IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

4855

Decentralized Accelerated Gradient Methods
With Increasing Penalty Parameters

Huan Li

Abstract—In this article, we study the communication, and
(sub)gradient computation costs in distributed optimization. We
present two algorithms based on the framework of the accelerated
penalty method with increasing penalty parameters. Our first al-
gorithm is for smooth distributed optimization, and it obtains the

near optimal O (log %) communication complexity,

L
e(l—o2(W))
and the optimal O(,/ %) gradient computation complexity for

L-smooth convex problems, where o (W) denotes the second
largest singular value of the weight matrix W associated to the
network, and e is the target accuracy. When the problem is p:-
strongly convex, and L-smooth, our algorithm has the near op-

timal O (log? %) complexity for communications,

L
u(l-o2(W))
and the optimal O(, /% log %) complexity for gradient compu-

tations. Our communication complexities are only worse by a

factor of (log %) than the lower bounds. Our second algorithm is

designed for nonsmooth distributed optimization, and it achieves
. 1 . . .

both the optimal O (i) communication complexity, and

O(e%) subgradient computation complexity, which match the
lower bounds for nonsmooth distributed optimization.

Index Terms—Distributed accelerated gradient algorithms,
accelerated penalty method, optimal (sub)gradient computation
complexity, near optimal communication complexity.

Manuscript received February 25, 2020; revised July 6, 2020; accepted August
16,2020. Date of publication August 21, 2020; date of current version September
11, 2020. The associate editor coordinating the review of this manuscript and
approving it for publication was Dr. Alexander Bertrand. The work of Huan
Li was supported by Zhejiang Lab under Grant 2019KBOABO2. The work
of Zhouchen Lin was supported by NSF China under Grants 61625301 and
61731018, and in part by the Major Research Project of Zhejiang Lab under
Grants 2019KBOACO!1 and 2019KB0OABO02, and Beijing Academy of Artificial
Intelligence. (Corresponding author: Zhouchen Lin.)

Huan Li is with the Institute of Robotics and Automatic Information Systems,
College of Artificial Intelligence, Nankai University, Tianjin 300071, China,
with the College of Computer Science and Technology, Nanjing University of
Aeronautics and Astronautics, Nanjing 210016, China, and also with the Key
Laboratory of Machine Perception (MOE), School of EECS, Peking University,
Beijing 100871, China (e-mail: lihuan_ss@126.com).

Cong Fang is with the Department of Electrical Engineering, Princeton
University, Princeton, NJ 08544 USA (e-mail: fangcong @pku.edu.cn).

‘Wotao Yin is with the Department of Mathematics, University of California,
Los Angeles, CA 90095 USA (e-mail: wotaoyin@math.ucla.edu).

Zhouchen Lin is with the Key Laboratory of Machine Perception
(MOE), School of EECS, Peking University, Beijing 100871, China (e-mail:
zlin@pku.edu.cn).

This article has supplementary downloadable material available at https:
/lieeexplore.ieee.org., provided by the author. The material includes some addi-
tional experimental results. This material is 1.64 MB in size.

Digital Object Identifier 10.1109/TSP.2020.3018317

, Member, IEEE, Cong Fang, Wotao Yin

, and Zhouchen Lin"¥, Fellow, IEEE

1. INTRODUCTION

N this article, we consider the following distributed convex
optimization problem:

zeR™ M

min — 5" Fi(e) = fi(e) + hi(a), (1)
1=1

where m agents form a connected and undirected network G =
V,€),V={1,2,...,m}isthesetof agentsand £ C V x Vis
the set of edges, Fj is the local objective function only available
to agent i and x is the decision variable. f; is aconvex and smooth
function while h; is a convex but possibly nonsmooth one. We
consider distributed algorithms using only local computations
and communications, i.e., each agent ¢ makes its decision only
based on the local computations on F; (i.e., the gradient of f;
and the subgradient of h;) and the local information received
from its neighbors in the network. A pair of agents can ex-
change information if and only if they are directly connected
in the network. Distributed computation has been widely used
in signal processing [1], automatic control [2], [3] and machine
learning [4]-[6].

A. Literature Review

Among the classical distributed first-order algorithms, two
different types of methods have been proposed, namely, the
primal-only methods and the dual-based methods.

The distributed subgradient method is a representative primal-
only distributed optimization algorithm over general net-
works [14], while its stochastic version was studied in [15],
and asynchronous variant in [16]. In the distributed subgradient
method, each agent performs a consensus step and then follows
a subgradient descent with a diminishing step-size. To avoid
the diminishing step-size, three different types of methods have
been proposed. The first type of methods [7], [17]-[19] rely
on tracking differences of gradients, which keep a variable
to estimate the average gradient and use this estimation in
the gradient descent step. The second type of methods, called
EXTRA [20], [21], introduce two different weight matrices as
opposed to a single one with the standard distributed gradient
method [14]. EXTRA also uses the gradient tracking. The third
type of methods employ a multi-consensus inner loop [8], [22]
and thus improve the consensus of the variables at each outer
iteration.

The dual-based methods introduce the Lagrangian function
and work in the dual space. Many classical methods can be used
to solve the dual problem, e.g., the dual subgradient ascent [23],
dual gradient ascent [24], accelerated dual gradient ascent [9],

1053-587X © 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-1286-6552
https://orcid.org/0000-0001-6697-9731
https://orcid.org/0000-0003-1493-7569
mailto:lihuan_ss@126.com
mailto:fangcong@pku.edu.cn
mailto:wotaoyin@math.ucla.edu
mailto:zlin@pku.edu.cn
https://ieeexplore.ieee.org

4856

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

TABLE I

COMPLEXITY COMPARISONS BETWEEN ACCELERATED DUAL ASCENT, DN-C, DNGD, THE PRIMAL-DUAL METHOD AND OUR METHODS (APM-C,APM) FOR

DISTRIBUTED CONVEX PROBLEMS

Non-strongly convex and smooth case

Methods Complexity of gradient computations Complexity of communications
1 1 1
DNGD o (ﬁ) 7] o (ﬁ) 7]
DN-C

Accelerated Dual Ascent o

Our APM-C

o(VE)w
L
ey/T—og (W)

o(y")

0 (VE =ty tos 2) 11
L
o (\/ e 1°g%> 91
L 1
o (\/ e 1°g€>

log? %) 9]

Lower Bound

o <\/Z> [10]

0 (y/7a=s5wy) 11

Strongly convex and smooth case

Methods Complexity of gradient computations Complexity of communications
L\5/7 1 1 L\5/7 1 1
DNGD o) T=og(wy 15 18 o o(() =gy Ts 18 b
L 21)3 / L 1
Accelerated Dual Ascent O #\/ﬁ log ;) [9] O (Me=ryaa log ;) [9], [12]

Our APM-C o (

JEres)

L 21
o (\/ Aot 198 ?)

Lower Bound

o[/t

log 1) (10 0 (\/rr=dsrwy los 1) 12

Convex and Nonsmooth case

Methods

Complexity of subgradient computations

Complexity of communications

Primal-dual method
Smoothed accelerated gradient sliding method

Our APM

o(%

L) o 0 <7 *1_12(‘}‘/)) [

o (ytsms)
1

ey/T—oo (W)

Lower Bound

o
1
O (et) 1

[12], the primal-dual method [13], [25], and ADMM [26]-[31].
In general, most dual-based methods require the evaluation of
the Fenchel conjugate of the local objective function f;(z) and
thus have a larger gradient computation cost per iteration than
the primal-only algorithms for smooth distributed optimization.
For nonsmooth problems, the authors of [11], [13], [25] studied
the communication-efficient primal-dual method. Specifically,
they use the classical primal-dual method [32] in the outer
loop and the subgradient method in the inner loop. The authors
of [13] used Chebyshev acceleration [33] to further reduce the
computation complexity while the authors of [11] did it via
carefully setting the parameters.

Among the methods described above, the distributed Nesterov
gradient with consensus iterations (D-NC) proposed in [8] and
the distributed Nesterov gradient descent (DNGD) proposed
in [7] employ Nesterov’s acceleration technique in the primal
space, and the accelerated dual ascent proposed in [12] use
the standard accelerated gradient descent in the dual space.
Moreover, D-NC attains the optimal gradient computation com-
plexity for nonstrongly convex and smooth problems, and the
accelerated dual ascent achieves the optimal communication
complexity for strongly convex and smooth problems, which
match the complexity lower bounds [10], [12]. For nonsmooth
problems, the primal-dual method proposed in [11], [13] and
the smoothed accelerated gradient sliding method in [9] achieve
both the optimal communication and subgradient computation
complexities, which also match the lower bounds [13]. We
denote the communication and computation complexities as the
numbers of communications and (sub)gradient computations
to find an e-optimal solution z such that L ™" Fj(z) —
min, = >, F;(x) < €, respectively.

B. Contributions

In this article, we study the decentralized accelerated gra-
dient methods with near optimal complexities from the per-
spective of the accelerated penalty method. Specifically, we
propose an Accelerated Penalty Method with increasing penal-
ties for smooth distributed optimization by employing a multi-
Consensus inner loop (APM-C). The theoretical significance
of our method is that we show the near optimal communication
complexities and the optimal gradient computation complexities
for both strongly convex and nonstrongly convex problems.
Our communication complexities are only worse by a logarithm
factor than the lower bounds.

Table I summarizes the complexity comparisons to the state-
of-the-art distributed optimization algorithms (the notations in
Table I will be specified precisely soon), namely, DNGD, D-NC,
and the accelerated dual ascent reviewed above, as well as the
complexity lower bounds. Our complexities match the lower
bounds except that the communication ones have an extra factor
of log % The communication complexity of the accelerated dual
ascent matches ours for nonstrongly convex problems and is
optimal for strongly convex problems (thus better than ours by
log %). On the other hand, our gradient computation complexities
match the lower bounds and they are better than the compared
methods. It should be noted that due to term log2 % our commu-
nication complexity for strongly convex problems is not a linear
convergence rate.’

Our framework of accelerated penalty method with increasing
penalties also applies to nonsmooth distributed optimization.

The authors of [7] did not give the dependence on 1 — oo (W). It does not
mean that their complexity has no dependence on 1 — o2 (W).

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS

It drops the multi-consensus inner loop but employs an inner
loop with several runs of subgradient method. Both the optimal
communication and subgradient computation complexities are
achieved, which match the lower bounds for nonsmooth dis-
tributed optimization. Although the theoretical complexities are
the same with the methods [9], [11], our method gives the users
a new choice in practice.

C. Notations and Assumptions

Throughout the article, the variable x € R is the decision
variable of the original problem (1). We denote z(;) € R" to
be the local estimate of the variable x for agent ¢. To simplify
the algorithm description in a compact form, we introduce the
aggregate variable x, aggregate objective function f(x) and
aggregate gradient V f(x) as

Ty " Vhwm)"
X = S =D filww), VIx) = : ;
&(m) = V fn (@ m))’)

where x € R™*", whose value at iteration k is denoted by x*.
For the double loop algorithms, we denote x** as its value
at the kth outer iteration and tth inner iteration. Assume that
the set of minimizers is non-empty. Denote z* as one min-
imizer of problem (1), and let x* = 1(z*)T € R™*", where
1=(1,1,...,1)T € R™ is the vector with all ones. Denote
Oh;(z) as the subdifferential of h;(x) at x, and specifically,
Vhi(x) € Ohy(x) as its one subgradient. For h;, we introduce
its aggregate objective function h(x) and aggregate subgradient
Vh(x) as

m @hl ((L’(U)T
h(x) = hi(zq;)) and Vh(x) = :
=1 @hm (m(m))T
Weuse || - || and || - ||1 as the l> Euclidean norm and [norm for

a vector, respectively. For matrices x and y, we denote ||x||
as the Frobenius norm, ||x||2 as the spectral norm and (x,y) =
trace(x”'y) as their inner product. Denote I € R™*™ as the
identity matrix and N as the neighborhood of agent ¢ in the
network. Define

1 m
— , 2
a(x) m ;:1 ())
as the average across the rows of x. Define two operators
1
N=7-—11" and U=VI-W 3)
m

to measure the consensus violation, where W is the weight
matrix associated to the network, which describes the informa-
tion exchange through the network. Especially, ||IIx|| r directly
measures the distance between z(;) and a(x). We follow [12]

to define vVA = V/AVT, given the eigenvalue decomposition
A = VAVT of the symmetric positive semidefinite matrix A.
We make the following assumptions for each function f;(x).
Assumption 1:
1) fi(z) is p-strongly convex: fi(y) > fi(z) +
(Vfi(z),y —x) + &|ly — z|*. Especially, we allow
1 to be zero through this article, and in this case we say
fi(x) is convex.

4857

2) fi(z) is L-smooth: f;(y) < fi(x) + (Vfi(x),y —x) +
L 2
Lily -z

In Assumption 1, ;4 and L are the strong-convexity constant
and smoothness constant, respectively. Assumption 1 yields that
the aggregate function f(x) is also p-strongly convex and L-
smooth. For the nonsmooth function h;(z), we follow [25] to
make the following assumptions.

Assumption 2:

1) h;(z) is convex.

2) h;(x) is M-Lipschitz continuous: h;(y) < h;(x)+

(Vhi(@).y =)+ My — .

We can simply verify that h(x) is (y/mM)-Lipschitz con-
tinuous. For the weight matrix W, we make the following
assumptions.

Assumption 3:

1) W e R™*™ is a symmetric matrix with W; ; # 0 if and

only if agents ¢ and j are neighbors or ¢ = j. Otherwise,
Wi =0.

2) I =W »=0,and W1 = 1.

Examples satisfying Assumption 3 can be found in [20]. We
denoteby 1 = o1 (W) > go(W) > - -+ > 0, (W) the spectrum
of W. Note that for a connected and undirected network, we
always have o2 (W) < 1,and #(W) isa good indication of the
network connectivity. For many commlonly used networks, we

can give order-accurate estimate on (") [34, Proposition 5].
1

T = O(mlogm) for the geometric graph,
and #(W) = O(1) for the expander graph and Erd6s—Rényi
random graph. Moreover, for any connected and undirected
graph, #(W) = O(m?) in the worst case [34].

In this article, we focus on the communication and
(sub)gradient computation complexity development for the pro-
posed algorithms. We define one communication to be the
operation that all the agents exchange information with their
neighbors once, i.e., ZjeM Wijx gy foralli =1,2,...,m.One
(sub)gradient computation is defined to be the (sub)gradient
evaluations of all the agents once, i.e., V fi(x(;) (@hi(x(i)))
for all 7.

For example

II. DEVELOPMENT OF THE ACCELERATED PENALTY METHOD

A. Accelerated Penalty Method for Smooth Distributed
Optimization

In this section, we consider the smooth distributed optimiza-
tion, i.e., h;(z) = 0 in problem (1). From the definition of IT in
(3), we know that x(;) = -+ = () is equivalent to IIx = 0.
Thus, we can reformulate the smooth distributed problem as

min f(x) st IIx=0. 4)

xeRm*n
Problem (4) is a standard linearly constrained convex problem,
and many algorithms can be used to solve it, e.g., the primal-dual
method [13], [25], [35], [36] and dual ascent [9], [12], [23].
In order to propose an accelerated distributed gradient method
based on the gradient of f(x), rather than the evaluation of
its Fenchel conjugate or proximal mapping, we follow [37]
to use the penalty method to solve problem (4) in this article.
Specifically, the penalty method solves the following problem

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4858

instead:

min_ f(x) +

xeRm*n
where (3 is a large constant. However, one big issue of the penalty
method is that problems (4) and (5) are not equivalent for finite 3.
When solving problem (5), we can only obtain an approximate
solution of (4) with small ||IIx|| p, rather than ||IIx|[» — 0, and
the algorithm only converges to a neighborhood of the solution
set of problem (1) [37]. Moreover, to find an e-optimal solution
of (4), we need to pre-define a large 3 of the order % [37].
Thus, the parameter setting depends on the precision . When
B is fixed as a constant of the order %, we can only get the
e-accurate solution after some fixed iterations described by ¢, and
more iterations will not give a more accurate solution. Please see
Section II-C1 for more details. To solve the above two problems,
we use the gradually increasing penalty parameters, i.e., at the
kth iteration, we use 3 = g—" with fixed By and diminishing
¥ — 0. The increasing penalty strategy has two advantages:
1) The solution of (5) approximates that of (4) infinitely when
the iteration number £ is sufficiently large. 2) The parameter
setting does not depend on the accuracy e. The algorithm can
be run without defining the accuracy € in advance. It can reach
arbitrary accuracy if run for arbitrarily long time.

We use the classical accelerated proximal gradient method
(APG) [38] to minimize the penalized objective in (5), i.e., at
the kth iteration, we first compute the gradient of f(x) at some
extrapolated point, and then compute the proximal mapping of
2570’6 |1Ix||% at some z, defined as

+ 23, ®

Bo L
argmin o - x5 + 5 [= 2% (©)
xeanXn
Due to the special form of II defined in (3), a simple calcula-
LYyz+Pola(z)T

tion yields === as the solution of (6), where a(x) is
defined in (2). However, in the distributed setting, we can only
compute «(z) approximately in finite communications. Thus,
we use the inexact APG to minimize (5), i.e., we compute the
proximal mapping inexactly. Specifically, the algorithm frame-
work consists of the following steps:

k ko, LOk—pl—0p

; k_ k-1
=x" 4+ X" =X , 7a
y I 0, () (7a)
X 1
2=y = VI, (7b)
k41 Bo 112
x" T ar%mm —||H 1%+ = H -z HF, (7¢)
xCRm#n

where the sequences {0y} and {94} and the precision in step
(7c) will be specified in Theorems 1 and 2 latter. Now, we
consider the subproblem in procedure (7c). As discussed above,
we only need to approximate a(z"), which can be obtained by
the classical average consensus [39] or the accelerated average
consensus [40]. We only consider the accelerated average con-
sensus, which consists of the following iterations:

ZH = (14 Wbt — gt (8)
where we initialize at z*° = z"~! = z*. The advantage of
using the special II in (4) is that we only need to call the classic
average consensus to solve the subproblem in (7c), which has
been well studied in the literatures, including the extensions

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

Algorithm 1: Accelerated Penalty Method with Consensus
(APM-O).

1—4/1-02(W)
144/1-02(W)’

Initialize x(()) =z L forall i, and n =
for k=0,1,2,--- do

kE _ .k L9 101k k-1 .
Yo =+ T e P T2)
ng)oz y(,i) —1 Vfl(y(i)) Vi,
0 k-1 _ K .
20 = 2@ = Vi
forkt =0,1,..., 7T, — 1do i
t+1 A1
20 (1+77) Zje]\/ WIJZ(J) nz(z) Vi,
end for -
ol _ IOk Bz B
Ty = 7 Lowtho vi.
end for

over directed network and time-varying network [41]. In fact,
in Lemma 6, we only require ||z"7* — 1a(z*)||% to be within
some precision for the method used in the inner loop. Any
average consensus method over undirected graph, directed graph
or time-varying graph can be used in the inner loop, as long as
it has a linear convergence.

Combing (7a)—(7c) and (8), we can give our method, which is
presented in a distributed way in Algorithm 1. We use notations
x~! and z"~! in Algorithm 1 only for the writing consistency
when beginning the recursions from &k = 0 and ¢t = 0.

1) Complexities: In this section, we discuss the complexities
of Algorithm 1. We first consider the strongly convex case and
give the complexities in the following theorem.

Theorem 1: Assume that Assumptions 1 and 3 hold with
p > 0. Setting 0 = 6 = /% forall Vk, ¥, = (1 — 6)**, and

T, = O(\/%%) Then, Algorithm 1 needs O(%log 1)
gradient computations and O(m log?) total com-

munications to achieve an e-optimal solution x such that
m

1 m

E;MQ ——Zﬂ
1 i”: ||x y — a(x)
m (1)

When we drop the strong-convexity assumption, we have the
following theorem.
Theorem 2: Assume that Assumptions 1 and 3 hold with

= 0. Let sequences {f} and {1, } satisfy 6y = 1, 1 9’“ =

1 _ o log k
K, and ’19]€ —9]% Settlng Tk —O(\/ﬁw) and B() Z

L||V f(x*)||%. Then, Algorithm 1 needs O(\/g) gradient com-

1* < e ©)

putations and O(E(lTLQ/(VV)) log 1) total communications to
achieve an e-optimal solution x such that (9) holds.

B. Accelerated Penalty Method for Nonsmooth Distributed
Optimization

In this section, we consider the nonsmooth problem (1). From
Assumption 3 and the definition in (3), we know I >~ U > 0, and

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS

T(1) =+ = T(y) is equivalent to Ux = 0 [12]. Thus, similar
to (4), we can reformulate problem (1) as
I]l%in F(x)=f(x)+h(x) st. Ux=0. (10)
xe mxn

Similar to Section II-A, we also further rewrite the problem
as a penalized problem and use APG with increasing penalties
to minimize the penalized objective F'(x) + %‘L |Ux||%. How-
ever, due to the nonsmooth term h(x), we cannot compute the
proximal mapping of h(x) + ||UxH % efficiently. Thus, we
use a slightly different strategy here Spemﬁcally, we first com-
pute the gradient of f(x) + 5 ﬂk |Ux||% at some extrapolated

point y, i.e., Vf(y)
proximal mapping of h(x). We describe the iterations as follows:

0r(1 —0k_1)

+ S—OU 2y, and then compute the inexact
k

yh=x"+ (xF — xk1), (11a)
Or—1
= V") + 50 5. U (11b)
L
xFH fé%Rn'nn h(x) + (s, x) + <2 + fl;k) Ix — "I

(11c)

The reason why we use U in (10), rather than I1, is that U ka can
be efficiently computed, which corresponds to the gossip-style
communications. Otherwise, we need to compute the average
across yé“l), .. .,yé“m), which cannot be achieved with closed
form solution in the distributed environment.

When the proximal mapping of h(x), i.e., Prox,(z) =
argmin, g m«n h(x) + %||x — z||? for some z, has closed form
solution or can be easily computed, step (11c) has a low com-
putation cost, which reduces to

k41 k_ 1 Bo a2k
xF 1 =Prox,, (y 71/4‘60/79]@ <Vf(y)+ U))
(12)

We can see that when we set a large penalty parameter f, i.e.,
exchange W1th alarge S suchthat 5 > Lin(12), (12) approx-

imately reduces to x+ & Prox;, (y* — U%y*) and V f(y*) is
flooded by the large penalty parameters. This is another reason
to use the increasing penalty parameters.

When the proximal mapping of i (x) does not have a closed
form solution, we borrow the idea of gradient and commu-
nication sliding proposed in [25], [42]-[44], which skips the
computations of V f and the inter-node communications from
time to time so that only O(1/¢) gradient evaluations and com-
munications are needed in the O(1/€?) iterations required to
solve problem (10). Specifically, we incorporate a subgradient
descent procedure to solve the subproblem in (11c) with a
sliding period T}, which is also adopted by [13]. The subgradient
descent is described as follows for 7}, iterations:

zF = argmin <@h(zk’t),z> + <sk, z>

zeRmxn
L B 1
+ (5 mr) I+ gl

We describe the method in a distributed way in Algorithm 2.
1) Complexities: Introduce constants /21 and Ry such that

Hx?i) —2*||> < R? and |Vfi(z")||*> < R2 foralli, (13)

4859

Algorithm 2: Accelerated Penalty Method (APM).

Initialize x?i) = x(’ﬁ, and z(i)l’T’l = x?i) for all 4.
fork=0,1,2,..., K do
0 (10— .
ufyy = sy + G (wfy — 2y Vi,
sty = VSilyfy) + 52 sy — S5 Wasw(y) Vi
kO _ k1T

HONRO)
fort=0,1,...,7, — 1do

k41 .
z) = argmin,gn <Vh (2(;)) + S() >
(5 + £z - oy P +)1z
— 217 Vi
end for
k+1 ?igl 'Z’)H—l .
end for

and assume R; > 1 for simplicity. Then, we describe the con-
vergence rate for Algorithm 2 in the following theorem.
Theorem 3: Assume that Assumptions 1, 2 and 3 hold
with © = 0. Let sequences {0} and {U;} satisfy 0y =1,
1;:’” = ﬁ, and ¥y = 6. Set T}, = K(]. — O’Q(W)), Nk =

O — max{M,L} ;
PN N and 3y = W where K is the number

of outer iterations. Then, for Algorithm 2, we have

and

m

*ZHJUU—Q

2 _ 1653 LR
< R
H SRz \ Mt T
Consider the simple problem of computing the average
of x(1),...,T(m). The accelerated averaged consensus [40]

needs O(—————=1o iterations to find an e-accurate
<\/T<W> 2%))

V- (W)’
Moreover, from the L-smoothness of f;(x), we know Rs
is often of the order O(LR;). Thus, Theorem 3 estab-

lishes the O(%) communication complexity and
€ —092

the YK | Th = K2(1 — 03(W)) = O(22XLLE gupgradi-
ent computation complexity such that (9) holds for nonsmooth
distributed optimization.

In Theorem 3, we set T}, and 7 dependent on the number of
outer iterations. As explained in Section II-A, it is a unpractical
parameter setting and moreover, the large 7}, and "]Lk make the
algorithm slow in practice. In the following corollary, we give
a more reasonable setting of the parameters at an expense of
higher complexities by the order of log %, ie., log K.

solution. Thus, it is reasonable to assume K >

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

4860

Corollary 1: Under the settings in Theorem 3 but with 7}, =
2

1-0x (W) _ 0}
o and 0, = YNNGk we have
mi3 ' mi3 '

Bolog K 8 (R2>2
< 31+ Ri+—=)
=K A

1682 log K < R2>2

e\t

and
1 & 2
L53{ M

When f(x) is strongly convex, we can prove a faster O(7)

convergence rate for Algorithm 2 with 6, = l%&-Z and), = 67.
However, the quickly diminishing step-size in step (11c) makes
the algorithm slow in practice. So we omit the discussion for the

strongly convex case.

C. Relations of APM-C and APM to the Existing
Algorithm Frameworks

1) Difference From the Classical Penalty Method: To the
best of our knowledge, most traditional work analyze the penalty
method with a fixed penalty parameter [45], [46]. Let’s discuss
the disadvantage of the large and fixed penalty parameter. Take
problem (4) as an example. Let {x*, A"} be a pari of KKT point
of problem (4) and X* be the minimizer of problem (5), from the
proof in [45, Proposition 10], we have

P = FO) + ST > f6) + 5 e

So for any e-accurate solution x of problem (5), we have

£6) + S el — ()

< 760+ Dl - fx) - e <

On the other hand, since x* = argmin, f(x) + (A", IIx) and
IIx* = 0, we have

Jx) = f(x") + (VX < f(x) 4 (A, 11x)
= —[Mlrllx|r < f(x) - f(X).
So gHHxH% — |\l p||IIIx]|| # < &, which leads to

MMFSw?W+¢?O@+ﬁ@

and
|f(x) = f(x)] < max{e, e+ Vee}

by 8= % We can see that the accuracy is dominated by
max{e, £}, and more iterations with smaller € will not produce
a more accurate solution.

On the other hand, even if ¢ = 0 and x = X* with infinite
iterations, we have V f(x) + SlIx = 0, which only leads to
I1Ix| = € V4 ()| = O(c) and | f(x) — f(x")| < e, rather
than || IIx||p = 0 and | f(x) — f(x*)| = 0.

2) Difference From the Classical Accelerated First-Order
Algorithms: We extend the classical accelerated gradient
method [38], [47]-[50] from the unconstrained problems to

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 68, 2020

the linearly constrained problems via the perspective of the
penalty method. However, since we use the increasing penalty
parameters at each iteration, i.e., the penalized objective varies
at different iterations, the conclusion in [38], [49], [50] for the
unconstrained problems cannot be directly used for procedures
(7a)—(7c) and (11a)—(11c). The increasing penalty parameters
make the convergence analysis more challenging.

3) Difference From the Accelerated Gradient Sliding
Method: [9] combined Nesterov’s smoothing technique [51]
with the accelerated gradient sliding methods [42]—-[44] to solve
the nonsmooth problem (10) with f(x) = 0. In fact, when
fixing the penalty parameter as a large one of the order O(1/¢),
Algorithm 2 is similar to the one in [9, Section 6.3]. However,
our method adopts increasing penalty parameters such that it
avoids having to set a large inner iteration number 7} and a
small step-size 7 at the beginning of the outer loop, as shown
in Corollary 1. On the other hand, when f(x) # 0, as explained
in Section 1I-B, V f(y*) is flooded if we set a large and fixed
penalty parameter.

4) Difference From the D-NC and D-NG in [8]: Algorithm 1
can be seen as an improvement over the D-NC proposed in [8].
Both Algorithm 1 and D-NC use Nesterov’s acceleration tech-
nique and multi-consensus, and both attain the optimal compu-
tation complexity for the nonstrongly convex problems. How-
ever, Algorithm 1 is motivated by a constraint-penalty approach
while D-NC is developed from the inexact accelerated gradient
method [49] directly. Moreover, Algorithm 1 can solve both the
strongly convex and nonstrongly convex problems while [8] only
studied the nonstrongly convex case.

As for Algorithm 2, consider the simple case with h(x) = 0
and g—z = k—*c'l, then steps (11b) and (11c) become

it WP (B)WY e Vi)
L+ (k+1)/c L+ (k+1)/c

Thus, when (k+1)/c> L, we have x*™!~Wy*—
Vv f(y*) and it approximates the D-NG in [8]. Algo-
rithm 2 gives a different explanation of the D-NG, and it
improves the D-NG in the sense that it handles a possible
nondifferentiable function h;(x). The complexity of D-NG is
O(W log 1), where ¢ is a small constant. Our com-

plexity, i.e., O(ﬁ), is better because theirs has the extra

log < factor and is more sensitive to 1 — a2 (W).

III. PROOF OF THEOREMS
A. Supporting Lemmas

Before providing a comprehensive convergence analysis for
Algorithms 1 and 2, we first present some useful technical
lemmas. We first give the following easy-to-identify identifies.

Lemma I: Foranyx,y,z,w € R™*", we have the following
two identities:

2(x—z,y—2) =|x—zlp+|y—z|F-lIx -yl
2(x—2,y ~w) =|ly —z|F—|lw—z|f+]x - wlE—x—y|F.
In the following Lemma, we bound the Lagrange multiplier,

which is useful for the complexity analysis in the distributed
optimization community.

Authorized licensed use limited to: Peking University. Downloaded on July 17,2021 at 03:31:38 UTC from IEEE Xplore. Restrictions apply.

LI et al.: DECENTRALIZED ACCELERATED GRADIENT METHODS WITH INCREASING PENALTY PARAMETERS

Lemma 2: Assume that Assumptions 1, 2 and 3 hold with
1 > 0. Then, we have the following properties:
1) There exists a pair of KKT points (x*, *) of saddle point
problem miny, max, f(x) 4+ (A, IIx), such that || *||p <
IV 7).
2) There exists a pair of KKT points (x*, A*) of saddle point

problem miny, maxy f(x) + (A, Ux), such that || *|| p <
V£l
Nk
3) There exists a pair of KKT points (x*, A*) of saddle point
problem miny max) F'(x) + (A, Ux), such that || *|| p <
VmMA|VI)|r
1-o2(W)

The proof can be found in [25, Theorem 2]. The following
lemma is a corollary of the saddle point property.

Lemma 3: [52]1f f(x)isconvex and (x*, *) is a pair of KKT
points of saddle point problem miny max, f(x) + (\, Ax),
then we have f(x) — f(x*) + (A", Ax) > 0 for all x.

The following lemma bounds the consensus violation of
|[TIx|| p from | Ux|| f-

Lemma 4: Assume that Assumption 3 holds. Then, we have

1
||HXHF§\/TWHUX”F~

Proof: From Assumption 3, we know U1l =0, U =UT,
and rank(U) = m — 1. For any x € R™*", denote X = [Ix =
X — %llTx. Since 17X = 0, we know X is orthogonal to the
null space of U, and thus it belongs to the row (i.e., column)
space of U. Let VXVT = U be its economical SVD with
V e R™*(m=1) Then we have

n
= E x; Ux; =
i=1

n

> (VIx) TSV

i=