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Abstract

Recently, the study on learned iterative shrinkage threshold-
ing algorithm (LISTA) has attracted increasing attentions. A
large number of experiments as well as some theories have
proved the high efficiency of LISTA for solving sparse cod-
ing problems. However, existing LISTA methods are all se-
rial connection. To address this issue, we propose a novel
extragradient based LISTA (ELISTA), which has a residual
structure and theoretical guarantees. Moreover, most LISTA
methods use the soft thresholding function, which has been
found to cause a large estimation bias. Therefore, we propose
a thresholding function for ELISTA instead of soft threshold-
ing. From a theoretical perspective, we prove that our method
attains linear convergence. Through ablation experiments, the
improvements of our method on the network structure and the
thresholding function are verified in practice. Extensive em-
pirical results verify the advantages of our method.

1 Introduction
In this paper, we mainly consider the following problem,
which is to recover a sparse vector x∗ ∈ Rn from an ob-
servation vector y ∈ Rm with noise ε ∈ Rm (e.g., additive
Gaussian white noise):

y = Ax∗ + ε, (1)

where A ∈ Rm×n (m� n in general) is the dictionary ma-
trix. Generally, (1) is an ill-posed problem. Therefore, some
prior information such as sparsity or low-rankness needs to
be incorporated, for example, x∗ is sparse, i.e., the number
of elements of the support set of x∗ (or S = {i|x∗i 6= 0}),
is much smaller than the dimension n. A common way to
estimate x∗ is to solve the Lasso problem (Tibshirani 1996):

min
x∈Rn

P (x) = f(x) + g(x) =
1

2
‖y −Ax‖22 + λ‖x‖1, (2)

where λ ≥ 0 is a regularization parameter. There are many
methods for solving the problem of sparse coding, such as
least angle regression (Efron et al. 2004), iterative shrinkage
thresholding algorithm (ISTA) (Daubechies, Defrise, and
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De Mol 2004; Blumensath and Davies 2008) and approxi-
mate message passing (AMP) (Donoho, Maleki, and Mon-
tanari 2009). The update rule of ISTA is

xt+1 = ST

(
xt +

1

L
AT (y −Axt), λ

L

)
, t = 0, 1, 2, ...,

(3)
where ST(·, θ) is the soft-thresholding (ST) function with
the threshold θ, 1

L is the step size which should be taken in
(0, 2

L ), where L is the largest singular value of the dictionary
matrix, and AT (Axt − y) is actrually equal to∇f(xt).

ISTA converges slowly with only a sublinear rate (Beck
and Teboulle 2009). Inspired by ISTA and Deep Neural Net-
works (DNNs) (LeCun, Bengio, and Hinton 2015), Gregor
and LeCun (2010) viewed ISTA as a recurrent neural net-
work (RNN) and proposed a learning-based model named
Learned ISTA (LISTA):

xt+1 = ST(W t
1y +W t

2x
t, θt), t = 0, 1, 2, ..., (4)

whereW t
1 ,W t

2 and θt are initialized as 1
LA

T , I− 1
LA

TA and
λ
L , respectively. All the parameters Θ = {W t

1 ,W
t
2 , θ

t} are
learnable and data-driven. Many empirical and theoretical
results (Aberdam, Golts, and Elad 2020; Giryes et al. 2018)
have shown that LISTA or its variants can recover x∗ from
y more accurately and use one or two order-of-magnitude
fewer iterations than the original ISTA. Moreover, similar to
the Ordinary Differential Equation (ODE) that can be used
to explain some neural networks (Chen et al. 2018a), the
convolutional sparse coding version of LISTA can be used to
explain the convolutional neural network in series (Papyan,
Romano, and Elad 2017).

On the one hand, inspired by (Gregor and LeCun 2010),
many learnable network methods such as (Wang, Ling, and
Huang 2016; Sprechmann, Bronstein, and Sapiro 2015; I-
to, Takabe, and Wadayama 2019; Borgerding, Schniter, and
Rangan 2017; Sreter and Giryes 2018) have been proposed
and successfully used in different fields, and achieved satis-
factory experimental results.

On the other hand, many works (Xin et al. 2016; Giryes
et al. 2018; Moreau and Bruna 2017; Chen et al. 2018b; Li-
u et al. 2019; Wu et al. 2020; Ablin et al. 2019) discussed
LISTA and its variants from a theoretical point of view. A-
mong them, Xin et al. (2016) first discussed learned iterative
hard thresholding (LIHT) (Wang, Ling, and Huang 2016),
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Figure 1: Subsequent improvements on LISTA.

which was obtained by unfolding iterative hard thresholding
(IHT) (Blumensath and Davies 2009) inspired by (Gregor
and LeCun 2010), in terms of improving the restricted isom-
etry property constant. Inspired by (Xin et al. 2016), He et al.
(2017) connected sparse Bayesian learning (Tipping 2001)
with long short-term memory (LSTM) (Gers, Schraudolph,
and Schmidhuber 2002), and Moreau and Bruna (2017) ex-
plained the mechanism of LISTA by re-factorizing the Gram
matrix of dictionary. Other works (Chen et al. 2018b; Liu
et al. 2019; Wu et al. 2020; Ablin et al. 2019) related to this
paper will be detailed in Section 1.1.

A series of studies on LISTA have attracted increasing
attentions and inspired many subsequent works in differen-
t aspects, including learning based optimization (Xie et al.
2019; Sun et al. 2016), design of DNNs (Metzler, Mousavi,
and Baraniuk 2017; Zhang and Ghanem 2018; Zhou et al.
2018; Chen et al. 2020; Rick Chang et al. 2017; Zhang et al.
2020; Simon and Elad 2019) and interpreting the DNNs
(Zarka et al. 2020; Papyan, Romano, and Elad 2017; Ab-
erdam, Sulam, and Elad 2019; Sulam et al. 2018, 2019).

1.1 Related Works
Chen et al. (2018b) proved the coupling relationship be-
tween W t

1 and W t
2 , i.e., W t

2 → (I −W t
1A) when t → ∞,

which greatly reduced the number of learnable parameters
of LISTA. They also first provided the rigorous proof of the
linear convergence of LISTA, which is the basis of the sub-
sequent works. Moreover, the subsequent improvements of
LISTA can be divided into two categories: the improvements
of the network structure and thresholding functions.

For the improvement of the network structure, Liu et al.
(2019) further reduced the number of learnable parame-
ters by proposing a noval algorithm, whose update rule is
xt+1 = ST(xt−αtW (Axt−y), θt), where αt is a learnable
scaler. They proposed TiLISTA when W is a learnable pa-
rameter and ALISTA whenW is obtained by solving a data-
independent optimization problem. For the improvement of
thresholding functions, Wu et al. (2020) argued that the code
components in LISTA estimations may be lower than ex-
pected, i.e., the algorithms require gains. Inspired by gated
recurrent unit (GRU) (Cho et al. 2014; Chung et al. 2015),
Wu et al. (2020) proposed GLISTA, which can be viewed as

multiplying ST by a coefficient greater than 1 to reduce the
gap between ST and hard thresholding (HT). The improve-
ments of LISTA mentioned above are shown in Figure 1,
where ELISTA is an innovative algorithm proposed in this
paper (see details in Section 2) .

Moreover, Ablin et al. (2019) also discussed LISTA from
a theoretical perspective. They proposed a simple step size
strategy which can improve the convergence rate of ISTA
by leveraging the space of the iterates, and presented a net-
work named SLISTA to learn only the step size of ISTA for
unsupervised training.

1.2 Motivations and Main Contributions
We attempt to answer the following questions, which are not
fully addressed in the existing literature yet:
• All the existing variants of LISTA with convergence

guarantees are serial, the residual network (Res-Net) (He
et al. 2016), which is influential in deep learning, has not
been introduced into LISTA. An important reason is that
changing the original structure of LISTA will destroy its
excellent mathematical interpretability. Can we get a new
LISTA with an interpretable residual structure, which has a
convergence guarantee?
• Recent studies (Fan and Li 2001; Gu, Wang, and Liu

2014; Xu and Gu 2016; Zhu and Gu 2015; Lederer 2013;
Deledalle et al. 2017) have shown that ST may cause large
estimation biases, and incurs worse empirical performance
than the hard-thresholding (HT) function, which means
there are some limitations by using ST for sparse coding.
Can we improve the thresholding function to reduce the gap
between ST and HT?

Our Main Contributions: The main contributions of this
paper are listed as follows:
• We propose a novel variant of LISTA with residual

structure by introducing the idea of extragradient into LISTA
and establishing the relationship with Res-Net, which is an
improvment about the network structure for solving sparse
coding problems. To the best of our knowledge, this is the
first residual structure LISTA with theoretical guarantees.
• We design a new thresholding function, called the

Multistage-Thresholding (MT) function, to reduce the gap
between ST and HT. A large number of experiments show
that MT can ensure the sparsity of the representation as low
as possible and obtain effective sparse representation.
• Using extragradient technique and the MT operator,

we propose a novel algorithm, named Extragradient based
LISTA (ELISTA), and prove the convergence of ELISTA.
Moreover, we conduct ablation experiments to verify the ef-
fectiveness of each of our improvements. Extensive experi-
mental results show our ELISTA is superior to the state-of-
the-art methods.

2 Extragradient Based LISTA and
Multistage-Thresholding

In this section, we first introduce the technique of extra-
gradient into LISTA. Then we propose a new multistage-
thresholding (MT) function and analyze its advantages. Fi-
nally, by combining the techniques of extragradient and MT,



we propose an innovative algorithm, named Extragradien-
t based LISTA (ELISTA), and depict it in detail. Moreover,
we establish the relationship between ELISTA and Res-Net,
which is one of the reasons why ELISTA is advantageous.

2.1 Extragradient Method
We note that iterative algorithms, such as ISTA, can actual-
ly be treated as a proximal gradient descent method, which
is a first-order optimization algorithm, for special objective
functions. Thus, we want to introduce the idea of extragra-
dient into the related iterative algorithms. The extragradient
method was first proposed by (Korpelevich 1976), which is a
classical method for variational inequality problems. For op-
timization problems, the idea of extragradient was first used
in (Nguyen et al. 2018), which proposed an extended extra-
gradient method (EEG) by combining this idea with some
first-order descent methods. In the t-th iteration of EEG, it
first calculates the gradient at xt, and updates xt according
to the gradient to get a middle point xt+

1
2 , then calculates

the gradient at xt+
1
2 , and updates the original point xt ac-

cording to the gradient at the middle point xt+
1
2 to obtain

xt+1, which is the key idea of extragradient. Intuitively, the
additional step in each iteration of EEG allows us to examine
the geometry of the problem and consider its curvature infor-
mation, which is one of the most important bottlenecks for
first-order methods. Thus, by using the idea of extragradien-
t, we can get a better result after each iteration. The update
rules of EEG for Problem (2) can be rewritten as follows:

xt+
1
2 = ST

(
xt − 1

LA
T (Axt − y), λL

)
,

xt+1 = ST
(
xt − 1

LA
T (Axt+

1
2 − y), λL

)
.

(5)

This form of EEG is similar to ISTA, thus it can be regarded
as a generalization of ISTA.

2.2 Multistage-thresholding
The nonlinear transformations in most LISTA related algo-
rithms are realized by the standard ST. However, accord-
ing to its definition, we know that ST has a weakness, i.e.,
|xti| obtained from the algorithms with ST is actually small-
er than the real |x∗i |, which was described by Proposition 1
in (Wu et al. 2020) and alleviated by (Wu et al. 2020) with
the proposal of a gain gate (GG) and an algorithm called
GLISTA, whose update rule is as follows:

xt+1 = ST(W t(gt(x
t, y|Λtg)� xt) + U ty, bt),

where gt(x
t, y|Λtg) is the gate function and greater than

1, and Λtg is the set of its parameters to learn. Besides,
W t, U t and bt are also learnable parameters. We define

x̃t
4
= gt(x

t, y|Λtg)� xt, and obtain

x̃t+1 = gt+1(xt+1, y|Λt+1
g )� ST(W tx̃t + U ty, bt),

which means that GLISTA multiplies ST by a number
greater than 1, thus reducing the gap between ST and HT.
Therefore, GLISTA can be treated as an improvement of ST.
However, the proposal of GG in (Wu et al. 2020) is based
on the assumption that there is no “false positive”, which is

Figure 2: Comparison of different thresholding functions
(Best viewed in color).

not always true in reality. Therefore, GLISTA will increase
some values that should be decreased, which will bring bad
results. To address the issue, we design and propose an inno-
vative thresholding function called Multistage-Thresholding
(MT) function, which is defined as follows:

z = MT(x, θ, θ̄)
4
=


0, 0 ≤ |x| < θ,

θ̄
θ̄−θ sign(x)(|x| − θ), θ ≤ |x| < θ̄,

x, |x| ≥ θ̄.
(6)

Different thresholding functions are shown in Figure 2,
from which we know that MT is equal to GG when 0 ≤
|x| < θ̄, which plays the role of gain to ST, and when |x| ≥
θ̄, it is equal to HT, which makes the result more accurate.
Therefore, compared with other thresholding functions, MT
can get a better result at each layer.

Our MT is similar to the functions of HELUσ(·) (Wang,
Ling, and Huang 2016), SCAD (Li 2001) and MCP (Zhang
2010). However, there are some differences between MT,
HELUσ(·), SCAD and MCP in terms of the motivation of
proposal and the internal mathematical mechanism. The de-
tailed discussions are given in the Supplementary Material.

2.3 Extragradient Based LISTA and the
Relationship with Res-Net

In order to speed up the convergence of EEG, we combine
the algorithm with deep networks and regard 1

LA
T and two

thresholds of two steps in (5) as learnable parameters, and
get the following update rules:

xt+
1
2 = ST(xt −W t

1(Axt − y), θt1),

xt+1 = ST(xt −W t
2(Axt+

1
2 − y), θt2).

(7)

However, since the above scheme has two different matrices
W t

1 andW t
2 to learn in each layer, the number of network pa-

rameters greatly increases and the training of the network s-
lows down significantly. Therefore, to address this issue and
further establish the connection between the two steps of (7),
we convert W t

1 and W t
2 into αt1W

t and αt2W
t, respectively,

where αt1 and αt2 are two scalars to learn. Then, inspired by
(Liu et al. 2019), we change the W t of each layer into the
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Figure 3: Comparison of the network structures of ELISTA and Res-Net.

Table 1: Comparison of the number of parameters to learn in different methods.

LISTA LAMP GLISTA ELISTA-m-t ELISTA-m ELISTA-t ELISTA
O(TMN+T ) O(TMN+T ) O(TMN+T ) O(TMN+T ) O(MN+T ) O(TMN+T ) O(MN+T )

same W and get a tied algorithm, which can significantly
reduce the number of learnable parameters. By replacing ST
with MT, we finally obtain the following update rules for our
Extragradient Based LISTA (ELISTA):

xt+
1
2 = MT(xt − αt1W (Axt − y), θt1, θ̄

t
1),

xt+1 = MT(xt − αt2W (Axt+
1
2 − y), θt2, θ̄

t
2),

(8)

where θ̄t1 and θ̄t2 are also learnable parameters.
In order to make the algorithms in this paper easy to dis-

tinguish, we present the following naming system:
ELISTA is our main algorithm, which is obtained by intro-

ducing the idea of extragradient into LISTA and using MT,
and it is a tied algorithm. It should be emphasized that we
use +m or -m to represent using MT or not, and -t to indicate
that the algorithm is untied. For example, ELISTA-m means
ELISTA using ST instead of MT.

Besides, according to (8), we can get the network struc-
ture diagram of ELISTA. Through our observation and com-
parison, we find that the network structure of ELISTA is cor-
responding to the Res-Net. Since y is already given, we can
regard y as a bias. Thus, from Figure 3, we can see that the
structure of the network obtained by ELISTA is the same as
that of Res-Net, including weight layer, activation function
and identity. As we all know, Res-Net can obtain a better per-
formance by improving the network structure. Therefore, it
is meaningful to discuss and study the explanation for the
internal mathematical mechanism of Res-Net. On the one
hand, to some extend, our algorithm may be regarded as a
mathematical explanation of the reason for the superiority
of Res-Net. On the other hand, the connection and combina-
tion of ELISTA and Res-Net might be able to explain why
our algorithm has better performance than existing methods.
Besides, there is a lot of work using ODE to interpret the
network by considering ODE as a continuous equivalent of
Residual Networks (ResNets) (Chen et al. 2018a). However,
we found that ODE can only explain the networks with lin-
ear connection blocks, while ours is nonlinear. But, the form
of our blocks are less general than those of ODE.

Moreover, the comparison on the number of parameters of
the network corresponding to different algorithms is shown
in Table 1, where LAMP (Borgerding, Schniter, and Rangan
2017) is an algorithm to transform AMP (Donoho, Male-
ki, and Montanari 2009) into a neural network inspired by
(Gregor and LeCun 2010).

3 Convergence Analysis
In this section, we provide the convergence analysis of our
algorithms. We first give a basic assumption and two useful
definitions. Then we provide the convergence property of
ELISTA, and that of ELISTA-t is similar. We note that our
analysis, like that of Theorems 3 and 4 of (Wu et al. 2020),
is proved under the existence of “false positive”, while the
theoretical analysis of (Chen et al. 2018b; Liu et al. 2019)
was provided under the assumption of no “false positive”,
which is difficult to satisfy in reality.
Assumption 1 (Basic assumption). The signal x∗ is sam-
pled from the following set:

x∗ ∈ X (B, s)
4
= {x∗||x∗i | ≤ B, ∀i, ‖x∗‖0 ≤ s}.

In other words, x∗ is bounded and s-sparse (s ≥ 2). Fur-
thermore, we assume ε = 0.

We note that this assumption is a basic assumption for this
class of algorithms. Almost all the related algorithms need
to satisfy this assumption, for example (Liu et al. 2019; Wu
et al. 2020).
Definition 1 ((Liu et al. 2019)). Given a matrixA ∈ Rm×n,
its generalized mutual coherence is defined as follows:

µ(A) = inf
W∈Rn×m,Wi,:A:,i=1,∀i

{
max

i6=j,1≤i,j≤n
Wi,:A:,j

}
.

We let W(A) denote a set of all matrices with the general-
ized mutual coherence µ(A), which means that
W(A)

=

{
W | max

i6=j,1≤i,j≤n
Wi,:A:,j=µ(A),Wi,:A:,i = 1,∀i

}
.



Table 2: The experimental results of ablation experiments. We use +m or -m to represent using MT or not, and -t to indicate
that the algorithm is untied.

Verify the network structure Verify the thresholding function Ours
LISTA TiLISTA ELISTA-m-t ELISTA-m GLISTA LISTA+m ELISTA-t ELISTA

NMSE −36.01 −50.28 −51.82 −65.66 −63.73 −62.21 −77.03 −107.48
FLSNE 0.16 0.02 0.10 0.02 0.02 0.12 0.04 0.00
SPERR 147.12 46.26 3.23 2.35 57.22 0.80 0.15 0.01

A weight matrix W is “good” if W ∈ W(A).
This definition is also described in Definition 1 in (Liu

et al. 2019). From Lemma 1 in (Chen et al. 2018b), we know
W(A) 6= ∅.
Definition 2. Given a model with Θ, in which

θt1 =Γµ(A) sup
x∗
‖xt−x∗‖1, θt2 =Γµ(A) sup

x∗
‖xt+ 1

2 −x∗‖1,

we use ωt+ 1
2
(kt+ 1

2
|Θ) and ωt+1(kt+1|Θ) to characterize its

relationship with the “false positive” rate, which is

ωk+ 1
2
(kt+ 1

2
|Θ)

= sup
∀x∗,|supp(x̌t+1

2 )
⋃
supp(x∗)|≤|supp(x∗)|+k

t+1
2

Γ,

ωk+1(kt+1|Θ)
= sup∀x∗,|supp(x̌t+1)

⋃
supp(x∗)|≤|supp(x∗)|+kt+1

Γ,

where x̌t+
1
2 := MT((I−αt1WA)(xt+

1
2 −x∗), θt1), x̌t+1 :=

MT((I − αt2WA)(xt+1 − x∗), θt2) and kt+ 1
2

and kt+1 are

the desired maximal number of “false positive” of xt+
1
2 and

xt+1, respectively.
This definition is similar to Definition 2 in (Wu et al.

2020). Besides, this definition is only an example for
ELISTA. For our ELISTA-t, we can also easily get a sim-
ilar definition.

Based on the assumption and these two definitions, we
can get the linear convergence of ELISTA, which can be giv-
en by the following theorem.
Theorem 1 (Linear Convergence for ELISTA). If Assump-
tion 1 holds, W ∈ W(A) can be satisfied by selecting W
properly,

θt1 = αt1ωt+ 1
2
(kt+ 1

2
|Θ)µ(A) supx∗ ‖xt − x∗‖1,

θt2 = αt2ωt+1(kt+1|Θ)µ(A) supx∗ ‖xt+
1
2 − x∗‖1,

(9)

θ̄t1 ≥ θt1 + |x̃t+
1
2

i |, θ̄t2 ≥ θt2 + |x̃t+1
i | are achieved, αt1 and

αt2 belong to specific bounded intervals for different cases,
and s is small enough, then for the sequences generated by
ELISTA, the following result holds

‖xt − x∗‖2 ≤ sB exp
( t∑
i=1

c
′

i

)
< sB exp(c

′
t), (10)

where c
′

= maxi=1,2,...,t{c
′

i}. ∃t0 = d− log( sBσ )/ce, where
c = log((2s − 1)µ(A)), σ = ‖x∗‖1, for i ≥ t0, 0 <

ki− 1
2
, ki < s, if γi−

1
2 = γi = 0, then c

′

i < 0, and for

i > t0, ki− 1
2

= ki = 0, if 1− ωi− 1
2
(s|Θ) < γi−

1
2 ≤ 1 and

1− ωi(s|Θ) < γi ≤ 1, then c
′

i < 0. Thus, c
′
< 0.

The definitions of γi−
1
2 and γi are given in the detailed

proof of this theorem in the Supplementary Material. Here
we give a simple sketch of the full proof:

To prove Theorem 1, we first need to obtain the rela-
tionship between ‖xt+1 − x∗‖2 and ‖xt − x∗‖2. To calcu-
late all non-zero elements of xt+

1
2 − x∗, we divide them

into three parts: i ∈ S̄(t+ 1
2 ), i ∈ S\S̄(t+ 1

2 ) and i ∈
S(t+ 1

2 ), where S
4
= supp(x∗), S̄(t+ 1

2 ) 4=S∩supp(xt+ 1
2 ) and

S(t+ 1
2 ) 4={i|i ∈ supp(xt+ 1

2 ), i /∈ S}, and then sum the re-
sults to obtain the relationship between ‖xt+ 1

2 − x∗‖1 and
‖xt−x∗‖1. In a similar way, we can get the relationship be-
tween ‖xt+1 − x∗‖1, ‖xt+ 1

2 − x∗‖1 and ‖xt − x∗‖1. Then,
we can obtain the relationship between‖xt+1 − x∗‖1 and
‖xt−x∗‖1, and thus the relationship between ‖xt+1−x∗‖2
and ‖xt − x∗‖2. Finally, Theorem 1 can be proved by the
recursion in terms of t.

4 Numerical Results

In this section, we first perform ablation experiments to ver-
ify the effectiveness of our method and provide the justifica-
tion of some parameters in the algorithms and the verifica-
tion of an assumption. Then we evaluate our ELISTA and
ELISTA-t in terms of sparse representation performance,
natural image inpainting, 3D geometry recovery via pho-
tometric stereo, support set accuracy and unsupervised ex-
periment as in (Ablin et al. 2019). All the experimental set-
tings are the same as previous works (Chen et al. 2018b;
Liu et al. 2019; Wu et al. 2020; Borgerding, Schniter, and
Rangan 2017). We find that Support Selection (SS) (Chen
et al. 2018b) can generally improve the performance of re-
lated networks including ours. However, the performance of
SS is greatly affected by the hyper parameters, and it is nec-
essary to know the sparsity of x∗ in advance to set the hyper
parameters, which is difficult to get in real situations. Thus,
in order to more fairly compare the impact of the network
itself on performance, all the networks do not use SS. All
training follows (Chen et al. 2018b) (The details are provid-
ed in the Supplementary Material). For all our methods, αt1
and αt2 are initialized as 1.0. θt1 and θt2 are initialized as λ

L

when using ST, while θt1 and θt2 are initialized as λ
L − 0.1,

θ̄t1 and θ̄t2 are initialized as λ
L when using MT. All the results

are obtained by running ten times and averaged. Verification
of the parameters and the assumption, support set accuracy
and unsupervised experiment are presented in the Supple-
mentary Material.
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Figure 4: Comparison of sparse representation with different layers under different SNR and κ.

Table 3: The PSNR results of the methods for natural image inpainting tasks.

Barbara Boat House Lena Peppers C.man Couple Finger Hill Man Montage
ISTA 23.51 25.38 26.88 26.11 23.53 22.73 25.33 20.64 27.28 24.25 21.29

LISTA 24.52 27.29 29.50 27.84 25.78 24.51 27.20 23.60 28.92 26.32 22.50
GLISTA 25.30 28.95 30.95 29.97 27.64 25.76 27.48 26.29 29.53 28.14 24.31
LFISTA 26.01 29.68 32.06 32.12 28.57 26.77 29.77 28.10 30.69 30.22 26.94
ELISTA 26.60 30.33 32.76 32.75 29.61 27.67 30.09 28.20 30.41 30.36 28.49

4.1 Ablation Experiments
In this subsection, by controlling variables, we compare our
ELISTA-m with LISTA (Gregor and LeCun 2010; Chen
et al. 2018b) and TiLISTA (Liu et al. 2019), and compare
LISTA+m1 with LISTA and GLISTA (Wu et al. 2020) in the
noiseless condition to verify the improvement of the network
structure and that of the thresholding function, respectively.
For TiLISTA, we set

xt+
1
2 = ST(xt − αt1W (Axt − y), θt1),

xt+1 = ST(xt+
1
2 − αt2W (Axt+

1
2 − y), θt2)

(11)

as one layer2. We set m = 250, n = 500 and T = 16. αt1
and αt2 in TiLISTA are also initialized as 1.0. We sample the
elements of the dictionary matrix A randomly from a stan-
dard Gaussian distribution in simulations, the ground-truth
x∗ is also generated by the standard Gaussian distribution
and we use Bernoulli distribution with a probability of 0.1
to ensure the sparsity. y is produced by A, x∗ and noise ε.
All experimental results are on the test set. The sparse rep-
resentation performance is evaluated by NMSE (in dB):

NMSE
(
x̂, x∗

)
= 10 log10

(E ‖x̂− x∗‖2
E ‖x∗‖2

)
. (12)

We use NMSE, FLSNE and SPERR as indicators to evaluate
the networks, where NMSE is defined in (12), FLSNE is the
number of “false negative” and SPERR denotes the number
of support error.

From Table 2, we can find that: (i) Because of the second-
order curvature information and residual structure brought

1LISTA+m is an algorithm which replaces ST in LISTA with
MT.

2The definition of one layer is different from that of (Liu et al.
2019). The purpose of this change is to control variables to verify
the validity of our ELISTA.

by the extragradient, ELISTA-m is superior to LISTA and
TiLISTA in terms of NMSE and SPERR, where the two lat-
ter are serial connection. (ii) ST tends to expand the size
of the support set to get a smaller FLSNE, however this also
leads to a very large SPERR and a worse NMSE. GG can ob-
tain better results than ST by narrowing the gap between ST
and HT, but the SPERR of GLISTA is still large. That is, ST
and GG expand the size of the support set in order to obtain
a better sparse representation, so as to obtain a sparse rep-
resentation that is not sparse. The residual structure induced
by the extragradient can alleviate the problem of ST. Since
MT is closer to HT, it can obtain a more sparse representa-
tion, which in turn enhances NMSE. Because our ELISTA is
an improved algorithm combining these two improvements,
it outperforms all the other algorithms, which also shows the
effectiveness of the residual structure and the improvement
of our thresholding function.

4.2 Sparse Representation Performance
In this subsection, we compare our ELISTA and ELISTA-t
with the state-of-the-art methods: LISTA, LAMP (Borgerd-
ing, Schniter, and Rangan 2017) and GLISTA. We train the
networks with three different noise levels: SNR (Signal-to-
Noise Ratio) = 30, 40,∞ and three different ill conditioned
matrices A with condition numbers κ = 5, 30, 50.

Figure 4 shows that our methods are obviously better than
the compared methods in terms of both convergence speed
and accuracy in the noiseless case. Especially, compared
with LISTA, the NMSE performance of our methods is near-
ly twice better than that of LISTA. In the presence of noise,
our methods achieve the state-of-the-art convergence accu-
racy and are obviously better than other methods in terms of
convergence speed. We note that due to the limitation of s-
pace, only part of the results are given here, and more results
are reported in the Supplementary Material.



(a) Corrupted image (b) ISTA, PSNR=21.19

(c) LISTA, PSNR=22.50 (d) GLISTA, PSNR=24.31

(e) LFISTA, PSNR=26.94 (f) ELISTA, PSNR=28.49

Figure 5: Comparison of image inpainting with 50% missing
pixels on Montage.

4.3 Natural Image Inpainting
In this subsection, we apply our algorithm to solve the natu-
ral image inpainting problem, and comparing it with LISTA,
LFISTA (Moreau and Bruna 2017; Aberdam, Golts, and E-
lad 2020) and GLISTA. The training dataset is BSDS500
and the test dataset is Set 11. For LFISTA, we use the code
provided by this work and for the other algorithms, we im-
plement them ourselves. The PSNR of different algorithms
are shown in Table 3, the qualitative results on the Montage
image are shown in Figure 5 and the other qualitative results
are shown in the Supplementary Material. In addition, de-
tailed experimental setup and other details are also given in
the Supplementary Material.

From Table 3, Figure 5 and all the other qualitative results
in the Supplementary Material, we can see that our ELISTA
outperforms other algorithms in most cases.

Table 4: The mean angular error of 3D geometry recovery
via photometric stereo.

q LISTA GLISTA ELISTA-t ELISTA
35 0.06836 0.06249 0.03534 0.02754
25 0.09664 0.10033 0.05885 0.04947
15 0.69334 0.63967 0.47569 0.60010

4.4 3D Geometry Recovery via Photometric
Stereo

In this subsection, we compare our ELISTA and ELISTA-t
with the state-of-the-art methods: LISTA and GLISTA for
3D Geometry Recovery via Photometric Stereo. Photomet-
ric stereovision is a powerful technique used to recover high
resolution surface normals from a 3D scene using appear-
ance changes of 2D images in different lighting (Woodham
1980). In practice, however, the estimation process is often
interrupted by non-lambert effects, such as highlights, shad-
ows, or image noise. This problem can be solved by decom-
posing the observation matrix of the superimposed image
under different lighting conditions into ideal lambert compo-
nents and sparse error terms (Wu et al. 2010; Ikehata et al.
2012), i.e., o = ρLn + e, where o ∈ Rq denotes the re-
sulting measurements, n ∈ R3 denotes the true surface nor-
mal, L ∈ Rq×3 defines a lighting direction, ρ is the dif-
fuse albedo, acting here as a scalar multiplier and e ∈ Rq
is an unknown sparse vector. By multiplying both sides of
o = ρLn+e by the orthogonal complement to L, we can get
Projnull

[L>]
(o) = Projnull

[L>]
(e). Let Projnull

[L>]
(o) be

y and Projnull
[L>]

(e) be Ax, e can be obtained by solving
the sparse coding problem. Then we can use L†(o − e) to
recover n. The main experimental settings follow (Xin et al.
2016; Wu et al. 2020; He et al. 2017). Tests are performed
using the 32-bit HDR gray-scale images of objects “Bunny”
as in (Xin et al. 2016; Wu et al. 2020; He et al. 2017) with
q = 35, 25, 15 and 40% of the elements of the sparse noise
e are non-zero. From Table 4, we can find that our methods
perform much better than LISTA and GLISTA.

5 Conclusions

In this paper, we proposed a novel extragradient based
learned iterative shrinkage thresholding algorithm (called
ELISTA) with interpretable residual structure and a better
thresholding function. Moreover, we proved that ELISTA
can achieve linear convergence. Extensive empirical results
verified the high efficiency of our method. This could have
both theoretical and practical impacts to the relationship be-
tween new neural network architectures and advanced algo-
rithms, and potentially deepen our understanding to inter-
pretability of deep learning models. One limitation of this
paper is that in theory, we use the same assumption as in the
previous work (Chen et al. 2018b; Liu et al. 2019; Wu et al.
2020), that the sparsity of x∗ is small enough. Removing this
common assumption is our future work.
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