c≤ (‖∇f(x∗)‖F+L‖xK+1−x∗‖F
)‖ΠxK+1‖F+L

2
‖ΠxK+1‖2F

+ f(xK+1)− f(x∗), (24)

where we use the smoothness of f(x) and the definition of Π in
b≤ and

c≤. �
In the following theorem, we consider the case that f(x) is

nonstrongly convex.
Theorem 5: Assume that Assumptions 1, 3 and (14) hold with

μ = 0 and εk ≤ 1
(k+1)6 for all k ≤ K. Let sequences {θk} and

{ϑk} satisfy θ0 = 1, 1−θk
θ2
k

= 1
θ2
k−1

, and ϑk = θ2k. Then, we have

f(xK+1)− f(x∗) ≤ C7

(K + 2)2
,

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4864 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

‖ΠxK+1‖F ≤ C8

(K + 2)2
,

‖xK+1 − x∗‖2F ≤ C9,

f
(
α(xK+1)

)− f(x∗) ≤ C10

(K + 2)2
+

LC2
8

2(K + 2)4
,

where C7 = 4C11 + ‖∇f(x∗)‖FC8, C8 =
4
√
2β0C11+4‖∇f(x∗)‖F

β0
, C9 = 2C11

L , C10 = (‖∇f(x∗)‖F +

L
√
C9)C8 + C7, and C11 = 5 +

‖∇f(x∗)‖2F
β0

+ L‖x0 − x∗‖2F .
Proof: Define the following Lyapunov function �k+1

�2k+1 =
ρk+1

θ2k
+

1

2β0

∥∥∥∥β0

ϑk
Πxk+1 − λ∗

∥∥∥∥2

F

+
L

2
‖wk+1 − x∗‖2F .

Dividing both sides of (21) by θ2k, using ϑk = θ2k and 1−θk
θ2
k

=
1

θ2
k−1

, we have

�2k+1 − �2k ≤ εk
θ2k

+
L

θk

√
2εk
L

‖wk+1 − x∗‖F .
Similar to the proof of Theorem 4, we obtain

�2K+1 − �20 ≤
K∑

k=0

εk
θ2k

+
K+1∑
k=1

2
√
εk−1

θk−1
�k.

From Lemma 5 and a similar induction to Theorem 4, we have

�2K+1 ≤
(

K+1∑
k=1

2
√
εk−1

θk−1

)2

+

K∑
k=0

2εk
θ2k

+ 2�20

a≤
(

K+1∑
k=1

2k
√
εk−1

)2

+

K∑
k=0

2εk(k + 1)2+
‖λ∗‖2F
β0

+ L‖w0−x∗‖2F ,
where we use 1

k+1 ≤ θk ≤ 2
k+2 and 1

θ2
−1

= 0 in
a≤, which

can be derived from 1−θk
θ2
k

= 1
θ2
k−1

and θ0 = 1. Letting εk ≤
1

(k+1)4+2τ , then we have
∑K

k=0 2εk(k + 1)2 ≤ 2
1+2τ and∑K+1

k=1 2k
√
εk−1 ≤ 2

τ . So

�2K+1 ≤ 4

τ2
+

4

1 + 2τ
+

‖λ∗‖2F
β0

+ L‖x0 − x∗‖2F ≡ C11,

where we let τ = 1 for simplicity and use Lemma
2. From the definition of wk+1 = xk+1

θk
− 1−θk

θk
xk, we

have ‖xk+1 − x∗‖F = ‖θkwk+1 + (1− θk)x
k − x∗‖F ≤

θk‖wk+1 − x∗‖F + (1− θk)‖xk − x∗‖F . By induction, we
can prove ‖xK+1 − x∗‖2F ≤ 2C11

L for any k. Similar to the
proof of Theorem 4 and using Lemma 2, we have the remaining
conclusions. �

3) Total Numbers of Communications and Computations:
Based on Theorems 4 and 5, and the inner loop iteration number
given in (18), we can establish the gradient computation and
communication complexities for Algorithm 1. We first consider
the strongly convex case and prove Theorem 1.

Proof: ‖Πzk‖F appears in (18). We first prove
that ‖Πzk‖F is bounded for any k given Tk =

1

−2 log(1−
√

1−σ2(W))
log(β0

2ϑkεk
(1
L‖∇f(x∗)‖F + 6

√
C4)

2),

where C4 is defined in Theorem 4. We prove ‖Πzk‖F ≤

1
L‖∇f(x∗)‖F + 6

√
C4 by induction. The case for k = 0

can be easily verified since ‖Πz0‖F = ‖Πx0 −Πx∗‖F ≤
‖x0 − x∗‖F . Assume that the conclusion holds for all
k ≤ K. Then from (18) we know that (14) holds for
k ≤ K. From Theorem 4, we have ‖xK − x∗‖F ≤ √

C4

and ‖xK+1 − x∗‖F ≤ √
C4. Thus,

‖ΠzK+1‖F
a≤ ‖ΠyK+1‖F +

1

L
‖∇f(yK+1)‖F

b≤ ‖Π(yK+1 − x∗)‖F +
1

L

(‖∇f(x∗)‖F + L‖yK+1 − x∗‖F
)

≤ 1

L
‖∇f(x∗)‖F + 2‖yK+1 − x∗‖F

c≤ 1

L
‖∇f(x∗)‖F + 4‖xK+1 − x∗‖F + 2‖xK − x∗‖F

≤ 1

L
‖∇f(x∗)‖F + 6

√
C4,

where we use (7b) in
a≤, the smoothness of f(x) and Πx∗ = 0

in
b≤, and yk = xk +

√
L−√

μ√
L+

√
μ
(xk − xk−1) in

c≤, which is equiv-

alent to (7a) with the special setting of θk. So we get the
conclusion.

From Theorem 4, to find a solution satisfying (9), we know
that the number of gradient computations, i.e., the number of

outer iterations, is O(
√

L
μ log 1

ε). From (18), we have

Tk = O

⎛⎝ 1

− log
(
1−√

1− σ2(W)
) log

1

(1− θ)2(k+1)

⎞⎠

= O

⎛⎝ k log
(
1−√

μ/L
)

log
(
1−√

1− σ2(W)
)
⎞⎠ c

= O

(
k
√
μ/L√

1− σ2(W)

)
,

where we use log((1−√
1−σ2(W)))≈ −√

1−σ2(W) and
log(1−√

μ/L)≈ −√
μ/L in

c
= from Taylor expansion when√

1− σ2(W) and
√
μ/L are small. Thus, the total number of

communications, i.e., the total number of inner iterations, is
√

L/μ log 1
ε∑

k=0

O

(
k

√
μ

L(1−σ2(W))

)

= O

(√
L

μ(1−σ2(W))
log2

1

ε

)
.

The proof is complete. �
Similar to the proof of Theorem 1, we can also prove Theorem

2 for the nonstrongly case.
Proof: Similar to the above proof of Theorem 1 and given

the similar Tk replacing C4 by C9, we know that ‖Πzk‖F
is also bounded for all k. Let β0 ≥ L+ L‖∇f(x∗)‖2F , and
assume L ≥ 1 and ‖∇f(x∗)‖F ≥ 1 for simplicity. Using the
constants in (13), we knowC7 = O(mLR2

1),C8 = O(
√
mR1),

C9 = O(mR2
1), and C10 = O(mLR2

1). Let ε = LR2
1

(K+2)2 . From

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4865

Theorem 5, we know that Algorithm 1 needs O(
√

L
ε) gradi-

ent computations such that 1
m (f(α(xK+1))− f(x∗)) ≤ ε and

1
m‖ΠxK+1‖2F ≤ ε2, i.e., (9) holds. From (18), we have

Tk=O

⎛⎝ log(k + 1)8

−log
(
1−√

1−σ2(W)
)
⎞⎠ =O

(
log k√

1−σ2(W)

)
,

Thus, the total number of communications is

K∑
k=0

Tk=

√
L/ε∑

k=0

O

(
log k√

1−σ2(W)

)
=O

(√
L

ε(1−σ2(W))
log

1

ε

)
.

The proof is complete. �

C. Complexity Analysis for Algorithm 2

Now we prove Theorem 3. Similar to Section III-B, we define

ρk+1 = F (xk+1)− F (x∗) +
〈
λ∗, Uxk+1

〉
,

where (x∗, λ∗) is a pair of KKT points of saddle point problem
minx maxλ F (x) + 〈λ,Ux〉 satisfying Lemma 2. Define

wk+1 ≡ xk+1

θk
− 1− θk

θk
xk for any k ≥ 0 and w0 = x0.

From the definitions of wk+1 and yk in (11a), we have the
following easy-to-identify identities.

Lemma 10: For procedure (11a)–(11c), we have

θkx
∗ + (1− θk)x

k − yk = θk
(
x∗ −wk

)
,

θkx
∗ + (1− θk)x

k − xk+1 = θk
(
x∗ −wk+1

)
. (25)

We use the same notations of ρk+1 and wk with Section III-B
for easy analogy. Different from Section III-B, we define a new
variable

vk,t ≡ zk,t

θk
− 1− θk

θk
xk. (26)

The proof of Theorem 3 is based on the following Lyapunov
function

�k+1 =
ρk+1

θk
+

1

2β0

∥∥∥∥β0

ϑk
Uxk+1 − λ∗

∥∥∥∥2

F

+

(
Lθk+1

2
+
β0

2

)
‖wk+1−x∗‖2F

+
M

2
√

1−σ2(W)
‖vk+1,0−x∗‖2F .

Analogy to Lemma 9, we give the following lemma, which
describes a progress in one iteration of Algorithm 2.

Lemma 11: Assume that Assumptions 1, 2 and 3 hold with
μ = 0. Let sequences {θk} and {ϑk} satisfy θ0 = 1, 1−θk

θk
=

1
θk−1

, and ϑk = θk. Assume the following equation holds

θk
ηkTk

=
M√

1− σ2(W)
. (27)

Then, for Algorithm 2, we have

�k+1 ≤ �k +
mM2ηk
2θk

. (28)

The proof of Lemma 11 is based on the following lemma.

Lemma 12: Assume that Assumptions 1 and 3 hold. Define
x̃k,∗ = (1− θk)x

k + θkx
∗. Then, for Algorithm 2, we have

ρk+1 − (1− θk)ρk

≤ 〈∇f(yk),xk+1 − x̃k,∗〉+ L

2
‖xk+1 − yk‖2F

+ h(xk+1)− h(x̃k,∗) +
〈
λ∗, Uxk+1 − U x̃k,∗〉 .

Proof: From (22) with μ = 0, we have

f(xk+1) ≤ f(x) +
〈∇f(yk),xk+1 − x

〉
+

L

2
‖xk+1 − yk‖2F .

Firstly let x = xk and then x = x∗, we obtain two inequalities.
Multiplying the first inequality by (1− θk), multiplying the
second by θk, and adding them together, we have

f(xk+1)− (1− θk)f(x
k)− θkf(x

∗)

≤ 〈∇f(yk),xk+1 − (1− θk)x
k − θkx

∗〉+ L

2
‖xk+1 − yk‖2F .

Adding h(xk+1)− (1− θk)h(x
k)− θkh(x

∗) + 〈λ∗, Uxk+1

− (1− θk)Uxk〉 to both sides, and using the definition of ρk,
we have

ρk+1 − (1− θk)ρk

= F (xk+1)− (1− θk)F (xk)− θkF (x∗)

+
〈
λ∗, Uxk+1 − (1− θk)Uxk

〉
≤ 〈∇f(yk),xk+1−(1−θk)x

k−θkx
∗〉 +L

2
‖xk+1−yk‖2F

+ h(xk+1)− (1− θk)h(x
k)− θkh(x

∗)

+
〈
λ∗, Uxk+1 − (1− θk)Uxk

〉
. (29)

From the definition of x̃k,∗,Ux∗ = 0, and the convexity of h(x),
we have

xk+1 − x̃k,∗ = xk+1 − (1− θk)x
k − θkx

∗,

Uxk+1 − U x̃k,∗ = Uxk+1 − (1− θk)Uxk,

h(x̃k,∗) ≤ (1− θk)h(x
k) + θkh(x

∗).

Plugging them into (29), we have the conclusion. �
Now, we give the proof of Lemma 11.
Proof: From the fact that h(x) is (

√
mM)-Lipchitz contin-

uous derived by Assumption 2, similar to the induction in (22),
we have

h(zk,t+1)

≤ h(zk,t)+
〈
∇̂h(zk,t), zk,t+1−zk,t

〉
+
√
mM‖zk,t+1−zk,t‖F

= h(zk,t)+
〈
∇̂h(zk,t), x̃k,∗−zk,t

〉
+

〈
∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+
√
mM‖zk,t+1 − zk,t‖F

≤ h(x̃k,∗)+
〈
∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+
√
mM‖zk,t+1−zk,t‖F , (30)

where x̃k,∗ is defined in Lemma 12 and ∇̂h(zk,t) ∈ ∂h(zk,t).
On the other hand, from the update role of zk,t+1 in Algorithm 2,

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4866 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

we have

0 = ∇̂h(zk,t) +∇f(yk) +
β0

ϑk
U2yk

+

(
L+

β0

ϑk

)
(zk,t+1 − yk) +

1

ηk
(zk,t+1 − zk,t). (31)

Thus, we have〈∇f(yk), zk,t+1 − x̃k,∗〉+ L

2
‖zk,t+1 − yk‖2F

+ h(zk,t+1)− h(x̃k,∗) +
〈
λ∗, Uzk,t+1 − U x̃k,∗〉

a≤
〈
∇f(yk)+∇̂h(zk,t), zk,t+1−x̃k,∗

〉
+

〈
λ∗, Uzk,t+1−U x̃k,∗〉

+
√
mM‖zk,t+1 − zk,t‖F +

L

2
‖zk,t+1 − yk‖2F

b
= −

〈
β0

ϑk
U2yk +

(
L+

β0

ϑk

)
(zk,t+1 − yk)

+
1

ηk
(zk,t+1 − zk,t), zk,t+1 − x̃k,∗

〉
+

〈
λ∗, Uzk,t+1 − U x̃k,∗〉+√

mM‖zk,t+1 − zk,t‖F

+
L

2
‖zk,t+1 − yk‖2F

= −
〈
β0

ϑk
Uyk − λ∗, Uzk,t+1 − U x̃k,∗

〉
−

(
L+

β0

ϑk

)〈
zk,t+1 − yk,yk − x̃k,∗〉

− 1

ηk

〈
zk,t+1 − zk,t, zk,t+1 − x̃k,∗〉

+
√
mM‖zk,t+1 − zk,t‖F −

(
L

2
+

β0

ϑk

)
‖zk,t+1 − yk‖2F

c
= − ϑk

β0

〈
β0

ϑk
Uyk − λ∗,

β0

ϑk
Uzk,t+1 − β0

ϑk−1
Uxk

〉
−

(
L+

β0

ϑk

)〈
zk,t+1 − yk,yk − (1− θk)x

k − θkx
∗〉

− 1

ηk

〈
zk,t+1 − zk,t, zk,t+1 − (1− θk)x

k − θkx
∗〉

+
√
mM‖zk,t+1 − zk,t‖F −

(
L

2
+

β0

ϑk

)
‖zk,t+1 − yk‖2F ,

where we use (30) in
a≤, (31) in

b
=, 1

ϑk−1
= 1−θk

ϑk
, and

the definition of x̃k,∗ in
c
=. Applying the identities in

Lemma 1 to the two inner products, using ϑk

2β0
‖ β0

ϑk
Uyk −

β0

ϑk
Uzk,t+1‖2F ≤ β0

2ϑk
‖yk − zk,t+1‖2F and dropping the nega-

tive term − ϑk

2β0
‖ β0

ϑk
Uyk − β0

ϑk−1
Uxk‖2F , we have〈∇f(yk), zk,t+1 − x̃k,∗〉+ L

2
‖zk,t+1 − yk‖2F

+ h(zk,t+1)− h(x̃k,∗) +
〈
λ∗, Uzk,t+1 − U x̃k,∗〉

≤ ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Uxk − λ∗

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Uzk,t+1 − λ∗

∥∥∥∥2

F

]

+

(
L

2
+

β0

2ϑk

)[‖yk − (1− θk)x
k − θkx

∗‖2F

−‖zk,t+1 − (1− θk)x
k − θkx

∗‖2F
]

+
1

2ηk

[‖zk,t − (1− θk)x
k − θkx

∗‖2F

−‖zk,t+1 − (1− θk)x
k − θkx

∗‖2F
]

+
√
mM‖zk,t+1 − zk,t‖F − 1

2ηk
‖zk,t+1 − zk,t‖2F

d≤ ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Uxk − λ∗

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Uzk,t+1 − λ∗

∥∥∥∥2

F

]

+

(
L

2
+

β0

2ϑk

)[‖yk − (1− θk)x
k − θkx

∗‖2F

−‖zk,t+1 − (1− θk)x
k − θkx

∗‖2F
]

+
1

2ηk

[‖zk,t − (1− θk)x
k − θkx

∗‖2F

−‖zk,t+1 − (1− θk)x
k − θkx

∗‖2F
]
+

mM2ηk
2

,

where we use −a
2 t

2 + bt ≤ b2

2a for any a > 0 in
d≤. Summing

over t = 0, . . . , Tk − 1 and dividing both sides by Tk, letting

xk+1 =
∑Tk−1

t=0 zk,t+1

Tk
, and from the convexity of h(x) and ‖ ·

‖2F , we have〈∇f(yk),xk+1 − x̃k,∗〉+ L

2
‖xk+1 − yk‖2F

+ h(xk+1)− h(x̃k,∗) +
〈
λ∗, Uxk+1 − U x̃k,∗〉

≤ ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Uxk − λ∗

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Uxk+1 − λ∗

∥∥∥∥2

F

]

+

(
L

2
+

β0

2ϑk

)[‖yk − (1− θk)x
k − θkx

∗‖2F

−‖xk+1 − (1− θk)x
k − θkx

∗‖2F
]

+
1

2ηkTk

[‖zk,0 − (1− θk)x
k − θkx

∗‖2F

−‖zk,Tk − (1− θk)x
k − θkx

∗‖2F
]
+

mM2ηk
2

e
=

ϑk

2β0

[∥∥∥∥ β0

ϑk−1
Uxk − λ∗

∥∥∥∥2

F

−
∥∥∥∥β0

ϑk
Uxk+1 − λ∗

∥∥∥∥2

F

]

+

(
L

2
+

β0

2ϑk

)
θ2k

[‖wk − x∗‖2F − ‖wk+1 − x∗‖2F
]

+
θ2k

2ηkTk

[‖vk,0 − x∗‖2F − ‖vk+1,0 − x∗‖2F
]
+

mM2ηk
2

,

where
e
= follows from the identities in Lemma 25, the definition

of vk,t in (26), and zk+1,0 = zk,Tk . Dividing both sides by θk
and letting ϑk = θk, from Lemma 12, 1

θk−1
= 1−θk

θk
, θk

2ηkTk
=

M

2
√

1−σ2(W)
, θk+1 ≤ θk, and the definition of �k, we have the

conclusion. �

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4867

Based on Lemma 11, we can prove Theorem 3.
Proof: The settings of Tk = K(1− σ2(W)) and ηk =

θk

KM
√

1−σ2(W)
satisfy (27). Plugging them into (28), we have

�k+1 ≤ �k +
mM

2K
√

1− σ2(W)
.

Summing over k = 0, . . . ,K − 1, we have

�K ≤ �0 +
mM

2
√

1− σ2(W)

=
1

2β0
‖λ∗‖2F +

L+ β0

2
‖x0 − x∗‖2F

+
M

2
√
1− σ2(W)

‖x0 − x∗‖2F +
mM

2
√

1− σ2(W)

≡ C12,

where we use θ0 = 1, 1
θ−1

= 1−θ0
θ0

= 0, w0 = x0, and v0,0 =

x0. Similar to the proofs of Theorems 4 and 5, from the definition
of �k and θk−1 = 1

k , we have

‖UxK‖F ≤ 1

β0K

(√
2β0C12 + ‖λ∗‖F

)
,

F (xK)− F (x∗) ≤ C12

K
+ ‖λ∗‖F ‖UxK‖F

and ‖xK − x∗‖2F ≤ 2C12

β0
. Similar to (24), we also have

F
(
α(xK)

)− F (x∗)

a≤
(
‖∇f(x∗)‖+ L

√
2C12

β0

)
‖ΠxK‖F +

L

2
‖ΠxK‖2F

+ 2
√
mM‖ΠxK‖F + F (xK)− F (x∗),

where we use the fact that h(x) is (
√
mM)-Lipchitz contin-

uous in
a≤, i.e, ‖∇̃h(x)‖F ≤ √

mM, ∀∇̃h(x) ∈ ∂h(x). From

Lemma 4, we can further bound ‖ΠxK‖F by ‖UxK‖F√
1−σ2(W)

.

From Lemma 2, we know ‖λ∗‖F ≤
√
mM+‖∇f(x∗)‖F√

1−σ2(W)
≡ 1

χ .

From the setting of β0, we have β0 ≥ L√
1−σ2(W)

≥ L and

β0 ≥ M√
1−σ2(W)

. Combing with (13) and R1 ≥ 1, we have

1
χ ≤ √

mβ0(R1 +
R2

L) and

C12 ≤ 1

2β0χ2
+

3β0mR2
1

2
+

β0m

2
≤ 2.5β0m

(
R1 +

R2

L

)2

,

‖UxK‖F ≤ 1

K

(√
5m

(
R1+

R2

L

)
+

1

χβ0

)
≤ 4

√
m

K

(
R1+

R2

L

)
,

‖ΠxK‖F≤ 4β0
√
m

KL

(
R1+

R2

L

)
, ‖ΠxK‖F≤ 4β0

√
m

KM

(
R1+

R2

L

)
,

F (xK)− F (x∗) ≤ 7β0m

K

(
R1 +

R2

L

)2

.

Thus, we further have

F
(
α(xK)

)− F (x∗)

≤
(√

mR2 + L

(
R1 +

R2

L

)√
5m

)
4β0

√
m

KL

(
R1 +

R2

L

)

+
8β0m

K2
√

1−σ2(W)

(
R1+

R2

L

)2

+2
√
m
4β0

√
m

K

(
R1+

R2

L

)
+

7β0m

K

(
R1 +

R2

L

)2

≤
(
31β0m

K
+

8β0m

K2
√

1− σ2(W)

)(
R1 +

R2

L

)2

.

The proof is complete. �
Similar to the proof of Theorem 3, in the following, we give

the proof of Corollary 1.

Proof: The settings ofTk = 1−σ2(W)
θk

and ηk =
θ2
k

M
√

1−σ2(W)

satisfy (27). Plugging them into (28) and using θk = 1
k+1 , we

have

�k+1 ≤ �k +
mM

2(k + 1)
√

1− σ2(W)
.

Summing over k = 0, . . . ,K − 1, we have

�K ≤ �0 +
mM(logK + 1)√

1− σ2(W)
.

Similar to the proof of Theorem 3, we have the conclusion. �

IV. NUMERICAL EXPERIMENTS

A. Smooth Problem

We test the performance of the proposed algorithms on the
following least square regression problem

min
x∈Rn

m∑
i=1

fi(x) with fi(x) ≡ 1

2
‖AT

i x−bi‖2+μ

2
‖x‖2. (32)

We generate Ai ∈ Rn×N/m from the uniform distribution with
each entry in [0,1] and normalize each column of Ai to be
1, where N is the sample size. We set N = 1000, n = 500,
m = 100, and bi = AT

i x with some x generated from the Gaus-
sian distribution. We consider both the strongly convex objective
(μ > 0) and nonstrongly convex objective (μ = 0).

We consider the Erdős−Rényi random graph where each pair
of agents has a connection with the probability of p. Almost
all Erdős−Rényi random graph with p = 2 logm

m is connected
and 1

1−σ2(W) = O(1) [34, Proposition 5]. We test the per-
formance with p = 0.5, p = 0.1, and p = 0.05, and observe
that 1− σ2(W) = 0.33, 1− σ2(W) = 0.13, and 1− σ2(W) =
0.04, respectively. We set W = I+M

2 , where M is the Metropo-
lis weight matrix [53].

For the strongly convex objective, we compare APM-C with
the accelerated dual ascent (ADA) [12], distributed Nesterov’s
gradient descent (DNGD) [7], EXTRA [20], and NEAR-DGD+
[22]. NEAR-DGD+ can be seen as a counterpart of APM-C
without Nesterov’s acceleration scheme and accelerated average
consensus. We set μ = 0.0001 and leave the test on different
condition numbers in our supplementary material. We set the

inner iteration number Tk as � k
√

μ/L

3
√

1−σ2(W)
�, β0 = 100 and the

stepsize as 1
L for APM-C, where �·� means the top integral

function. For ADA, we follow the theory in [9] to set the

inner iteration number as �
√

L
μ log L

μ � (we leave the test on the

impact of smaller inner iteration numbers in our supplementary

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4868 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Fig. 1. Comparisons on the strongly convex problem (32) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05 (right
two).

Fig. 2. Comparisons on the nonstrongly convex problem (32) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05
(right two).

material) and the stepsize as μ. We tune the best stepsize as 1
L

and 0.5
L for EXTRA and DNGD, respectively. We follow [22]

to set Tk = k for NEAR-DGD+. We initialize x0 at 0 for all the
compared methods.

Fig. 1 plots the comparisons. We can see that APM-C has
the lowest computation cost and ADA has the lowest commu-
nication cost, which match the theory. Thus, APM-C is more
suited to the environment where computation is the bottleneck
of the overall performance. Due to the large Tk for ADA,
it only performs several outer iterations after 3000 gradient
computations and thus has almost no decreasing in the first,
third and fifth plots of Fig. 1. APM-C has a higher commu-
nication cost than DNGD but a lower computation cost for
p = 0.1 and p = 0.5. APM-C performs better than NEAR-
DGD+ and it verifies that Nesterov’s acceleration scheme is
critical to improve the performance. From Fig. 1, we observe
that APM-C is more suited to the network with small 1√

1−σ2(W)
,

otherwise, the communication costs will be high, e.g., see the
right two plots in Fig. 1. In fact, when 1√

1−σ2(W)
is small,

√
μ/L√

1−σ2(W)
will also be small, e.g., 0.01 in our experiment

with p = 0.1. Thus the required Tk is small, e.g., T3000 = 11
in our experiment. As a comparison, NEAR-DGD+ suggests
Tk = k and thus it increases quickly, which leads to almost no
decreasing in the second, fourth and sixth plots of Fig. 1. In
practice, we can use the expander graph [54] which satisfies

1
1−σ2(W) = O(1) [34]. The Erdős−Rényi random graph is a

special case of the expander graph and can be easily imple-
mented.

For the nonstrongly convex objective, we test the performance
of APM, APM-C, D-NG [8], D-NC [8], DNGD [7], EXTRA [20]
and ADA [9]. We set Tk as � log(k+1)

5
√

1−σ2(W)
� and � log(k+1)

−5 logσ2(W)� for

APM-C and D-NC, respectively. We set the stepsize as 1
L for

the two algorithms and β0 = 100 for APM-C. We set β0

ϑk
= k+1

c
with c = 50 for APM and tune the best c = 1 for D-NG. Larger c
makes D-NG diverge. We tune the best stepsize as 1

L for EXTRA,
0.05
L for DNGD with p = 0.05, 0.1

L for DNGD with p = 0.1,
and 0.2

L for DNGD with p = 0.5, respectively. For ADA, we
follow [9] to add a small regularizer of ε

2‖x‖2 to each fi(x) and
solve a regularized problem with ε = 10−7. We set the inner

iteration number as Tk = �
√

L
ε log L

ε �.
From Fig. 2, we can see that APM-C also has the lowest

computation cost. APM performs better than D-NG because
APM allows to use a larger stepsize in practice, which can reduce
the negative impacts from the diminishing stepsize. APM is more
suited to the environment where high precision is not required,
otherwise, the diminishing stepsize makes the algorithm slow.
ADA has the lowest communication cost. However, ADA needs
to predefine ε to set the algorithm parameter and thus it only
achieves an approximate optimal solution in the precision of ε
due to the weakness of the regularization trick. From Fig. 2,
we can see that the value of 1√

1−σ2(W)
has less impact on the

performance of APM-C than that in the strongly convex setting.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS 4869

Fig. 3. Comparisons on the nonsmooth problem (33) and Erdős−Rényi random network with p = 0.5 (left two), p = 0.1 (middle two), and p = 0.05 (right
two).

B. Non-Smooth Problem

In this section, we follow [25] to test Algorithm 2 on the
following decentralized linear Support Vector Machine (SVM)
model

min
x∈Rn

m∑
i=1

fi(x) with fi(x) ≡ max{0, 1− biA
T
i x}. (33)

The problem setting is similar to Section IV-A and the only dif-
ference is that we set bi = Sign(AT

i x) for somexgenerated from
the Gaussian distribution. We also consider the Erdős−Rényi
random graph with p = 0.05, p = 0.1, and p = 0.5, respectively.
We compare APM with the primal-dual method [11]. We test two
different parameter settings for APM. For the first one, we fol-
low Corollary 1 to set β0 = 0.01√

1−σ2(W)
, Tk = �k(1− σ2(W))�,

and ηk = 5000

k2
√

1−σ2(W)
, and name it APM with adaptive pa-

rameters (APM-adp). For the second one, we follow Theo-
rem 3 to set β0 = 0.01√

1−σ2(W)
, Tk = �K(1− σ2(W))�, and

ηk = 5000

kK
√

1−σ2(W)
with K = 300 and name it APM with fix

parameters (APM-fix). For the primal-dual method, we set the
number of inner iterations as �K(1− σ2(W))� and tune the
best parameters of σ = 1 and η = 0.5 in [11, Alg 3]. Fig. 3
plots the result. We can see that APM performs better than the
primal-dual method, and APM-adp needs less communications
and subgradient computations than APM-adp.

V. CONCLUSION

In this article, we study the distributed accelerated gradi-
ent methods from the perspective of the accelerated penalty
method with increasing penalty parameters. Two algorithms
are proposed. The first algorithm achieves the optimal gradi-
ent computation complexities and near optimal communication
complexities for both strongly convex and nonstrongly convex
smooth distributed optimization. Our communication complex-
ities are only worse by a factor of log 1

ε than the lower bounds.
Our second algorithm obtains both the optimal subgradient
computation and communication complexities for nonsmooth
distributed optimization. Our APM-C is not suited to the network
with large 1√

1−σ2(W)
for strongly convex problems, in which

case the communication cost is high.

REFERENCES

[1] J. Bazerque and G. Giannakis, “Distributed spectrum for cognitive radio
networks by exploiting sparsity,” IEEE Trans. Signal Process., vol. 58,
no. 3, pp. 1847–1862, Mar. 2010.

[2] S. Ram, V. Veeravalli, and A. Nedic, “Distributed non-autonomous power
control through distributed convex optimization,” in Proc. Int. Conf. Com-
put. Commun., 2009, pp. 3001–3005.

[3] W. Ren, “Consensus based formation control strategies for multi-vehicle
systems,” in Proc. Amer. Control Conf., 2006, pp. 4237–4242.

[4] O. Dekel, R. Gilad-Bachrach, O. Shamir, and L. Xiao, “Optimal distributed
online prediction using mini-batches,” J. Mach. Learn. Res., vol. 13,
pp. 165–202, 2012.

[5] P. Forero, A. Cano, and G. Giannakis, “Consensus-based distributed
support vector machines,” J. Mach. Learn. Res., vol. 59, pp. 1663–1707,
2010.

[6] A. Agarwal and J. Duchi, “Distributed delayed stochastic optimization,”
in Proc. Adv. Neural Inf. Process. Syst., 2011, pp. 873–881.

[7] G. Qu and N. Li, “Accelerated distributed Nesterov gradient descent,”
IEEE Trans. Autom. Control, vol. 65, no. 6, pp. 2566–2581, Jun. 2020.

[8] D. Jakovetić, J. Xavier, and J. M. F. Moura, “Fast distributed gradient
methods,” IEEE Trans. Autom. Control, vol. 59, no. 5, pp. 1131–1146,
May 2014.

[9] C. A. Uribe, S. Lee, A. Gasnikov, and A. Nedić, “A dual approach for
optimal algorithms in distributed optimization over networks,” Optim.
Methods Softw., to be published, doi: 10.1080/10556788.2020.1750013.

[10] Y. Nesterov, Introductory Lectures on Convex Optimization: A Basic
Course. Boston, MA, USA: Kluwer Academic, 2004.

[11] K. Scaman, F. Bach, S. Bubeck, Y. Lee, and L. Massoulié, “Optimal
convergence rates for convex distributed optimization in networks,” J.
Mach. Learn. Res., vol. 20, pp. 1–31, 2019.

[12] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Opti-
mal algorithms for smooth and strongly convex distributed optimiza-
tion in networks,” in Proc. Int. Conf. Mach. Learning (ICML), 2017,
pp. 3027–3036.

[13] K. Scaman, F. Bach, S. Bubeck, Y. T. Lee, and L. Massoulié, “Optimal
algorithms for non-smooth distributed optimization in networks,” in Proc.
Advances Neural Inf. Process. Syst., 2018, pp. 2740–2749.

[14] A. Nedić and A. Ozdaglar, “Distributed subgradient methods for multi-
agent optimization,” IEEE Trans. Autom. Control, vol. 54, no. 1, pp. 48–61,
Jan. 2009.

[15] A. Nedić, “Asynchronous broadcast-based convex optimization over a
network,” IEEE Trans. Autom. Control, vol. 56, no. 6, pp. 1337–1351,
Jun. 2011.

[16] S. Ram, A. Nedic, and V. V. Veeravalli, “Distributed stochastic subgradient
projection algorithms for convex optimization,” J. Optim. Theory Appl.,
vol. 147, pp. 516–545, 2010.

[17] J. Xu, S. Zhu, Y. C. Soh, and L. Xie, “Augmented distributed gradient
methods for multi-agent optimization under uncoordinated constant step-
sizes,” in Proc. IEEE Conf. Decis. Control, 2015, pp. 2055–2060.

[18] G. Qu and N. Li, “Harnessing smoothness to accelerate distributed opti-
mization,” IEEE Trans. Control Netw. Syst., vol. 5, no. 3, pp. 1245–1260,
Sep. 2018.

[19] A. Nedić, A. Olshevsky, and W. Shi, “Achieving geometric convergence
for distributed optimization over time-varying graphs,” SIAM J. Optim.,
vol. 27, no. 4, pp. 2597–2633, 2017.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

https://dx.doi.org/10.1080/10556788.2020.1750013

4870 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

[20] W. Shi, Q. Ling, G. Wu, and W. Yin, “EXREA: An exact first-order
algorithm for decentralized consensus optimization,” SIAM J. Optim.,
vol. 25, no. 2, pp. 944–966, 2015.

[21] W. Shi, Q. Ling, G. Wu, and W. Yin, “A proximal gradient algorithm
for decentralized composite optimization,” IEEE Trans. Signal Process.,
vol. 63, no. 23, pp. 6013–6023, Nov. 2015.

[22] A. Berahas, R. Bollapragada, N. Keskar, and E. Wei, “Balancing commu-
nication and computation in distributed optimization,” IEEE Trans. Autom.
Control, vol. 64, no. 8, pp. 3141–3155, 2019.

[23] H. Terelius, U. Topcu, and R. Murray, “Decentralized multi-agent opti-
mization via dual decomposition,” IFAC Proc. Volumes, vol. 44, no. 1, pp.
11 245–11 251, 2011.

[24] H. Yu and M. Neely, “On the convergence time of dual subgradient
methods for strongly convex programs,” IEEE Trans. Autom. Control,
vol. 63, no. 4, pp. 1105–1112, Apr. 2018.

[25] G. Lan, S. Lee, and Y. Zhou, “Communication-efficient algorithms for
decentralized and stochastic optimization,” Math. Program., vol. 180,
pp. 237–284, 2020.

[26] T. Erseghe, D. Zennaro, E. Dall’Anese, and L. Vangelista, “Fast consensus
by the alternating direction multipliers method,” IEEE Trans. Signal
Process., vol. 59, no. 11, pp. 5523–5537, Nov. 2011.

[27] W. Shi, Q. Ling, G. Wu, and W. Yin, “On the linear convergence of the
ADMM in decentralized consensus optimization,” IEEE Trans. Signal
Process., vol. 62, no. 2, pp. 1750–1761, Apr. 2014.

[28] E. Wei and A. Ozdaglar, “On the o(1/k) convergence of asynchronous
distributed alternating direction method of multipliers,” in Proc. IEEE
Global Conf. Signal Inf. Process., 2013, pp. 551–554.

[29] F. Iutzeler, P. Bianchi, P. Ciblat, and W. Hachem, “Explicit convergence
rate of a distributed alternating direction method of multipliers,” IEEE
Trans. Autom. Control, vol. 61, no. 4, pp. 892–904, Apr. 2016.

[30] A. Makhdoumi and A. Ozdaglar, “Convergence rate of distributed
ADMM over networks,” IEEE Trans. Autom. Control, vol. 62, no. 10,
pp. 5082–5095, Oct. 2017.

[31] N. Aybat, Z. Wang, T. Lin, and S. Ma, “Distributed linearized alternating
direction method of multipliers for composite convex consensus optimiza-
tion,” IEEE Trans. Autom. Control, vol. 63, no. 1, pp. 5–20, Jan. 2018.

[32] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex
problems with applications to imaging,” J. Math. Imag. Vision, vol. 40,
pp. 120–145, 2011.

[33] M. Arioli and J. Scott, “Chebyshev acceleration of iterative refinement,”
Numer. Algorithms, vol. 66, no. 3, pp. 591–608, 2014.

[34] A. Nedić, A. Olshevsky, and M. Rabbat, “Network topology and
communication-computation tradeoffs in decentralized optimization,”
Proc. IEEE, vol. 106, no. 5, pp. 953–976, 2018.

[35] M. Hong, D. Hajinezhad, and M.-M. Zhao, “Prox-PDA: The proximal
primal-dual algorithm for fast distributed nonconvex optimization and
learning over networks,” in Proc. Int. Conf. Mach. Learn., 2017, pp. 1529–
1538.

[36] D. Jakovetić, “A unification and generalization of exact distributed first
order methods,” IEEE Trans. Signal Inform. Process. Over Netw., vol. 5,
no. 1, pp. 31–46, Mar. 2019.

[37] K. Yuan, Q. Ling, and W. Yin, “On the convergence of decentralized
gradient descent,” SIAM J. Optim., vol. 26, no. 3, pp. 1835–1854, 2016.

[38] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding al-
gorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1,
pp. 183–202, 2009.

[39] L. Xiao and S. Boyd, “Fast linear iterations for distributed averaging,”
Syst. Control Lett., vol. 53, no. 1, pp. 65–78, 2004.

[40] J. Liu and A. S. Morse, “Accelerated linear iterations for distributed
averaging,” Annu. Reviews Control, vol. 35, no. 2, pp. 160–165, 2011.

[41] T. Zhang and H. Yu, “Average consensus for directed networks of multi-
agent with time-varying delay,” in Proc. Int. Conf. Swarm Intell., 2010,
pp. 723–730.

[42] G. Lan, “Gradient sliding for composite optimization,” Math. Program.,
vol. 159, pp. 201–235, 2016.

[43] G. Lan and Y. Ouyang, “Accelerated gradient sliding for structured convex
optimization,” 2016, arXiv:1609.04905.

[44] G. Lan and Y. Zhou, “Conditional gradient sliding for convex optimiza-
tion,” SIAM J. Optim., vol. 26, no. 2, pp. 1379–1409, 2016.

[45] G. Lan and R. D. Monteiro, “Iteration-complexity of first-order
penalty methods for convex programming,” Math. Program., vol. 138,
pp. 115–139, 2013.

[46] I. Necoara, A. Patrascu, and F. Glineur, “Complexity of first-order inexact
Lagrangian and penalty methods for conic convex programming,” Optim.
Methods Softw., vol. 34, no. 2, pp. 305–335, 2019.

[47] Y. Nesterov, “A method for unconstrained convex minimization problem
with the rate of convergence O(1/k2),” Doklady AN SSSR, vol. 269,
pp. 543–547, 1983.

[48] Y. Nesterov, “On an approach to the construction of optimal methods of
minimization of smooth convex functions,” Èkonomika I Mateaticheskie
Metody, vol. 24, pp. 509–517, 1988.

[49] O. Devolder, F. Glineur, and Y. Nesterov, “First-order methods of smooth
convex optimization with inexact oracle,” Math. Program., vol. 146,
pp. 37–75, 2014.

[50] M. Schmidt, N. L. Roux, and F. R. Bach, “Convergence rates of inexact
proximal-gradient methods for convex optimization,” in Proc. Advances
Neural Inf. Process. Syst., 2011, pp. 1458–1466.

[51] Y. Nesterov, “Smooth minimization of non-smooth functions,” Math.
Program., vol. 103, pp. 127–152, 2005.

[52] H. Li and Z. Lin, “Accelerated alternating direction method of multipliers:
An optimal O(1/K) nonergodic analysis,” J. Scientific Comput., vol. 79,
pp. 671–699, 2019.

[53] S. Boyd, P. Diaconis, and L. Xiao, “Fastest mixing Markov chain on a
graph,” SIAM Rev., vol. 46, no. 4, pp. 667–689, 2004.

[54] Y. Chow, W. Shi, T. Wu, and W. Yin, “Expander graph and communication-
efficient decentralized optimization,” in Proc. Asilomar Conf. Signals,
Syst. Comput., 2016, pp. 1715–1720.

Huan Li (Member, IEEE) received the Ph.D. degree
from Peking University, in 2019. He is currently an
Assistant Researcher at the Institute of Robotics and
Automatic Information Systems, Nankai University.
His current research interests include optimization
and machine learning.

Cong Fang received the Ph.D. degree from Peking
University, in 2019. He is currently a Postdoctoral
Researcher at Princeton University. His research in-
terests include machine learning and optimization.

Wotao Yin received the B.S. degree in mathematics
and applied mathematics from Nanjing University,
in 2001 and the M.S. and Ph.D. degrees in opera-
tions research from Columbia University, in 2003 and
2006, respectively. From 2006 to 2013, he was an
Assistant Professor and then an Associate Professor
in the Department of Computational and Applied
Mathematics, Rice University. Since 2013, he has
been a Professor in the Department of Mathematics,
University of California, Los Angeles, CA, USA.
His current research interest is large-scale decentral-

ized/distributed optimization.

Zhouchen Lin (Fellow, IEEE) received the Ph.D.
degree in applied mathematics from Peking Univer-
sity, in 2000. He is currently a Professor at the Key
Laboratory of Machine Perception (MOE), School
of EECS, Peking University. His research interests
include computer vision, image processing, machine
learning, pattern recognition, and numerical opti-
mization. He is an Associate Editor of IEEE TRANS-
ACTIONS PATTERN ANALYSIS AND MACHINE INTELLI-
GENCE and International Journal Computer Vision, an
area Chair of CVPR 2014/16/19/20/21, ICCV 2015,

NIPS 2015/18/19/20, ICML 2020, AAAI 2019/20, IJCAI 2020/21 and ICLR
2021, and a Fellow of the IAPR.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 900
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.00111
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 1200
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.00083
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00063
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

