
Supplementary Material of PDO-eS2CNNs: Partial Differential Operator Based
Equivariant Spherical CNNs

1 Proof

Lemma 1 If s ∈ C∞(S2), ∀R, R̃ ∈ SO(3) and i = 1, 2,
we have

∂

∂x
(AR)
i

[
πS
R̃

[s]
]

(PR) =
∂

∂x
(AR̃−1R)
i

[s](PR̃−1R), (1)

where (PR, AR) is the representation of R.

Proof 1 Firstly, we show that ∀R ∈ SO(3) and i = 1, 2,

∂

∂x
(AR)
i

[s](PR) (2)

=eTi ∇(AR)
x [s] (PR)

=eTi A
−1
R ∇x

[
s̄ · ϕ−1

PR

]
(0)

=eTi A
−1
R ∇x

s̄
P̄R

 x1

x2√
1− |x|2

 ∣∣∣∣∣
x1=x2=0

, (3)

where e1 = (1, 0)T and e2 = (0, 1)T . We denote y =

F (x1, x2) = (x1, x2,
√

1− |x|2)T , then

∂

∂x
(AR)
i

[s](PR)

=eTi A
−1
R JF (x1, x2)T P̄TR∇[s̄]

(
P̄Ry

) ∣∣∣∣
x1=x2=0

,

where the Jacobian

JF (x1, x2)T =

(
∂y1/∂x1 ∂y2/∂x1 ∂y3/∂x1

∂y1/∂x2 ∂y2/∂x2 ∂y3/∂x2

)

=

 1 0 −x1√
1−|x|2

0 1 −x2√
1−|x|2

 .

Copyright c© 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

So

∂

∂x
(AR)
i

[s](PR)

=eTi A
−1
R

(
I,

−x√
1− |x|2

)
P̄−1
R ∇[s̄]

(
P̄Ry

) ∣∣∣∣
x1=x2=0

=eTi

(
I,
−A−1

R x√
1− |x|2

)
Z(γR)−1P̄−1

R ∇[s̄]
(
P̄Ry

) ∣∣∣∣
x1=x2=0

=eTi

(
I,
−A−1

R x√
1− |x|2

)
R−1∇[s̄]

(
P̄Ry

) ∣∣∣∣
x1=x2=0

=
(
eTi , 0

)
R−1∇[s̄] (PR) . (4)

Thus for the right hand side of (1),

∂

∂x
(AR̃−1R)
i

[s](PR̃−1R) =
(
eTi , 0

)
R−1R̃∇[s̄]

(
PR̃−1R

)
=
(
eTi , 0

)
R−1R̃∇[s̄]

(
R̃−1PR

)
.

For the left hand side of (1), we denote a spherical function
t(P) = πS

R̃
[s](P) = s(R̃−1P), then we have

∂

∂x
(AR)
i

[
πS
R̃

[s]
]

(PR) =
∂

∂x
(AR)
i

[t] (PR)

=
(
eTi , 0

)
R−1∇ [t̄] (PR) .

Obviously, we can take the extended function on the Eu-
clidean space t̄(x) = s̄(R̃−1x),∀x ∈ R3, then

∇[t̄](PR) = ∇
[
s̄
(
R̃−1x

)] ∣∣∣
x=PR

= R̃∇ [s̄]
(
R̃−1PR

)
.

As a result, we have

∂

∂x
(AR)
i

[
πS
R̃

[s]
]

(PR) =
(
eTi , 0

)
R−1R̃∇[s̄]

(
R̃−1PR

)
=

∂

∂x
(AR̃−1R)
i

[s](PR̃−1R).

�

Lemma 2 If s ∈ C∞(S2), ∀R, R̃ ∈ SO(3), i, j = 1, 2, we
have

∂

∂x
(AR)
i

∂

∂x
(AR)
j

[
πS
R̃

[s]
]

(PR)

=
∂

∂x
(AR̃−1R)
i

∂

∂x
(AR̃−1R)
i

[s](PR̃−1R), (5)

where (PR, AR) is the representation of R.

Proof 2 Firstly, by definition, ∀R, R̃ ∈ SO(3), i, j = 1, 2,
∂

∂x
(AR)
i

∂

∂x
(AR)
j

[s](PR)

=
∂

∂x
(AR)
i

∂

∂x
(AR)
j

[s̄ · ϕ−1
PR

](0)

=
∂

∂x
(AR)
i

[
eTj A

−1
R ∇x[s̄ · ϕ−1

PR
]
]

(0)

=eTi A
−1
R ∇x

[
eTj

(
I,
−A−1

R x√
1− |x|2

)
R−1∇[s̄]

(
P̄Ry

)] ∣∣∣∣∣
x1=x2=0

,

where e1 = (1, 0)T , e2 = (0, 1)T and y = F (x1, x2) =

(x1, x2,
√

1− |x|2)T . The derivation from the second line
to the third line is due to (3) and (4). For ease of presenta-
tion, we denote that

h(x) = eTj

(
I,
−A−1

R x√
1− |x|2

)
R−1∇[s̄]

(
P̄Ry

)
,

and h(x) = f(x)T g(x), where

f(x) =

(
I,
−A−1

R x√
1− |x|2

)T
ej (6)

and
g(x) = R−1∇[s̄]

(
P̄Ry

)
. (7)

As a result,
∂

∂x
(AR)

i

∂

∂x
(AR)

j

[s](PR)

=e
T
i A

−1
R ∇x [h(x)]

∣∣∣∣
x1=x2=0

=e
T
i A

−1
R ∇x

[
f(x)

T
g(x)

] ∣∣∣∣
x1=x2=0

=e
T
i A

−1
R

(
Df(x)

T
g(x)

∣∣∣
x1=x2=0

+Dg(x)
T
f(x)

∣∣∣
x1=x2=0

)
=e

T
i A

−1
R Df(x)

T
g(x)

∣∣∣∣
x1=x2=0

+ e
T
i A

−1
R Dg(x)

T
f(x)

∣∣∣∣
x1=x2=0

. (8)

Firstly, we calculate the first term of the right hand side of
(8). When ej = e1 in (6) and (7), we have

f(x)T =

(
1, 0,−cos γRx1 + sin γRx2√

1− |x|2

)
,

then

Df(x)T =

(
0, 0,− 1√

1− |x|2

(
cos γR
sin γR

)

−(cos γRx1 + sin γRx2)∇x

[
1√

1− |x|2

])
.

So

eTi A
−1
R Df(x)T g(x)

∣∣∣∣
x1=x2=0

=eTi

(
0 0 −1
0 0 0

)
R−1∇[s̄] (PR) .

Similarly, we can get that when ej = e2,

eTi A
−1
R Df(x)T g(x)

∣∣∣∣
x1=x2=0

=eTi

(
0 0 0
0 0 −1

)
R−1∇[s̄] (PR) .

In all,

eTi A
−1
R Df(x)T g(x)

∣∣∣∣
x1=x2=0

=
(
0, 0,−eTi ej

)
R−1∇[s̄] (PR) .

Now we calculate the second term of the right hand side of
(8), we have

g(x)T =
(
∇[s̄]

(
P̄Ry

))T
R

=
(
∂1[s̄]

(
P̄Ry

)
, ∂2[s̄]

(
P̄Ry

)
, ∂3[s̄]

(
P̄Ry

))
R,

where ∂k deontes the first-order PDO w.r.t. the k-th coordi-
nate, so

eTi A
−1
R Dg(x)T =eTi A

−1
R

(
∇x

[
∂1[s̄]

(
P̄Ry

)]
,

∇x

[
∂2[s̄]

(
P̄Ry

)]
,∇x

[
∂3[s̄]

(
P̄Ry

)])
R.

According to (3) and (4), we can get that

eTi A
−1
R ∇x

[
∂k[s̄]

(
P̄Ry

)]
=eTi

(
I,
−A−1

R x√
1− |x|2

)
R−1∇ [∂k[s̄]]

(
P̄Ry

)
,

i.e.,

eTi A
−1
R Dg(x)T = eTi

(
I,
−A−1

R x√
1− |x|2

)
R−1∇2[s̄]

(
P̄Ry

)
R.

So

eTi A
−1
R Dg(x)T f(x)

∣∣∣∣
x1=x2=0

=
(
eTi , 0

)
R−1∇2[s̄] (PR)R

(
eTj , 0

)T
.

As a result, we have
∂

∂x
(AR)
i

∂

∂x
(AR)
j

[s](PR)

=eTi A
−1
R Df(x)T g(x)

∣∣∣
x1=x2=0

+ eTi A
−1
R Dg(x)T f(x)

∣∣∣
x1=x2=0

=
(
0, 0,−eTi ej

)
R−1∇[s̄] (PR)

+
(
eTi , 0

)
R−1∇2[s̄] (PR)R

(
eTj , 0

)T
.

Thus for the right hand of (5),

∂

∂x
(AR̃−1R)
i

∂

∂x
(AR̃−1R)
j

[s](PR̃−1R)

=
(
0, 0,−eTi ej

)
R−1R̃∇[s̄]

(
R̃−1PR

)
+
(
eTi , 0

)
R−1R̃∇2[s̄]

(
R̃−1PR

)
R̃−1R

(
eTj , 0

)T
.

As for the left hand of (5), similar to Proof 1, we denote that
the spherical function t(P) = πS

R̃
[s](P) = s(R̃−1P) and

the extended 3D function t̄(x) = s̄(R̃−1x),∀x ∈ R3, then

∇[t̄](PR) = ∇
[
s̄
(
R̃−1x

)] ∣∣∣
x=PR

= R̃∇ [s̄]
(
R̃−1PR

)
,

∇2[t̄](PR) = ∇2
[
s̄
(
R̃−1x

)] ∣∣∣
x=PR

= R̃∇2 [s̄]
(
R̃−1PR

)
R̃−1.

So

∂

∂x
(AR)
i

∂

∂x
(AR)
j

[
πS
R̃

[s]
]

(PR)

=
∂

∂x
(AR)
i

∂

∂x
(AR)
j

[t] (PR)

=
(
0, 0,−eTi ej

)
R−1∇[t̄] (PR)

+
(
eTi , 0

)
R−1∇2[t̄] (PR)R

(
eTj , 0

)T
=
(
0, 0,−eTi ej

)
R−1R̃∇[s̄]

(
R̃−1PR

)
+
(
eTi , 0

)
R−1R̃∇2[s̄]

(
R̃−1PR

)
R̃−1R

(
eTj , 0

)T
=

∂

∂x
(AR̃−1R)
i

∂

∂x
(AR̃−1R)
j

[s](PR̃−1R).

�

Theorem 1 If s ∈ C∞(S2) and so ∈ C∞(SO(3)), ∀R̃ ∈
SO(3), we have

Ψ
[
πS
R̃

[s]
]

= πSO
R̃

[Ψ[s]] , (9)

Φ
[
πSO
R̃

[so]
]

= πSO
R̃

[Φ[so]] . (10)

Proof 3 According to Lemmas 1 and 2, ∀R, R̃ ∈ SO(3),

Ψ
[
πS
R̃

[s]
]

(R)

=χ(AR)
[
πS
R̃

[s]
]

(PR)

=

(
w1 + w2

∂

∂x
(AR)
1

+ w3
∂

∂x
(AR)
2

+ w4
∂

∂x
(AR)
1

∂

∂x
(AR)
1

+w5
∂

∂x
(AR)
1

∂

∂x
(AR)
2

+ w6
∂

∂x
(AR)
2

∂

∂x
(AR)
2

)[
πS
R̃

[s]
]

(PR)

=

(
w1 + w2

∂

∂x
(A

R̃−1R
)

1

+ w3
∂

∂x
(A

R̃−1R
)

2

+w4
∂

∂x
(A

R̃−1R
)

1

∂

∂x
(A

R̃−1R
)

1

+ w5
∂

∂x
(A

R̃−1R
)

1

∂

∂x
(A

R̃−1R
)

2

+w6
∂

∂x
(A

R̃−1R
)

2

∂

∂x
(A

R̃−1R
)

2

)
[s]
(
PR̃−1R

)
=χ(A

R̃−1R
)[s](PR̃−1R)

=πSO
R̃

[Ψ[s]] (R). (11)

So (9) is satisfied. As for (10),

Φ
[
πSO
R̃

[so]
]

(PR, AR)

=

∫
SO(2)

χ
(AR)
A

[
so
(
R̃−1P,AR̃−1RA

)] ∣∣∣∣∣
P=PR

dν(A)

=

∫
SO(2)

χ
(AR)
A

[
πS
R̃

[
so
(
P,AR̃−1RA

)]] ∣∣∣∣∣
P=PR

dν(A)

=

∫
SO(2)

χ
(AR̃−1R)

A [so]
(
PR̃−1R, AR̃−1RA

)
dν(A)

=πSO
R̃

[∫
SO(2)

χ
(AR)
A [so] (PR, ARA) dν(A)

]
=πSO

R̃
[Φ[so]] (PR, AR) .

The derivation from the third line to the fourth line is due to
(11). So (10) is satisfied. �

Theorem 2 If s ∈ C∞(S2), ∀R̃ ∈ SO(3), we have

T
[
πS
R̃

[s]
]

= πSO
R̃

[T [s]] .

Proof 4 According to Theorems 1, we have

T
[
πS
R̃

[s]
]

=Φ(L)
[
· · ·σ

(
Φ(1)

[
σ
(

Ψ
[
πS
R̃

[s]
])])]

=Φ(L)
[
· · ·σ

(
Φ(1)

[
σ
(
πSO
R̃

[Ψ[s]]
)])]

=Φ(L)
[
· · ·σ

(
Φ(1)

[
πSO
R̃

[σ (Ψ[s])]
])]

=Φ(L)
[
· · ·σ

(
πSO
R̃

[
Φ(1) [σ (Ψ[s])]

])]
=πSO

R̃

[
Φ(L)

[
· · ·σ

(
Φ(1) [σ(Ψ[s])]

)]]
=πSO

R̃
[T [s]] .

�

Lemma 3 ∀P ∈ Ω and w ∈ R5,

wTDP = wT D̂P +O(ρ).

Proof 5 According to (13) in the main body, we have

FP = VPDP +O(ρ3),

and then

DP =(V TP VP)−1VPDP + (V TP VP)−1VPO(ρ)

=D̂P + (V TP VP)−1VPO(ρ3).

Actually,

VP =

...

...
...

...
...

xi1 xi2
1
2x

2
i1 xi1xi2

1
2x

2
i2

...
...

...
...

...

 = XC,

where

X =

...

...
...

...
...

xi1

ρ
xi2

ρ
x2
i1

2ρ2
xi1xi2

ρ2
x2
i2

2ρ2

...
...

...
...

...

and

C =

[
ρI2 0
0 ρ2I3

]
.

Obviously X = O(1), so we have

(V TP VP)−1VPO(ρ3) =C−1(XTX)−1XTO(ρ3)

=

[
I2
ρ 0

0 I3
ρ2

]
O(ρ3)

=

[
O(ρ2)12

O(ρ)13

]
,

i.e., ∀w ∈ R5,

wTDP =wT D̂P + wT (V TP VP)−1VPO(ρ3)

=wT D̂P +O(ρ).

�

Theorem 3 ∀R̃ ∈ SO(3),

Ψ̃
[
πS
R̃

[I]
]

= πSO
R̃

[
Ψ̃[I]

]
+O(ρ), (12)

Φ̃
[
πSO
R̃

[F]
]

= πSO
R̃

[
Φ̃[F]

]
+O(ρ) +O

(
1

N2

)
, (13)

where transformations acting on discrete inputs and fea-
ture maps are defined as πS

R̃
[I](P) = πS

R̃
[s](P) and

πSO
R̃

[F](P, i) = πSO
R̃

[so](P,Ai), respectively.

Proof 6 ∀i = 0, 1, · · · , N−1, the operator χ(Zi) is a linear
combination of differential operators and χ̃(Zi) is a linear
combination of corresponding numerical estimations, except

a trivial scalar. According to Lemma 3, we have that ∀P ∈
Ω,

χ(Zi)[s](P) = χ̃(Zi)[I](P) +O(ρ),

χ(Zi)
[
πS
R̃

[s]
]

(P) = χ̃(Zi)
[
πS
R̃

[I]
]

(P) +O(ρ),

i.e.,

Ψ[s](P,Zi) = Ψ̃[I](P, i) +O(ρ),

Ψ
[
πS
R̃

[s]
]

(P,Zi) = Ψ̃
[
πS
R̃

[I]
]

(P, i) +O(ρ). (14)

Easily, we have

πSO
R̃

[Ψ[s]] (P,Zi) = πSO
R̃

[
Ψ̃[I]

]
(P, i) +O(ρ). (15)

From (9) we know that the left hand sides of (14) and (15)
equal, hence the right hand sides of the two equations are
the same, which results in (12).

As for (13),

Φ[so](P,Zi)

=

∫
SO(2)

χ
(Zi)
Z [so](P,ZiZ)dν(Z)

=
ν(SO(2))

N

N−1∑
j=0

χ
(Zi)
Zj

[so](P,ZiZj) +O

(
1

N2

)

=
ν(SO(2))

N

N−1∑
j=0

(
χ̃

(Zi)
Zj

[F](P, i +©j) +O(ρ)
)

+O

(
1

N2

)

=Φ̃[F](P, i) +O(ρ) +O

(
1

N2

)
.

Then we can prove (13) analogously. �

2 Equivariant Network Architectures
When the inputs and feature maps consist of multiple chan-
nels, we utilize multiple Ψ’s and Φ’s to process inputs and
generate outputs. To be specific, for the input layer, where
inputs s consist of Ms channels and the resulting feature
maps so(1) consist of M1 layer, we have

 so
(1)
1
...

so
(1)
M1

 = σ

 Ψ11 · · · Ψ1Ms

...
. . .

...
ΨM11 · · · ΨM1Ms

 s1

...
sMs

 .

For the following layer, where feature maps so(l) at the l-th
layer consist of Ml channels, we have

so
(l+1)
1

...
so

(l+1)
Ml+1

 = σ

Φ
(l)
11 · · · Φ

(l)
1Ml

...
. . .

...
Φ

(l)
Ml+11 · · · Φ

(l)
Ml+1Ml

so
(l)
1

...
so

(l)
Ml

 .

Finally, we obtain a more general network architecture, and
it is easy to verify that equivariance can still be preserved
through this network.

Particularly, as for

Φ[so](PR, AR) =

∫
SO(2)

χ
(AR)
A [so](PR, ARA)dν(A),

(16)

if we take wA,i = 0 for anyA ∈ SO(2) and i = 2, 3, · · · , 6,
then (16) can be rewritten as

Φ[so](PR, AR) =

∫
SO(2)

wA,1so(PR, ARA)dν(A), (17)

which is analogous to the conventional 1× 1 convolution in
planar CNNs.

3 Model Architectures and Training Details
In this section we provide network architectures and training
details for reproducing our results in experiments. Each ex-
periment is run for 5 times and implemented using Pytorch.

Spherical MNIST Classification
The small model consists of 4 convolution layers and 3 fully
connected (FC) layers. The convolution layers have 8, 12, 16
and 28 output channels, and the FC layers have 28, 28 and
10 channels, respectively. The large model consists of 5 con-
volution layers and 3 fully connected (FC) layers. The con-
volution layers have 8, 12, 16, 24, and 48 output channels,
and the FC layers have 48, 48 and 10 channels, respectively.
N is set to 16, and downsampling is performed after layer 2.
In between convolution layers, we use batch normalization
(Ioffe and Szegedy 2015) and ReLU nonlinearities.

The models are trained using the Adam algorithm
(Kingma and Ba 2015). We use generalized He’s weight
initialization scheme introduced in (Weiler, Hamprecht, and
Storath 2018) for the convolution layers and Xavier initial-
ization (Glorot and Bengio 2010) for the FC layers. For N/R
task, we use dropout for better generalization. We train us-
ing a batch size of 16 for 80 epochs, an initial learning rate
of 0.01 and a step decay of 0.5 per 10 epochs. We use the
cross-entropy loss for training the classification network.

Omnidirectional Image Segmentation
Following (Jiang et al. 2019), we preprocess the data into
a spherical signal by sampling the original rectangular im-
ages at the latitude-longitudes of the spherical mesh vertex
positions. The input RGB-D channels are interpolated us-
ing bilinear interpolation, and semantic labels are acquired
using nearest-neighbor interpolation. The input and output
spherical signals are at the level-5 resolution.

The network architecture is a residual U-Net (He et al.
2016; Ronneberger, Fischer, and Brox 2015) using PDO-
eS2Convs, which consists of an encoder and a decoder. The
encoder network takes as input a signal at resolution r = 5.
We use a similar network architecture as that in (Jiang et al.
2019) and the details are shown in Table 1, and N is set to 8
except the last layer. We use a trivial PDO-eS2Conv (N = 1)
for the last layer to obtain 15 output channels. Note that we
use 15 output channels since the 2D-3D-S dataset has two
additional classes (invalid and unknown) that are not evalu-
ated for performance.

Table 1: The architecture of PDO-eS2CNN used in the 2D-
3D-S image segmentation experiments. a, b, c and s stands
for input channels, bottleneck channels, output channels,
and strides, respectively. When s = 2, downsampling is per-
formed using average pooling, and when s = 0.5, upsam-
pling is applied using linear interpolation.

Level a Block b c s N

5 4 Encoder - 16 2 8
4 16 Encoder 16 32 2 8
3 32 Encoder 32 64 2 8
2 64 Decoder - 64 0.5 8
3 64 Decoder - 64 1 8
3 64× 2 Decoder 32 32 0.5 8
4 32 Decoder - 32 1 8
4 32× 2 Decoder 16 16 0.5 8
5 16 Decoder - 16 1 8
5 16× 2 Decoder 16 16 1 8

5 16 PDO-eS2Conv - 8 1 8
5 8× 8 PDO-eS2Conv - 15 1 1

We use the Adam optimizer to train our network for 200
epochs, with an initial learning rate of 0.01 and a step decay
of 0.9 per 20 epochs. Following (Jiang et al. 2019), we use
the weighted cross-entropy loss for training, and the loss for
each class is of the following weighting scheme:

wc =
1

1.02 + log(fc)
,

where wc is the weight corresponding to class c, and fc is
the frequency by which class c appears in the training set.
We use zero weight for the two dropped classes (invalid and
unknown). The detailed statistics for this task is shown in
Tables 2 and 3.

Atomization Energy Prediction
Following (Cohen et al. 2018), we represent each molecule
as a spherical signal. Specifically, we define a sphere Si
around pi for each atom i. The radius is kept uniform across
atoms and molecules, and chosen minimal such that no in-
tersections among spheres happen. We define potential func-
tions Uz =

∑
j 6=i,zj=z

ziz
|x−pi| and produce a T channel

spherical signal for each atom in the molecule. Finally, we
represent these signals on a level-3 mesh.

The architecture used on QM7 dataset is shown in Table 4
and N is set to 8. We share weights among atoms making
filters permutation invariant, by pushing the atom dimen-
sion into the batch dimension. We use global spatial pooling
and orientation pooling after the last PDO-eS2Conv. Next,
we use DeepSet (Zaheer et al. 2017) to refine the resulting
feature vectors. Both PDO-eS2CNN and DeepSet are jointly
optimized. Following (Cohen et al. 2018), we firstly train
a simple MLP only on the 5 frequencies of atom types in
a molecule, and then train our main model on the residual.
Specifically, we use the Adam optimizer to train this model
using a batch size of 32 for 30 epochs, an initial learning rate
of 0.001 and a step decay of 0.1 per 10 epochs.

Table 2: mAcc comparison on 2D-3D-S dataset. Per-class accuracy is shown when available.

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window
UNet 50.8 17.8 40.4 59.1 91.8 50.9 46.0 8.7 44.0 94.8 26.2 68.6 77.2 34.8
UGSCNN (Jiang et al. 2019) 54.7 19.6 48.6 49.6 93.6 63.8 43.1 28.0 63.2 96.4 21.0 70.0 74.6 39.0
Icosahedral CNN (Cohen et al. 2019) 55.9 - - - - - - - - - - - - -
HexRUNet (Zhang et al. 2019) 58.6 23.2 56.5 62.1 94.6 66.7 41.5 18.3 64.5 96.2 41.1 79.7 77.2 41.1
PDO-eS2CNN 60.4 22.2 59.6 59.7 93.5 67.4 53.9 26.3 64.1 97.1 30.8 75.4 81.9 53.4

Table 3: mIoU comparison on 2D-3D-S dataset. Per-class IoU is shown when available.

Model Mean beam board bookcase ceiling chair clutter column door floor sofa table wall window
UNet 35.9 8.5 27.2 30.7 78.6 35.3 28.8 4.9 33.8 89.1 8.2 38.5 58.8 23.9
UGSCNN (Jiang et al. 2019) 38.3 8.7 32.7 33.4 82.2 42.0 25.6 10.1 41.6 87.0 7.6 41.7 61.7 23.5
Icosahedral CNN (Cohen et al. 2019) 39.4 - - - - - - - - - - - - -
HexRUNet (Zhang et al. 2019) 43.3 10.9 39.7 37.2 84.8 50.5 29.2 11.5 45.3 92.9 19.1 49.1 63.8 29.4
PDO-eS2CNN 44.6 11.4 43.3 38.2 83.9 50.3 31.3 12.4 48.4 90.0 18.1 49.5 65.9 37.1

Table 4: The architecture used in QM7 atomization energy
prediction experiments. Downsampling is performed using
average pooling.

PDO-eS2CNN Layer Channels Level
PDO-eS2Conv 16 3
PDO-eS2Conv 32 2
PDO-eS2Conv 64 1
PDO-eS2Conv 64 0
Global orientation pooling
Global spatial pooling

DeepSet Layer Input/Hidden
φ(MLP) 64/256
ψ(MLP) 64/512

References
Cohen, T. S.; Geiger, M.; Kohler, J.; and Welling, M. 2018.
Spherical CNNs. In ICLR.

Cohen, T. S.; Weiler, M.; Kicanaoglu, B.; and Welling, M.
2019. Gauge Equivariant Convolutional Networks and the
Icosahedral CNN. In ICML, 1321–1330.

Glorot, X.; and Bengio, Y. 2010. Understanding the Diffi-
culty of Training Deep Feedforward Neural Networks. In
AISTATS, 249–256.

He, K.; Zhang, X.; Ren, S.; and Sun, J. 2016. Deep Residual
Learning for Image Recognition. In CVPR, 770–778.

Ioffe, S.; and Szegedy, C. 2015. Batch Normalization: Ac-
celerating Deep Network Training by Reducing Internal Co-
variate Shift. In ICML, 448–456.

Jiang, C.; Huang, J.; Kashinath, K.; Prabhat; Marcus, P.; and
Niessner, M. 2019. Spherical CNNs on Unstructured Grids.
In ICLR.

Kingma, D. P.; and Ba, J. 2015. Adam: A Method for
Stochastic Optimization. In ICLR.

Ronneberger, O.; Fischer, P.; and Brox, T. 2015. U-net: Con-
volutional Networks for Biomedical Image Segmentation. In
MICCAI, 234–241. Springer.

Weiler, M.; Hamprecht, F. A.; and Storath, M. 2018. Learn-
ing Steerable Filters for Rotation Equivariant CNNs. In
CVPR, 849–858.

Zaheer, M.; Kottur, S.; Ravanbakhsh, S.; Poczos, B.;
Salakhutdinov, R. R.; and Smola, A. J. 2017. Deep Sets.
In NeurIPS, 3391–3401.
Zhang, C.; Liwicki, S.; Smith, W. A. P.; and Cipolla, R.
2019. Orientation-Aware Semantic Segmentation on Icosa-
hedron Spheres. In ICCV, 3533–3541.

