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Abstract

Spherical signals exist in many applications, e.g., planetary
data, LiDAR scans and digitalization of 3D objects, calling
for models that can process spherical data effectively. It does
not perform well when simply projecting spherical data into
the 2D plane and then using planar convolution neural net-
works (CNNs), because of the distortion from projection and
ineffective translation equivariance.
Actually, good principles of designing spherical CNNs are
avoiding distortions and converting the shift equivariance
property in planar CNNs to rotation equivariance in the spher-
ical domain. In this work, we use orientable partial differen-
tial operators (PDOs) to design a spherical equivariant CNN,
PDO-eS2CNN, which is exactly rotation equivariant in the
continuous domain. We then discretize PDO-eS2CNNs, and
analyze the equivariance error resulted from discretization.
This is the first time that the equivariance error is theoreti-
cally analyzed in the spherical domain. In experiments, PDO-
eS2CNNs show greater parameter efficiency and perform su-
perior to other spherical CNNs significantly on several bench-
mark datasets.

1 Introduction
Nowadays, many machine learning problems in computer
vision require to process spherical data found in various
applications; for instance, omnidirectional RGB-D images
such as Matterport (Chang et al. 2017), 3D LiDAR scans
from self-driving cars (Dewan et al. 2016), molecular mod-
elling (Boomsma and Frellsen 2017), and planetary signals
in earth science (Racah et al. 2017). Unfortunately, naively
mapping spherical signals to R2 and then using planar con-
volution neural networks (CNNs) is destined to fail, because
this projection will result in space-varying distortions, and
make shift equivariance ineffective.

Actually, the success of planar CNNs is mainly attributed
to their shift equivariance (Cohen and Welling 2016): shift-
ing an image and then feeding it through multiple layers is
the same as feeding the original image and then shifting
the resulted feature maps. Since there do not exist transla-
tion symmetries in the spherical domain, a good principle of
modifying planar CNNs to spherical CNNs is to convert the
shift equivariance property to 3D rotation equivariance in
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the spherical domain. Motivated by this, (Cohen et al. 2018)
and (Esteves et al. 2018) propose spherical CNNs that are
equivariant over the SO(3) group. However, these methods
represent the sphere using the spherical coordinates, which
over-sample near the poles and cause significant distortion.

To avoid the impact of distortion, many recent works pro-
cess spherical data using much more uniform representa-
tions. Among these methods, (Cohen et al. 2019) and (Zhang
et al. 2019) approximate the sphere using the icosahedron
and propose Icosahedral CNN and orientation-aware CNN,
respectively. Specifically, Icosahedral CNN (Cohen et al.
2019) is rotation equivariant while orientation-aware CNN
(Zhang et al. 2019) is beneficial for some orientation-aware
tasks, such as semantic segmentation with preferred orienta-
tion. However, these methods need project spherical data to
the icosahedron, resulting in inaccurate representations.

Actually, there exist some discretizations of the sphere
that are both uniform and accurate, like the icosahedral
spherical mesh (Baumgardner and Frederickson 1985) and
the HealPIX (Gorski et al. 2005). However, these represen-
tations are non-Euclidean structured grids (Bronstein et al.
2017), which have no uniform locality, thus conventional
convolutions defined in the Euclidean case (e.g., square lat-
tices) cannot work on them. Accordingly, (Jiang et al. 2019)
propose MeshConvs, which use orientable parameterized
partial differential operators (PDOs) to process spherical
signals represented by non-Euclidean structured grids. How-
ever, MeshConvs are not rotation equivariant.

In order to address the above issues in the existing meth-
ods, we combine the advantages of (Cohen et al. 2019) and
(Jiang et al. 2019) together, and propose PDO-eS2CNN,
which is an orientable spherical CNN equivariant over
SO(3) based on PDOs. The distinction from (Cohen et al.
2019) is that our model is orientation-aware and can work on
much more accurate non-Euclidean structured representa-
tions instead of icosahedron, and the difference from (Jiang
et al. 2019) is that ours is rotation equivariant.

Our contributions are as follows:

• We use PDOs to design an orientable spherical CNN that
is exactly equivariant over the SO(3) group in the contin-
uous domain.

• The equivariance of the PDO-eS2CNN becomes approxi-
mate after the discretization, and it is the first time that the



Table 1: Summary of notations in this paper.

S2 The sphere SO(2), SO(3) Rotation groups
α, β, γ The ZYZ-Euler angles Z(α), Y (β) The rotations around z and y axes
R R ∈ SO(3) and R = Z(αR)Y (βR)Z(γR) n = (0, 0, 1)T The north pole
P P ∈ S2, and P (α, β) = Z(α)Y (β)n P̄ The coset representative associated with P
P̄ · SO(2) {P̄Z(γ)|γ ∈ [0, 2π)}, the left coset of SO(2) E ' F E is homeomorphic to F
AR The 2D rotation matrix simplifying Z(γR) C∞(S2) The space of smooth function on S2

C∞(SO(3)) The space of smooth function on SO(3) s, so s ∈ C∞(S2) and so ∈ C∞(SO(3))
πS
R̃

[s], πSO
R̃

[so] The group actions of R̃ on s and so UP An open set of S2 containing P
Ũp Ũp = ϕP (UP ) ⊂ R2 ϕP The homeomorphism from UP to ŨP
s̄ The smooth function on R3 extended by s H(·, ·;w) The polynomail parameterized by w

∂/∂x
(A)
i The PDOs rotated by A ∈ SO(2) ∇x[f ],∇2

x[f ] The gradient and the Hessian matrix of f
∇(A)
x , (∇(A)

x )2 The operators defined in (6) and (7) χ(A) The differential operators defined in (4)
Ψ,Φ The mappings defined in (9) and (10) I,F Discrete inputs and intermediate feature maps
fP fP = s̄ · ϕ−1

P O(·) The infinitesimal of the same order
DP , D̂P Partial derivatives matrix and its estimation ∇̂x[f ], ∇̂2

x[f ] The estimations of∇x[f ] and ∇2
x[f ]

χ̃(A), Ψ̃, Φ̃ The discretizations of χ(A),Ψ and Φ CN The N -ary cyclic group

theoretical equivariance error analysis is provided when
the equivariance is approximate in the spherical domain.

• PDO-eS2CNNs show greater parameter efficiency and
perform very competitively on spherical MNIST classifi-
cation, 2D-3D-S image segmentation and QM7 atomiza-
tion energy prediction tasks.

The paper is organized as follows. In Section 2, we re-
view some works related to spherical CNNs. In Section 3,
we introduce some prior knowledge to make our work easy
to understand. In Section 4, we use orientable parameterized
PDOs to design PDO-eS2CNN, which is exactly equivari-
ant over SO(3) in the continuous domain. In Section 5, we
use Taylor’s expansion to estimate PDOs accurately, imple-
ment PDO-eS2CNN in the discrete domain, and provide the
equivariance error analysis. In Section 6, we evaluate our
method on multiple tasks.

2 Related Work
The most straightforward method to process spherical sig-
nals is mapping them into the planar domain via the
equirectangular projection (Su and Grauman 2017), and then
using 2D CNNs. However, this projection will result in se-
vere distortion. (Coors, Condurache, and Geiger 2018) and
(Zhao et al. 2018) implement CNNs on the tangent plane of
the spherical image to reduce distortions. Even though, such
methods are not equivariant in the spherical domain.

Actually, many works (Cohen and Welling 2016; Cesa
and Weiler 2019; Shen et al. 2020; Sosnovik, Szmaja, and
Smeulders 2019; Weiler et al. 2018; Ravanbakhsh, Schnei-
der, and Póczos 2017) focus on incorporating equivari-
ance into network architectures. As for spherical data, some
works (Bruna et al. 2014; Frossard and Khasanova 2017;
Perraudin et al. 2019; Defferrard et al. 2020) represent
the sampled sphere as a graph connecting pixels accord-
ing to distance between them and utilize graph-based meth-
ods to process it. Particularly, (Perraudin et al. 2019) pro-
pose DeepSphere using isotropic filters, and achieve rotation
equivariance. (Defferrard et al. 2020) improve DeepSphere
and achieve a controllable tradeoff between cost and equiv-

ariance. However, the isotropic filters they use significantly
restrict the capacity of models.

Also, there exist some works (Cohen et al. 2018; Esteves
et al. 2018; Kondor, Lin, and Trivedi 2018) using anisotropic
filters to achieve rotation equivariance. Specifically, (Cohen
et al. 2018) extend the group equivariance theory into the
spherical domain and use a generalized Fourier transform
for implementation. However, these methods only work on
nonuniform grids which over-sample near the poles, and as a
result, these methods suffer from significant distortion. (Co-
hen et al. 2019) further extend group equivariance to gauge
equivariance, which is automatically SO(3) equivariant in
the spherical domain. However, their theory cannot show
how the feature maps transform w.r.t. rotation transforma-
tions explicitly whereas ours can, which makes our theory
more transparent and explainable. (Cohen et al. 2019) im-
plement gauge equivariant CNNs on the surface of the icosa-
hedron. The icosahedron is not an accurate discretization of
the sphere, so their equivariance is weak. By contrast, our
method can be applied on accurate discretizations of the
sphere, achieving much better equivariance consequently.

Particularly, empirical results (Jiang et al. 2019; Zhang
et al. 2019) show that orientation-aware CNNs can be ben-
eficial for some tasks with orientation information. (Zhang
et al. 2019) use north-aligned filters to achieve orientation-
awareness, while (Jiang et al. 2019) use orientable PDOs.
In addition, (Jiang et al. 2019) can process spherical signals
on non-Euclidean structured grids easily using PDOs. How-
ever, their models are not equivariant. Our PDO-eS2CNN
furthermore incorporates equivariance into the model, and
introduces a new weight sharing scheme across filters, which
brings greater parameter efficiency.

3 Prior Knowledge
Parameterization of S2 and SO(3)
We use S2 and SO(3) to denote a sphere and a group of 3D
rotations, respectively. Formally,

S2 = {(x1, x2, x3)|‖x‖2 = 1},
SO(3) = {R ∈ R3|RTR = I,det(R) = 1}.
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Figure 1: (a) S2 ' SO(3)/SO(2). SO(3) can be viewed
as a bundle of circles over the sphere; (b) Group equivari-
ance on SO(3). Transforming an input by a transformation
g ∈ SO(3) and then passing it through the mapping T is
equivalent to first mapping it through T and then transform-
ing the representation.

We use the ZYZ Euler parameterization for SO(3). An ele-
ment R ∈ SO(3) can be written as

R = Z(αR)Y (βR)Z(γR),

where ZYZ-Euler angles αR ∈ [0, 2π), βR ∈ [0, π] and
γR ∈ [0, 2π), and Z(α) and Y (β) are rotations around z
and y axes, respectively. To be specific,

Z(α) =

 cosα − sinα 0

sinα cosα 0

0 0 1

 , Y (β) =

 cos β 0 sin β

0 1 0

− sin β 0 cos β

 .
Accordingly, we have a related parameterization for the

sphere. An element P ∈ S2 can be written as P (α, β) =
Z(α)Y (β)n, where n is the north pole, i.e., n = (0, 0, 1)T .
Conversely, we can also calculate α and β if P =
(x1, x2, x3)T is given. To be specific, if P = (0, 0, 1)T , we
take α = β = 0; if P = (0, 0,−1)T , we take α = 0 and
β = π; otherwise, we have

α =


arccos

(
x1√
x2
1+x2

2

)
x2 ≥ 0

2π − arccos

(
x1√
x2
1+x2

2

)
x2 < 0

, β = arccos(x3).

This parameterization makes explicit the fact that the
sphere is a quotient S2 ' SO(3)/SO(2)1, where SO(2)
is the subgroup of SO(3) and contains the rotations around
the z axis. Elements of the subgroup SO(2) leave the
north pole invariant, and have the form Z(γ). The point
P (α, β) ∈ S2 is associated with the coset representative
P̄ = Z(α)Y (β) ∈ SO(3). This element represents the
left coset P̄ · SO(2) = {P̄Z(γ)|γ ∈ [0, 2π)}. Intuitively,
SO(3) can be viewed as a bundle of circles (SO(2)) over the
sphere, as we show in Figure 1(a). In this way, ∀R ∈ SO(3),
R ∈ P̄RSO(2), where P̄R = Z(αR)Y (βR). As a result, we
can parameterize R as (PR, AR), where PR = P̄Rn ∈ S2

and AR ∈ SO(2). Specifically, AR is a 2D rotation matrix,
which is a simplification of Z(γR), i.e.,

AR =

[
cos γR − sin γR
sin γR cos γR

]
.

1Given a group G and its subgroup H, the left cosets gH of H
partition G, where g ∈ G. We denote the set of left cosets as G/H.
E ' F denotes that E is homeomorphic to F .

Group Actions on Spherical Functions
Inputs and feature maps can be naturally modeled as func-
tions in the continuous domain. Specifically, we model the
input s as a smooth function on S2 and the intermediate fea-
ture map so as a smooth function on SO(3). Particularly,
the smoothness of so means that if we use the parameteriza-
tion of SO(3) mentioned above, the feature map so(P,A) is
smooth w.r.t. P when A is fixed. So so can also be viewed
as a smooth spherical function with infinite channels indexed
byA ∈ SO(2). We use C∞(S2) and C∞(SO(3)) to denote
the function spaces of s and so, respectively .

In this way, rotation transformations acting on inputs and
feature maps can be mathematically formulated as follows.
Actions on Inputs Suppose that s ∈ C∞(S2) and R̃ ∈
SO(3), then R̃ acts on s in the following way:

∀P ∈ S2, πS
R̃

[s](P ) = s
(
R̃−1P

)
.

Actions on Feature Maps Suppose that so ∈
C∞(SO(3)) and R̃ ∈ SO(3), then R̃ acts on so in
the following way:

∀R ∈ SO(3), πSO
R̃

[so](R) = so
(
R̃−1R

)
. (1)

If we use the parameterization of SO(3), (1) is of the fol-
lowing more intuitive form:

πSO
R̃

[so](PR, AR) = so
(
PR̃−1R, AR̃−1R

)
= so

(
R̃−1PR, AR̃−1R

)
,

where (PR, AR) is the representation of R and PR̃−1R =

R̃−1Rn = R̃−1PR.

Group Equivariance
Equivariance measures how the outputs of a mapping trans-
form in a predictable way with the transformation of the in-
puts. To be specific, let T be a mapping, which could be
represented by a deep neural network from the input feature
space to the output feature space, and G is a transformation
group. T is called group equivariant if it satisfies

∀g ∈ G, T [πg[f ]] = π′g[T [f ]],

where f can be any input feature map in the input feature
space, and πg and π′g denote how the transformation g acts
on input features and output features, respectively.

In our theory, we take the group G as SO(3), and then fo-
cus on utilizing PDOs to design a neural network equivariant
to SO(3), as shown in Figure 1(b).

4 PDO-eS2CNNs
Chart-based PDOs
We define an atlas to help define PDOs acting on the spher-
ical functions uniformly. To be specific, an atlas for S2 is a
collection of charts whose domains cover S2. We denote the
atlas as {(UP , ϕP )|P ∈ S2}, where UP is an open subset of
S2 containing P and ϕP : UP → ŨP is a homeomorphism
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Figure 2: For any P ∈ S2, a homeomorphism ϕP maps the
chart UP ⊂ S2 to an open subset ŨP ⊂ R2. The sphere is
presented by a level-3 icosahedral mesh.

from the chart UP to an open subset ŨP = ϕP (UP ) ⊂ R2

and ϕP (P ) = 0. The form of ϕP is given by

ϕ−1
P (x1, x2) = P̄

(
x1, x2,

√
1− |x|2

)T
. (2)

In this way, as shown in Figure 2, for any point P ∈ S2

(except poles), x1 resp. x2 point to the north-south and east-
west directions in the chart UP , and the homeomorphism
ϕP ’s are uniformly defined over the sphere, which relate to
orientable and uniform PDOs over the sphere.

In order to use PDOs, we suppose that the spherical func-
tion s is smooth and denote it as s ∈ C∞(S2). s can always
be extended to a smooth function s̄ defined on R3, and we
denote it as s̄ ∈ C∞(R3). We emphasize that we need not
obtain s̄ explicitly from the given s, whereas we only use
this notation for ease of derivation. Then the PDOs ∂/∂xi
and ∂2/∂xi∂xj(i, j = 1, 2)2 act on the spherical function
s in the way that these PDOs act on the composite function
s̄ · ϕ−1

P ∈ C∞(R2)3. Formally, ∀P ∈ S2,

∂

∂xi
[s](P ) =

∂

∂xi

[
s̄ · ϕ−1

P

]
(0),

∂2

∂xi∂xj
[s](P ) =

∂2

∂xi∂xj

[
s̄ · ϕ−1

P

]
(0).

By contrast, (Jiang et al. 2019) define PDOs based on the
spherical coordinates, which have high resolution near the
pole and low resolution near the equator. So the scales of
their PDOs are dependent on the latitudes. By contrast, the
scales of our chart-based PDOs are independent of locations,
resulting in much more uniform feature extration. Our def-
inition of PDOs is also different from that in conventional
manifold calculus in that we can deal with second-order
PDOs without defining a smooth vector field. Actually, it
is impossible to define a non-trivial smooth vector field over
the sphere due to the hairy ball theorem (Milnor 1978).

Rotated Parameterized Differential Operators
Following (Jiang et al. 2019; Ruthotto and Haber 2018; Shen
et al. 2020), we parameterize convolution kernels using a
linear combination of PDOs. Specifically, we refer to H as a
parameterized second-order polynomial of 2 variables, i.e.,

H(u, v;w) = w1+w2u+w3v+w4u
2+w5uv+w6v

2, (3)
2We only consider the PDOs up to the second order in this work.
3We use [·] to denote that an operator acts on a function.

where w are learnable parameters. If we take u =
∂/∂x1 and v = ∂/∂x2, then H(∂/∂x1, ∂/∂x2;w) be-
comes a linear combination of PDOs. For example, if
H(u, v;w) = u2 + uv, then H(∂/∂x1, ∂/∂x2;w) =
∂2/∂x2

1 + ∂2/∂x1∂x2.
We rotate these PDOs with a 2 × 2 rotation matrix A ∈

SO(2), and obtain the following rotated parameterized dif-
ferential operators:

χ(A) = H

(
∂

∂x
(A)
1

,
∂

∂x
(A)
2

;w

)
, (4)

where (
∂

∂x
(A)
1

,
∂

∂x
(A)
2

)T
= A−1

(
∂

∂x1
,
∂

∂x2

)T
. (5)

As a compact form, we can also rewrite (5) as

∇(A)
x = A−1∇x, (6)

where ∇x = (∂/∂x1, ∂/∂x2)T is the gradient operator. (5)
is equivalent to first rotating the coordinate system byZ, and
then calculating gradients. In addition, it is easy to get that

(
∇(A)
x

)2
:=

 ∂

∂x
(A)
1

∂

∂x
(A)
1

∂

∂x
(A)
1

∂

∂x
(A)
2

∂

∂x
(A)
1

∂

∂x
(A)
2

∂

∂x
(A)
2

∂

∂x
(A)
2

 (7)

= A−1

 ∂2

∂x2
1

∂2

∂x1∂x2

∂2

∂x1∂x2

∂2

∂x2
2

A = A−1∇2
xA.

To make it more explicit, we emphasize that by the defini-
tion in (4), χ(A)’s are identical polynomials w.r.t. ∂/∂x(A)

1 ’s
and ∂/∂x(A)

2 ’s, but different polynomials w.r.t. ∂/∂x1 and
∂/∂x2. To be specific,

χ
(A)

=w1 + (w2, w3)∇(A)
x +

〈[
w4

w5
2

w5
2 w6

]
,
(
∇(A)

x

)2
〉

=w1 + (w2, w3)A
−1∇x +

〈[
w4

w5
2

w5
2 w6

]
, A

−1∇2
xA

〉

=w1 + (w2, w3)A
−1∇x +

〈
A

[
w4

w5
2

w5
2 w6

]
A

−1
,∇2

x

〉
, (8)

where 〈·, ·〉 denotes the inner product. Particularly, these
differential operators χ(A)’s share parameters w, indicating
great parameter efficiency.

From another point of view, the rotation of differential
operators can also be viewed as changing the coefficients of
PDOs (see (8)), without changing the orientations of PDOs.
Consequently, the rotated parameterized differential oper-
ators, χ(A)’s, and the subsequent PDO-eS2CNN are still
orientable. By contrast, some rotation equivariant spherical
CNNs, such as Icosahedral CNNs (Cohen et al. 2019), as-
sume no preferred orientation, so they are not orientable.

Equivariant Differential Operators
We define two mappings, Ψ and Φ, using the above-
mentioned differential operators, χ(A)’s. To be specific, we



use Ψ to deal with inputs, which maps an input s to a feature
map defined on SO(3): ∀R ∈ SO(3),

Ψ[s](R) = Ψ[s](PR, AR) = χ(AR)[s](PR). (9)
Then, we use Φ to deal with the resulting feature maps,

which maps one feature map defined on SO(3) to another
feature map defined on SO(3): ∀R ∈ SO(3),

Φ[so](R) = Φ[so](PR, AR)

=

∫
SO(2)

χ
(AR)
A [so](PR, ARA)dν(A), (10)

where ν is a measure on SO(2). As for χ(AR)
A , we use the

subscript A to distinguish the differential operators param-
eterized by different wA’s. The so on the right hand side
should be viewed as a spherical function indexed by ARA
when the operator χ(AR)

A acts on it.
Finally, we prove that the above two mappings, Ψ and

Φ, are equivariant under arbitrary rotation transformation
R̃ ∈ SO(3) and show how the outputs transform w.r.t.
the transformation of inputs. The proofs of theorems can be
found in the Supplementary Material.

Theorem 1 If s ∈ C∞(S2) and so ∈ C∞(SO(3)), ∀R̃ ∈
SO(3), we have

Ψ
[
πS
R̃

[s]
]

= πSO
R̃

[Ψ[s]] , (11)

Φ
[
πSO
R̃

[so]
]

= πSO
R̃

[Φ[so]] . (12)

Equivariant Network Architectures
It is easy to use the above-mentioned two equivariant map-
pings, Ψ and Φ, to design an equivariant network. To be spe-
cific, according to the working spaces, we set a Ψ as the
first layer, followed by multiple Φ’s, inserted by pointwise
nonlinearities σ(·), e.g., ReLUs, which do not disturb the
equivariance. Finally, we can get an equivariant network ar-
chitecture T [s] = Φ(L)

[
· · ·σ

(
Φ(1) [σ(Ψ[s])]

)]
.

Theorem 2 If s ∈ C∞(S2), ∀R̃ ∈ SO(3), we have

T
[
πS
R̃

[s]
]

= πSO
R̃

[T [s]] .

That is, transforming an input s by a transformation R̃
(forming πS

R̃
) and then passing it through the network T

gives the same result as first mapping s through T and then
transforming the representation.

As discussed above, we only consider the case where in-
puts, s, and intermediate feature maps over SO(3), so, only
consist of single channel. In fact, our theory can be easily
extended to a more general case where inputs and feature
maps consist of multiple channels, and we only need to use
multiple Ψ’s and Φ’s to process inputs and generate outputs.

Besides, in conventional CNNs, we always use 1×1 con-
volutions to change the numbers of channels without intro-
ducing too many parameters. In PDO-eS2CNN, this can be
easily achieved by taking w as a one-hot vector. The details
are given in the Supplementary Material. We can also incor-
porate equivariance into other architectures, e.g., ResNets,
because shortcut connections do not disturb equivariance.

5 Implementation
Icosahedral Spherical Mesh
In practice, spherical data are always given on discrete do-
main, instead of continuous domain. The icosahedral spher-
ical mesh (Baumgardner and Frederickson 1985) is among
the most uniform and accurate discretization of the sphere.
Specifically, a spherical mesh can be obtained by progres-
sively subdividing each face of the unit icosahedron into four
triangles and reprojecting each node to unit distance from
the origin. We start with the unit icosahedron as the level-
0 mesh, and each progressive mesh resolution is one level
above the previous. The level-3 icosahedral mesh is shown
in Figure 2. The subdivision scheme for triangles also pro-
vides a natural coarsening and refinement scheme for the
grid, which allows for easy implementations of downsam-
pling and upsampling routines associated with CNN archi-
tectures. We emphasize that our method is not limited to
the icosahedral spherical mesh, but can also use other dis-
crete representations of the sphere easily, like the HealPIX
(Gorski et al. 2005). In this work, we use the icosahedral
spherical mesh for ease of implementation.

Estimation of Partial Derivatives
We view the input spherical data I as a discrete function
sampled from a smooth spherical function s on the icosa-
hedral spherical mesh vertices Ω ⊂ S2, where I(P ) =
s(P ),∀P ∈ Ω, and use a numerical method to estimate par-
tial derivatives at P ∈ Ω in the discrete domain. Firstly, we
use ϕP to map P and Qi(i = 1, 2, · · · ,m) into an open
set ŨP ⊂ R2, where Qi ∈ Ω are the neighbor nodes of
P (see Figure 2)4. As a result, we get ϕP (P ) = 0, and
ϕP (Qi) = (xi1, xi2), where ∀i = 1, 2, · · · ,m,(

xi1, xi2,
√

1− x2
i1 − x2

i2

)T
= P̄−1Qi.

We denote fP = s̄ · ϕ−1
P , so fP (0) = s(P ) = I(P ) and

fP (xi1, xi2) = s(Qi) = I(Qi). We use Taylor’s expansion
to expand fP at the original point, then we have that ∀i =
1, 2, · · · ,m,

fP (xi1, xi2) =fP (0, 0) + xi1
∂fP
∂x1

+ xi2
∂fP
∂x2

+
1

2
x2i1

∂2fP
∂x21

+ xi1xi2
∂2fP
∂x1∂x2

+
1

2
x2i2

∂2fP
∂x22

+O(ρ3i ) (13)

where all above partial derivatives are evaluated at (0, 0),
and ρi =

√
x2
i1 + x2

i2. Thus we have
...

fP (xi1, xi2)−fP (0)
...

 ≈


...
...

...
...

...

xi1 xi2
x2
i1
2
xi1xi2

x2
i2
2

...
...

...
...

...

DP ,

where DP is a partial derivatives matrix:

DP =

(
∂fP
∂x1

,
∂fP
∂x2

,
∂2fP
∂x2

1

,
∂2fP
∂x1x2

,
∂2fp
∂x2

2

)T ∣∣∣∣
x1=x2=0

.

4We only consider the neighbor nodes of P , in analogy with the
commonly-used 3× 3 convolutions in planar CNNs.



We denote the above approximate equations as FP ≈
VPDP , and use the least square method to estimate DP :

D̂P = arg min
D

‖VPD − FP ‖2 = (V TP VP )−1V TP FP .

Actually, we can easily estimate any partial derivatives us-
ing the similar method so long as we employ the appropri-
ate Taylor’s expansions. By contrast, (Jiang et al. 2019) can
only deal with limited PDOs, including ∂/∂x1, ∂/∂x2, and
the Laplacian operator.

Discretization of SO(2)

As it is impossible to go through all the A ∈ SO(2) in (9)
and (10), we need to discretize SO(2). To be specific, we
discretize the continuous group SO(2) as the N -ary cyclic
group CN , where CN = {e = A0, A1, · · · , AN−1}, and

Ai =

[
cos 2πi

N − sin 2πi
N

sin 2πi
N cos 2πi

N

]
.

Correspondingly, (9) should be discretized as: ∀P ∈ Ω
and i = 0, 1, · · · , N − 1,

Ψ̃[I](P, i) = χ̃
(Ai)[I](P )

=

(
w1 + (w2, w3)A

−1
i ∇̂x +

〈
Ai

[
w4

w5
2

w5
2 w6

]
A

−1
i , ∇̂2

x

〉)
[fP ] (0)

=w1fP (0) + (w2, w3)A
−1
i ∇̂x [fP ] (0)

+

〈
Ai

[
w4

w5
2

w5
2 w6

]
A

−1
i , ∇̂2

x [fP ] (0)

〉
,

where the partial derivatives are estimated using I . In this
way, when viewed as a spherical function, the output Ψ̃[I]
consists of N channels, instead of infinite channels indexed
by A ∈ SO(2). Similarly, (10) is discretized as: ∀P ∈ Ω
and i = 0, 1, · · · , N − 1,

Φ̃[F ](P, i) =
ν(SO(2))

N

N−1∑
j=0

χ̃
(Zi)
Zj

[F ](P, i +©j),

where the intermediate feature map F is an N -channel
discrete function sampled from the smooth function so ∈
C∞(SO(3)), i.e., F (P, i) = so(P,Ai), and +© denotes the
module-N addition. As a result, Ψ̃ and Φ̃ become discretized
PDO-eS2Convs. Particularly, batch normalization (Ioffe and
Szegedy 2015) should be implemented with a single scale
and a single bias per PDO-eS2Conv feature map in order to
preserve equivariance.

Equivariance Error Analysis

As shown in Theorem 1, the equivariance of PDO-eS2Convs
Ψ and Φ is exact in the continuous domain, and it becomes
approximate because of discretization in implementation. In
(13), it is easy to verify that O(ρ1) = O(ρ2) = · · · =
O(ρm) from the definition of icosahedral spherical mesh,
and we write O(ρi) = O(ρ) for simplicity. Then, we have
the following equivariance error analysis.

Theorem 3 ∀R̃ ∈ SO(3),

Ψ̃
[
πS
R̃

[I]
]

= πSO
R̃

[
Ψ̃[I]

]
+O(ρ), (14)

Φ̃
[
πSO
R̃

[F ]
]

= πSO
R̃

[
Φ̃[F ]

]
+O(ρ) +O

(
1

N2

)
, (15)

where transformations acting on discrete inputs and fea-
ture maps are defined as πS

R̃
[I](P ) = πS

R̃
[s](P ) and

πSO
R̃

[F ](P, i) = πSO
R̃

[so](P,Ai), respectively.

Particularly, we note that (Shen et al. 2020) use PDOs to
design an equivariant CNN over the Euclidean group, and
achieve a quadratic order equivariance approximation for 2D
images in the discrete domain. However, they can only deal
with the data in the Euclidean space. Virtually, we extend
their theory to the non-Euclidean geometry, i.e., the sphere.
By contrast, we can only achieve a first order equivariance
approximation w.r.t. the grid size ρ, as the representation of
the sphere we use is non-Euclidean structured.

6 Experiments
We evaluate our PDO-eS2CNNs on three datasets. The data
preprocessing, model architectures and training details for
each task are provided in the Supplementary Material for
reproducing our results.

Spherical MNIST Classification
We follow (Cohen et al. 2018) in the preparation of the
spherical MNIST, and prepare non-rotated training and test-
ing (N/N), non-rotated training and rotated testing (N/R) and
rotated training and testing (R/R) tasks. The training set and
the test set include 60,000 and 10,000 images, respectively.
We randomly select 6,000 training images as a validation
set, and choose the model with the lowest validation error
during training. Inputs are on a level-4 icosahedral spherical
mesh. For fair comparison with existing methods, we evalu-
ate our method using a small and a large model, respectively.

As shown in Table 2, when using the small model (73k),
our method achieves 99.44% test accuracy on the N/N
task. The result decreases to 90.14% on the N/R task,
mainly because of the equivariance error after discretization.
HexRUNet-C achieves comparable results using slightly
more parameters, but it performs significantly worse on N/R
and R/R tasks for lack of rotation equivariance. S2CNN per-
forms better on the N/R task because it is nearly exactly
equivariant. However, it cannot perform well on two more
important tasks, N/N and R/R, because of the distortion from
nonuniform sampling. We argue that these two tasks are
more important because the training and the test sets of most
tasks are of identical distributions.

When using the large model (180k), our method results in
new SOTA results on the N/N and R/R tasks (99.60% and
99.45%), respectively, which improve the previous SOTA
results (99.45% and 99.31%) significantly. Note that the pre-
vious SOTA results have been very competitive even for pla-
nar MNIST, and the error rates are further reduced by more



Table 2: Results on the spherical MNIST dataset with non-rotated (N) and rotated (R) training and test data. The second column
marks whether these models are rotation-equivariant in the spherical domain.

Model Rotation equivariance N/N N/R R/R #Parms
S2CNN (Cohen et al. 2018) 3 96 94 95 58k
UGSCNN (Jiang et al. 2019) 7 99.23 35.60 94.92 62k
HexRUNet-C (Zhang et al. 2019) 7 99.45 29.84 97.05 75k
PDO-eS2CNN (ours) 3 99.44± 0.06 90.14± 0.58 98.93± 0.08 73k
SphereNet (Coors, Condurache, and Geiger 2018) 7 94.4 - - 196k
FFS2CNN (Kondor, Lin, and Trivedi 2018) 3 96.4 96 96.6 286k
Icosahedral CNN (Cohen et al. 2019) 3 99.43 69.99 99.31 182k
PDO-eS2CNN (ours) 3 99.60± 0.04 94.25± 0.29 99.45± 0.05 180k

than 20% using our method. Also, we obtain a more com-
petitive result (94.25%) on the N/R task. By contrast, Icosa-
hedral CNN only achieves 69.99% test accuracy because it
is only equivariant over the icosahedral group, which merely
contains 60 rotational symmetries. FFS2CNN performs the
best on this task because it is also nearly exactly equivariant
and use much more parameters, but it performs significantly
worse on other tasks (N/N and R/R) because of the distortion
in representation from nonuniform sampling.

Omnidirectional Image Segmentation
Omnidirectional semantic segmentation is an orientation-
aware task since the natural scene images are always up-
right due to gravity. We evaluate our method on the Stanford
2D-3D-S dataset (Armeni et al. 2017), which contains 1,413
equirectangular images with RGB+depth channels, and se-
mantic labels across 13 different classes. The input and out-
put spherical signals are at the level-5 resolution. We use
the official 3-fold cross validation to train and evaluate our
model, and report the mean intersection over union (mIoU)
and pixel accuracy (mAcc).

Table 3: mAcc and mIoU comparison on 2D-3D-S at the
level-5 resolution.

Model mAcc mIoU #Params
UNet 50.8 35.9 -
Icosahedral CNN (Cohen et al. 2019) 55.9 39.4 -
(Eder et al. 2020) 50.9 38.3 -
UGSCNN (Jiang et al. 2019) 54.7 38.3 5.18M
HexRUNet (Zhang et al. 2019) 58.6 43.3 1.59M
PDO-eS2CNN (ours) 60.4± 1.0 44.6± 0.4 0.86M

We report our main result in Table 3. As pointed out
in (Zhang et al. 2019), the 2D-3D-S dataset is acquired
with preferred orientation, thus an orientation-aware system
can be beneficial. Our model performs significantly better
than icosahedral CNN, mainly because that our model is
orientation-aware, while the latter assumes no preferred ori-
entation. Compared with HexRUNet, an orientation-aware
model, our method still performs significantly better, be-
cause we can process spherical data inherently, whereas
HexRUNet can only process icosahedron data, which makes
big difference. In addition, we use far fewer parameters
(0.86M vs. 1.59M), showing great parameter efficiency from
weight sharing across rotated filters. The detailed statistics
of per-class for this task is shown in the Supplementary Ma-

terial.

Atomization Energy Prediction
Finally, we apply our method to the QM7 dataset (Blum
and Reymond 2009; Rupp et al. 2012), where the goal is to
regress over atomization energies of molecules given atomic
positions pi, and charges zi. This dataset contains 7,165
molecules, and each molecule contains up to 23 atoms of
5 types (H, C, N, O, S). We use the official 5-fold cross val-
idation to train and evaluate our model, and report the root
mean square error (RMSE).

Table 4: Experimental results on the QM7 task.

Model RMSE #Params
MLP/Random CM (Montavon et al. 2012) 5.96± 0.48 -
S2CNN (Cohen et al. 2018) 8.47 1.4M
FFS2CNN (Kondor, Lin, and Trivedi 2018) 7.97 1.1M
PDO-eS2CNN (ours) 3.78± 0.07 0.4M

As shown in Table 4, compared with other spherical
CNNs, including S2CNN and FFS2CNN, our model halves
the RMSE using far fewer parameters (0.4M vs. 1M+),
showing greater performance and parameter efficiency. Our
method also significantly outperforms a very competitive
model, the MLP trained on randomly permuted Coulomb
matrices (CM). In addition, this MLP method is unlikely
to scale to large molecules, as it needs a large sample of
random permutations, which grows exponentially with the
numbers of molecules, as pointed out in (Cohen et al. 2018).

7 Conclusions
In this work, we define chart-based PDOs and then use
them to design rotation-equivariant spherical CNNs, PDO-
eS2CNNs. PDO-eS2CNNs are easy to implement on non-
Euclidean structured representations, and we analyze the
equivariance error from discretization. Extensive experi-
ments verify the effectiveness of our method.

One drawback of our work is that the equivariance can-
not be preserved as well as S2CNN and FFS2CNN do in the
discrete domain. In future work, we will explore more rep-
resentations of the sphere and better numerical calculation
methods, in order to improve the equivariance in the discrete
domain.
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