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Abstract

Most differentiable neural architecture search methods

construct a super-net for search and derive a target-net as

its sub-graph for evaluation. There exists a significant gap

between the architectures in search and evaluation. As a

result, current methods suffer from an inconsistent, ineffi-

cient, and inflexible search process. In this paper, we in-

troduce EnTranNAS that is composed of Engine-cells and

Transit-cells. The Engine-cell is differentiable for architec-

ture search, while the Transit-cell only transits a sub-graph

by architecture derivation. Consequently, the gap between

the architectures in search and evaluation is significantly

reduced. Our method also spares much memory and com-

putation cost, which speeds up the search process. A feature

sharing strategy is introduced for more balanced optimiza-

tion and more efficient search. Furthermore, we develop

an architecture derivation method to replace the traditional

one that is based on a hand-crafted rule. Our method en-

ables differentiable sparsification, and keeps the derived ar-

chitecture equivalent to that of Engine-cell, which further

improves the consistency between search and evaluation.

More importantly, it supports the search for topology where

a node can be connected to prior nodes with any number

of connections, so that the searched architectures could be

more flexible. Our search on CIFAR-10 has an error rate of

2.22% with only 0.07 GPU-day. We can also directly per-

form the search on ImageNet with topology learnable and

achieve a top-1 error rate of 23.8% in 2.1 GPU-day.

1. Introduction

Current neural architecture search (NAS) methods

mainly include reinforcement learning-based NAS [1, 57],

evolution-based NAS [41, 31], Bayesian optimization-

based NAS [25, 56], and gradient-based NAS [33, 32],

some of which have successfully been applied to related

∗Corresponding author.

tasks for better architectures, such as semantic segmenta-

tion [9, 29] and object detection [38, 12, 16, 45].

Among the NAS methods, gradient-based algorithms

gain much attention because of the simplicity. Liu et al. first

propose the differentiable search framework, DARTS [32],

based on continuous relaxation and weight sharing [39], and

inspire the follow-up studies [48, 7, 8, 49, 11]. In DARTS,

different architectures share their weights as sub-graphs of

a super-net. The super-net is trained for search, after which

a target-net is derived for evaluation by manually keeping

the important paths according to their softmax activations.

Despite the simplicity, the architecture for evaluation only

covers a small subset of the one for search, which causes a

significant gap of architectural difference. We point out that

the gap causes the following problems:

• inconsistent: The super-net trained in the search phase

is a summation among all candidate connections with

a trainable distribution induced by softmax. It essen-

tially optimizes a feature combination, instead of fea-

ture selection, which is the real goal of architecture

search. As noted by [8, 52], operations may be highly

correlated. Even if the weight of some connection is

small, the corresponding path may be indispensable for

the performance. So the target-net derived from a high-

performance super-net is not ensured to be a good one

[42, 50]. The search process is inconsistent.

• inefficient: Because the super-net is a combination

among all candidate connections, the whole graph

needs to be stored in both forward and backward

stages, which requires much memory and computa-

tional consumption. As a result, the search can be per-

formed only on a very limited number of candidate op-

erations, and the super-net is inefficient to train.

• inflexible: The gap between the architectures in search

and evaluation does not allow the search for topology

in a differentiable way. In current methods [32, 48,

7, 49, 11], the target-net is derived based on a hand-

crafted rule where each intermediate node keeps the
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Figure 1. A diagram of DARTS. The target-net is derived by keeping the top-2 strongest connections of each node and has a significant gap

with the architecture in search. The connections in different color represent candidate operations, with exemplar weights beside them.

top-2 strongest connections to prior nodes. However,

there is no theoretical or experimental evidence show-

ing that this rule is optimal. It limits the diversity

of derived architectures in the topological sense [23].

Therefore, the search result is not flexible as we have

no access to other kinds of topologies.

Some studies adopt the Gumbel Softmax strategy [24,

35] to sample a target-net that approaches to the one in

search so that the gap can be reduced [48, 46, 8, 13]. But

still, the demand for computation and memory of the whole

graph is not relieved. Chen et al. [11] propose a progres-

sive shrinking method to bridge the depth gap between the

super-net and target-net. NASP [52] and ProxylessNAS [7]

only propagate the proximal or sampled paths in search,

which effectively reduces the computational cost. A recent

study [50] relies on sparse coding to improve consistency

and efficiency. However, all these methods do not support

the search for flexible topologies in a differentiable way.

DenseNAS [15] and PC-DARTS [49] introduce another set

of trainable parameters to model path probabilities, but the

target-net is still derived based on a hand-crafted rule.

In this paper, we aim to close the gap between the archi-

tectures in search and evaluation, and solve the problems

mentioned above. Inspired by the observation that only one

cell armed with learnable architecture parameters suffices

to enable differentiable search, we introduce EnTranNAS

composed of Engine-cells and Transit-cells. The Engine-

cell is differentiable for architecture search as an engine,

while the Transit-cell only transits the derived architecture.

So the network in search is close to that in evaluation. We

adopt a feature sharing strategy for more balanced param-

eter training of Transit-cell. It also reduces the computa-

tion and memory cost in search. Given that Engine-cell still

has a gap with the derived architecture, we further develop

an architecture derivation method that enables differentiable

sparsification. The connections with non-zero weights are

active for evaluation, which keeps the derived architecture

equivalent to the one in search, and meanwhile supports the

differentiable search for flexible topologies.

We list the contributions of this study as follows:

• We propose a new NAS method, named EnTranNAS,

which effectively reduces the gap between the archi-

tectures in search and evaluation. A feature sharing

strategy is adopted for more balanced and efficient

training of the super-net in search.

• We develop a new architecture derivation method to re-

place the hand-crafted rule widely adopted in studies.

The derived target-net has an equivalent architecture

to the one in search, which closes the architecture gap

between search and evaluation. It also makes topology

learnable to explore more flexible search results.

• Extensive experiments verify the validity of our pro-

posed methods. We achieve an error rate of 2.22% on

CIFAR-10 with 0.07 GPU-day. Our method is able to

efficiently search for flexible architectures of different

scales directly on ImageNet and achieve a state-of-the-

art top-1 error rate of 23.8% in 2.1 GPU-day.

2. Methods

In this section, we first briefly review the gradient-

based search method widely adopted in current studies,

and then develop our proposed methods, EnTranNAS and

EnTranNAS-DST, respectively, showing that how they

work to improve the consistency, efficiency, and flexibility

of differentiable neural architecture search.

2.1. Preliminaries

In [32, 48, 7, 11, 49, 8], the cell-based search space

is represented by a directed acyclic graph (DAG) com-

posed of n nodes {x1, x2, · · · , xn} and a set of edges

E = {e(i,j)|1 ≤ i < j ≤ n}. For each edge e(i,j), there

are K connections in accordance with the candidate opera-

tions O = {o1, · · · , oK}. The forward propagation of the

super-net for search is formulated as:

xj =
∑

i<j

K
∑

k=1

p
(i,j)
k ok(w

(i,j)
k , xi), (1)
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Figure 2. A diagram of our (a) EnTranNAS and (b) EnTranNAS-DST. Engine-cell and Transit-cell are in red and green boxes, respectively.

EnTranNAS reduces the gap between the super-net and target-net. EnTranNAS-DST derive the architecture by keeping the connections

with non-zero weights, so the valid computation graph in search is equivalent to the one of derived architecture in evaluation, and is not

subject to any hand-crafted topology. The consistency is further improved and a flexible topology is supported. Zoom in to view better.

where p
(i,j)
k ∈ {0, 1} is a binary variable that indicates

whether the connection is active, ok denotes the k-th op-

eration, and w
(i,j)
k is its corresponding weight on this con-

nection and becomes none for non-parametric operations,

such as max pooling and identity. Since binary variables

are not easy to optimize in a differentiable way, continuous

relaxation is adopted and p
(i,j)
k is relaxed as:

p
(i,j)
k =

exp(α
(i,j)
k )

∑

k exp(α
(i,j)
k )

, (2)

where α
(i,j)
k is the introduced architecture parameter jointly

optimized with the super-net weights. After search, as

shown in Figure 1, a target-net is derived according to a

hand-crafted rule based on p
(i,j)
k as the importance of con-

nections. We let P ∈ R|E|×K denote the matrix formed

by p
(i,j)
k , and the forward propagation of the target-net for

evaluation is formulated as:

xj =
∑

(i,k)∈Sj

ok(w
(i,j)
k , xi), (3)

Sj = {(i, k)|A
(i,j)
k = 1, ∀i < j, 1 ≤ k ≤ K}, (4)

where A
(i,j)
k is the element of A ∈ {0, 1}|E|×K and we

have A = ProjΩ(P), where Ω denotes the hand-crafted

rule by which only the top-2 strongest elements of each

node j in P are projected onto 1 and others are 0.

It is shown that there is a gap between the super-net and

target-net in DARTS. As mentioned in Section 1, the gap

may cause inconsistency with target-net, and the super-net

is inefficient to train. Besides, the hand-crafted rule restricts

the derived architecture to a fixed topology.

2.2. Enginecell and Transitcell

Given that only one cell armed with learnable parame-

ters suffices to enable differentiable search, we aim to re-

design the DARTS framework. First, at the super-net level,

we introduce EnTranNAS composed of Engine-cells and

Transit-cells. As shown in Figure 2 (a), the architecture

derivation is not a post-processing step as in DARTS, but is

performed at each iteration of search. Engine-cell has the

same role as the cell in DARTS and stores the whole DAG.

It performs architecture search as an engine by optimizing

architecture parameters α
(i,j)
k . As a comparison, Transit-

cell only transits the currently derived architecture as a

sub-graph into later cells. By doing so, EnTranNAS keeps

the differentiability for architecture search by Engine-cell,

and effectively reduces the gap between the super-net and

target-net using Transit-cells. At the final layer of super-net,

representation is output from a Transit-cell, which has the

same architecture as the target-net. Thus, with more con-

fidence, a higher super-net performance indicates a better

target-net architecture. Besides, a huge amount of computa-

tion and memory overhead in Transit-cells is saved. We can
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accordingly use a larger batchsize to speed up the search

process, or adopt a larger search space with more candidate

operations due to the memory relief.

By introducing a temperature parameter [48, 46], we cal-

culate p
(i,j)
k in Engine-cell as:

p
(i,j)
k =

exp(α
(i,j)
k /τ)

∑

k exp(α
(i,j)
k /τ)

, (5)

where τ is a temperature parameter. As τ → 0, p
(i,j)
k ap-

proaches to a one-hot vector. We do not introduce the Gum-

ble random variables as adopted in [48, 46] because our ar-

chitecture is not derived by sampling. We anneal τ with

epoch so that Engine-cell approximately performs feature

selection after convergence and can be close to the derived

architecture in Transit-cell.

2.3. Feature Sharing Strategy

Since Transit-cell only conducts the derived sub-graph,

only a small portion of super-net weights w
(i,j)
k is optimized

in Transit-cell at each update. It impedes the training ef-

ficiency of super-net and may affect the search result due

to the uneven optimization on candidate operations. In or-

der to circumvent this issue and have a balanced parame-

ter training for Transit-cells, we introduce a feature sharing

strategy within the cell level.

We notice that the non-parametric operation from a node

to different nodes always produces the same features, which

can be stored and computed only once. We extend it to

parameterized operations, by making the simplification that

the same operation from node i to other nodes j > i always

shares the same feature in one cell. The output of node xj

in our EnTranNAS is thus formulated as:

xj =

{

∑

i<j

∑K

k=1 p
(i,j)
k ok(w

(i)
k , xi), in Engine-cell,

∑

(i,k)∈Sj
ok(w

(i)
k , xi), in Transit-cell,

(6)

where w
(i)
k is the parameter of operation k for node i, and

becomes none for non-parametric operations. In this way,

the number of trainable connections in one cell is reduced

from |E|×K̄ to (n−1)×K̄, where K̄ denotes the number of

parametrized operations and |E| = C2
n. Consequently, the

less learnable parameters have a more balanced opportunity

to be optimized. In addition, the feature of one operation

from the node i is calculated only once and is re-used for

later nodes j > i in the same cell, which saves much com-

putation and memory overhead and accelerates the search.

Note that the feature sharing strategy harms the represen-

tation power of super-net. However, it does not affect the

search validity as the features for selection are still produced

by the same operations on the same nodes. What we search

for is which operation performed on which node, instead of

how their parameters are optimized.

2.4. Differentiable Search for Topology

Albeit EnTranNAS reduces the gap between super-net

and target-net, the Engine-cell computes the whole graph

and is still different from the derived cell for evaluation.

To this end, we further reduce the gap by proposing a new

architecture derivation method that supports differentiable

sparsification and enables the search for topology, named

EnTranNAS-DST. As shown in Figure 2 (b), in Engine-cell,

the non-derived connections always have zero weights, such

that the valid propagation of Engine-cell is equivalent to that

of the derived cell, which eliminates the gap between the

architectures in search and evaluation.

In prior studies [32, 11, 49], connection coefficients are

induced as softmax activations and thus do not support zero

values. A differentiable sparsification method is proposed

in [27] for network pruning. We combine both advantages

to keep the softmax activations and also enable the differen-

tiability for zero weights. Concretely, since we need to cut

out connections for each intermediate node instead of edge,

we compute p
(i,j)
k by Eq. (5), and then perform a connection

normalization for each intermediate node j > 1 as:

p̂
(i,j)
k =

p
(i,j)
k

max
i<j,1≤k≤K

{p
(i,j)
k }

, (7)

where p̂
(i,j)
k is the activation after connection normaliza-

tion. We introduce another set of trainable parameters

{β(j)}nj=2 and have the threshold of each intermediate node

by t(j) = sigmoid(β(j)). With the thresholds, we can prune

these connections as:

q
(i,j)
k = σ(p̂

(i,j)
k − t(j)), (8)

where σ denotes the ReLU function. Finally, if there ex-

ists a k such that q
(i,j)
k 6= 0 for edge (i, j), we perform an

operation normalization by:

q̂
(i,j)
k =

q
(i,j)
k

∑

k q
(i,j)
k

, (9)

where q̂
(i,j)
k is used as the coefficients of connections. It

enables sparsification in a differentiable way. Given that

maxi<j,1≤k≤K{p̂
(i,j)
k } = 1 and t(j) < 1, there is at least

one connection left for each intermediate node j by Eq. (8),

so the cell structure will not be broken, and will keep valid

along the training. An illustration of how do we compute

q̂
(i,j)
k is shown in Figure 3.

In Engine-cell, we replace the p
(i,j)
k in Eq. (6) with q̂

(i,j)
k

for search. To derive the architecture in Transit-cell or for

evaluation, the Sj in Eq. (6) is changed from Eq. (4) to the

following form:

Sj = {(i, k)|q̂
(i,j)
k > 0, ∀i < j, 1 ≤ k ≤ K}, (10)
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reduce cell

Transit 
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reduce cell

Transit 
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× 2 Label

Figure 4. Our architecture for search. Engine-cell and Transit-cell are shown in red and green boxes, respectively. Normal and reduction

cells are shown in solid and dotted boxes, respectively.

by which we only keep the connections with non-zero coef-

ficients as the derived architecture, which eliminates its gap

with the super-net architecture, and meanwhile does not re-

strict the architecture to any fixed topology.

In implementation, we enforce sparsification by adding a

regularization. Our optimization objective is in accordance

with the bi-level manner introduced in [32]. The upper-level

loss function of our super-net when optimizing the architec-

ture parameters {α
(i,j)
k } and {β(j)} is formulated as:

min
α,β

Lval (α,w
∗) + λ

1

n− 1

∑n

j=2
− log(t(j)), (11)

where Lval (α,w
∗) is the validation loss with the current

network parameters w∗, and λ is a hyper-parameter by

which we can control the degree of sparsification to obtain

more flexible topologies. We visualize our search process

of EnTranNAS-DST (λ = 0.1) in the video attached in

the supplementary material. Its corresponding description

is shown in the Appendix file.

2.5. Implementations

For both EnTranNAS and EnTranNAS-DST, we set the

first normal and reduction cells as Engine-cells, and the

other cells as Transit-cells. The super-net with 8 cells for

search on CIFAR-10 is shown in Figure 4. The first cells of

normal and reduction cells are set as Engine-cells, while the

others are Transit-cells. In experiments, we compare it with

other configurations in Table 1 to ablate our design choice.

Similar to the partial channel connection strategy in [49],

we also try to reduce the number of channels to further save

memory cost and reduce search time. Different from their

method, we adopt the bottleneck technique that is popular

in manually designed networks [19, 22, 51]. Concretely,

we perform a 1 × 1 convolution to reduce the number of

channels by a ratio before feeding a node into all candi-

date operations. Another 1 × 1 convolution is appended to

recover the number of channels to form each intermediate

node. The reduction ratio is set as 4 in our experiments.

3. Related Work

Reinforcement learning is first adopted to assign the bet-

ter architecture with a higher reward in [1, 57]. Follow-up

studies focus on reducing the computational cost [58, 55,

30, 4, 6, 39]. As another line of NAS methods, evolution-

based algorithms search for architectures as an evolving

process towards better performance [47, 41, 31, 40, 14, 37].

A good solution to reduce the search cost is one-shot meth-

ods that constructs a super-net covering all candidate archi-

tectures [2, 3]. The super-net is trained only once in search

and is then deemed as a performance estimator. Some stud-

ies train the super-net by sampling a single path [17, 28, 53]

in a chain-based search space [21, 5, 36, 54]. As a compari-

son, DARTS-based methods [32, 48] introduce architecture

parameters jointly optimized with the super-net weights and

performs the differentiable search in a cell-based space. Our

study belongs to this category because it enables to discover

more complex connecting patterns.

Despite the simplicity of DARTS, the architecture gap

between search and evaluation impedes its validity. Follow-

up studies aim to reduce the gap [48, 11, 8, 50], improve

the search efficiency [52, 50], and model path probabilities

[49]. However, all these methods derive the final architec-

ture based on a hand-crafted rule, which inevitably limits

the topology. Our method differs from these studies in that

the super-net of EnTranNAS-DST dynamically changes in

the search phase in a differentiable way, and then derives a

target-net that has the same architecture as the one in search,

and is not subject to any specific topology.

4. Experiments

We first analyze how each of our designs improves the

consistency, efficiency and flexibility by ablation studies,

and then compare our results on CIFAR-10 and ImageNet

with state-of-the-art methods. All our searched architec-

tures are visualized in the Appendix file.
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Engine-cell
Super-net Child-net

Acc. (%) Acc. (%)

all (DARTS) 88.29 63.97

one half 87.45 65.51

last 84.02 83.35

first 86.68 86.24

Table 1. Super-net accuracy drop

in different settings of Engine-cell.

Methods Kendall τ

DARTS -0.47

P-DARTS 0.20

PC-DARTS -0.07

EnTranNAS 0.33

EnTranNAS-DST 0.60

Table 2. Kendall scores of

our and existed methods.

Memory Batchsize Cost

(G) (64) (GPU-day)

DARTS (1st order) 9.0 ×1 0.73

+Engine&Transit-cell 4.5 ×2 0.22

+feature sharing 2.6 ×4 0.09

+bottleneck 1.5 ×8 0.06

Table 3. Efficiency improved by each component. The

three components are accumulated from top to bottom.

λ
Edges Params Flops

(N / R) (M) (M)

0.2 9 / 8 5.07 580

0.1 11 / 6 5.88 673

0.05 13 / 14 6.99 779

Table 4. EnTranNAS-DST with different λ. “N” and

“R” denote normal and reduction cell, respectively. It

is shown that the number of edges is not fixed to access

flexible topologies with variant capacities.

Figure 5. Comparison of top-1 accuracies on ImageNet with parameters (left)

and Flops (right). Zoom in to view better.

Backbone ResNet-50 [19] NASNet-A [58] DARTS [32]
EnTranNAS-DST EnTranNAS-DST EnTranNAS-DST

(λ = 0.2) (λ = 0.1) (λ = 0.05)

mIoU (%) 76.5 75.4 75.1 76.3 76.8 77.1

Table 5. Results of semantic segmentation on Pascal VOC 2012 using different architectures as the backbone with the same DeepLabV3

head [10], input size of 513× 513, and output stride of 16 in the single scale inference setting.

4.1. Ablation Studies

Consistency. EnTranNAS reduces the gap between the

super-net and target-net. We test the effects of our design

with different settings. After search on CIFAR-10, we per-

form inference only through the paths in the derived archi-

tecture as a child-net and compare their validation accu-

racy changes. As shown in Table 1, when all cells are set

as Engine-cell, the super-net is equivalent to DARTS and

has the largest accuracy drop. Making one half of cells as

Engine-cell also causes a large accuracy drop. As a compar-

ison, when one Engine-cell is used, we have a small accu-

racy drop, which demonstrates the validity of our method to

reduce the gap. We set the first cell as Engine-cell because

it relatively has a better super-net accuracy and a smaller

accuracy drop than the last cell setting.

We also adopt the Kendall metric [26] that evaluates the

rank correlation of data pairs. It ranges from -1 to 1 as

the ranking order changes from being reversed to identical.

We run DARTS, P-DARTS, PC-DARTS, EnTranNAS and

EnTranNAS-DST on CIFAR-10 for six times with different

seeds, and retrain these searched architectures. We calculate

the Kendall metric for each method using the six retrained

and super-net accuracies in Table 2. It is shown that our

methods help to improve the consistency.

Efficiency. The improved efficiency of our search on

CIFAR-10 by each component is shown in Table 3. “Mem-

ory” shows the memory consumption with a batchsize of

64. “Batchsize” is the largest batchsize that can be used

on a single GTX 1080 Ti GPU. “Cost” denotes the corre-

sponding search time using the enlarged batchsize. Both of

our Engine&Transit-cell design and feature sharing strategy

significantly improve the search efficiency. Similar to [49]

that reduces the number of channels when performing all

operations, we adopt a bottleneck before operations. When

“bottleneck” is added, we can use a batchsize of 512 and

reduce the search time to 0.06 GPU-day, which is about ten

times as fast as our re-implementation of DARTS.

Flexibility. EnTranNAS-DST enables the differentiable

search for topology and does not limit the number of edges

in normal or reduction cells. We can obtain architectures

with diverse capacities. A larger λ makes t(j) closer to 1,

which cuts out more connections by Eq. (8) and leads to a

more sparse architecture. Our search results on ImageNet

with different λ are shown in Table 4. Their accuracies on

ImageNet validation are depicted as a function of parame-

ters and FLOPs in Figure 5. It is shown that we have a bet-

ter trade-off than the strong baseline of manually designed

architecture, DenseNet. Our EnTranNAS-DST (λ=0.05)

surpasses DenseNet-169 with about one half of parameters

and less than one fourth of FLOPs. We also transfer these

searched architectures to semantic segmentation in Table 5,

which shows that our architectures with diverse capacities

are also applicable to other tasks. Our method breaks the

topology constraint and enables to search for flexible results
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Methods
Test Error Params Search Cost

Search Method
(%) (M) (GPU-day)

DenseNet-BC [22] 3.46 25.6 - manual

NASNet-A + cutout [58] 2.65 3.3 1800 RL

ENAS + cutout [39] 2.89 4.6 0.5 RL

Hierarchical Evolution [31] 3.75±0.12 15.7 300 evolution

DARTS (2nd order) + cutout [32] 2.76±0.09 3.3 4.0 gradient

SNAS (moderate) + cutout [48] 2.85±0.02 2.8 1.5 gradient

ProxylessNAS+cutout [7] 2.08† 5.7 4.0 gradient

PC-DARTS + cutout [49] 2.57±0.07 3.6 0.1 gradient

NASP + cutout [52] 2.83±0.09 3.3 0.1 gradient

MiLeNAS + cutout [18] 2.51±0.11 3.87 0.3 gradient

EnTranNAS + cutout 2.53±0.06 3.45 0.06 gradient

EnTranNAS-DST + cutout 2.48±0.08 3.20 0.10 gradient

NASP (12 operations) + cutout [52] 2.44±0.04 7.4 0.2 gradient

EnTranNAS (12 operations) + cutout 2.22±0.05 7.68 0.07 gradient

Table 6. Search results on CIFAR-10 and comparison with state-of-the-art methods. Search cost is tested on a single NVIDIA GTX 1080

Ti GPU. The best and second best results are shown in blue and black bold. Methods with the notation “(12 operations)” search on an

extended search space with 12 operations. †: ProxylessNAS uses a different macro-architecture from the other methods.

even outside the mobile setting limitation, which is beyond

the ability of most existed NAS methods and extends the

potential applications of searched architectures.

4.2. Results on CIFAR10

We describe the CIFAR-10 dataset in the Appendix file.

The super-net for search on CIFAR-10 is composed of 8

cells (6 normal cells and 2 reduction cells) with the initial

number of channels as 16. There are 6 nodes in each cell.

The first 2 nodes in cell k are input nodes, which are the

outputs of cell k − 2 and k − 1, respectively. The output

of each cell is the concatenation of all intermediate nodes.

We train the super-net for 50 epochs with a batchsize of

512. SGD is used to optimize the super-net weights with a

momentum of 0.9 and a weight decay of 3e-4. Its learning

rate is set as 0.2 and is annealed down to zero with a cosine

scheduler. We use the Adam optimizer for the architecture

parameters {α
(i,j)
k } (and {β(j)} for EnTranNAS-DST) with

a learning rate of 6e-4, a momentum of (0.5, 0.999) and a

weight decay of 1e-3. The initial temperature in Eq. (5) is

set as 5.0 and is annealed by 0.923 every epoch. We run

our search for 5 times and choose the architecture with the

best validation accuracy as the searched one. In evaluation,

the target-net has 20 cells (18 normal cells and 2 reduction

cells) with the initial number of channel as 36. We train for

600 epochs with a batchsize of 96, and report the mean error

rate with the standard deviation of 5 independent runs. SGD

optimizer is used with a momentum of 0.9, a weight decay

of 3e-4, and a gradient clipping of 5. The initial learning

rate is set as 0.025 and is annealed down to zero following

a cosine scheduler. As convention, a cutout length of 16, a

drop out rate of 0.2, and an auxiliary head are adopted.

We search on CIFAR-10 from the standard and ex-

tended version of candidate operation space. The standard

space has 7 operations and is consistent with current studies

[32, 48, 11, 49]. The extended version additionally has 5

more operations, which are 1 × 1 convolution, 3 × 3 con-

volution, 1 × 3 then 3 × 1 convolution, 1 × 5 then 5 × 1
convolution, and 1 × 7 then 7 × 1 convolution. The two

versions are listed in the Appendix file. As shown in Ta-

ble 6, for the standard search space, EnTranNAS achieves a

state-of-the-art performance of 2.53% error rate with only

0.06 GPU-day. The accuracy is on par with MiLeNAS

[18], whose search cost is 5 times as much as ours. To our

best knowledge, 0.06 GPU-day is the top speed on DARTS-

based search space. EnTranNAS-DST achieves a better per-

formance with less parameters than EnTranNAS due to its

superiority in learnable topology. When we search on the

extended search space, a higher-performance architecture is

searched with an error rate of 2.22%, which is better than

NASP [52] that also searches on 12 operations. The search

cost still has superiority and is increased by only 0.01 GPU-

day than that on the standard version. That is because the

extra operations only add the computational cost on Engine-

cells, which account for a small portion of the super-net in

search. Therefore, the search cost of EnTranNAS increases

sub-linearly as the search space is enlarged.

4.3. Results on ImageNet

We describe the ImageNet dataset in the Appendix file.

Following [49], we perform three convolution layers of

stride of 2 to reduce the resolution from the input size

224 × 224 to 28 × 28. The super-net for search has 8 cells
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Methods
Test Err. (%) Params Flops Search Cost

Search Method
top-1 top-5 (M) (M) (GPU days)

Inception-v1 [43] 30.2 10.1 6.6 1448 - manual

MobileNet [20] 29.4 10.5 4.2 569 - manual

ShuffleNet 2× (v2) [34] 25.1 - ∼5 591 - manual

MnasNet-92 [44] 25.2 8.0 4.4 388 - RL

AmoebaNet-C [40] 24.3 7.6 6.4 570 3150 evolution

DARTS (2nd order) [32] 26.7 8.7 4.7 574 4.0 gradient

SNAS [48] 27.3 9.2 4.3 522 1.5 gradient

P-DARTS [11] 24.4 7.4 4.9 557 0.3 gradient

ProxylessNAS (ImageNet) [7] 24.9 7.5 7.1 465 8.3 gradient

PC-DARTS (ImageNet) [49] 24.2 7.3 5.3 597 3.8 gradient

EnTranNAS (CIFAR-10) 24.8 7.6 4.9 562 0.06 gradient

EnTranNAS (ImageNet) 24.3 7.2 5.5 637 1.9 gradient

EnTranNAS-DST (ImageNet) † 23.8 7.0 5.2 594 2.1 gradient

Table 7. Search results on ImageNet and comparison with state-of-the-art methods. Search cost is tested on eight NVIDIA GTX 1080 Ti

GPUs. “(ImageNet)” indicates the method is directly searched on ImageNet. Otherwise, it is searched on CIFAR-10, and then transfered

to ImageNet. †: The result is searched with λ as 0.2 under the mobile setting and selected out as the best from five implementations.

with the initial number of channels as 16, while the target-

net for evaluation has 14 cells and starts with 48 channels.

We use a batchsize of 1,024 for both search and evalua-

tion. In search, we train for 50 epochs with the same op-

timizers, momentum, and weight decay as that on CIFAR-

10. The initial learning rate of network weights is 0.5 (an-

nealed down to zero following a cosine scheduler). The

learning rate of architecture parameters {α
(i,j)
k } (and {β(j)}

for EnTranNAS-DST) is 6e-3. The initial temperature and

its annealing ratio for EnTranNAS are the same as that on

CIFAR-10. For EnTranNAS-DST, the initial temperature is

set as 1 and is annealed by 0.9 every epoch. In evaluation,

we train for 250 epochs from scratch using the SGD opti-

mizer with a momentum of 0.9 and a weight decay of 3e-5.

The initial learning rate is set as 0.5 and is annealed down

to zero linearly. Following [49], an auxiliary head and the

label smoothing technique are also adopted.

We use both EnTranNAS and EnTranNAS-DST for ex-

periments on ImageNet with the standard search space. As

shown in Table 7, EnTranNAS searched on CIFAR-10 has

a top-1 error rate of 24.8%, which is competitive given that

its search time is much more friendly than other methods.

We also directly search on ImageNet. EnTranNAS achieves

a top-1/5 error rates of 24.3%/7.2%, which is on par with

PC-DARTS whose search cost is twice as much as ours.

Different from other studies, EnTranNAS-DST is the only

method that does not limit the topology of searched archi-

tecture. When λ in Eq. (11) is 0.2, a model with less param-

eters and FLOPs is searched and has a top-1 error rate of

23.8%, which surpasses EnTranNAS (ImageNet) by 0.5%

error rate due to its explicit learning of topology. The search

cost is larger than EnTranNAS because at the beginning

of search all connections to a node have non-zero weights

and are kept active. As the search proceeds, EnTranNAS-

DST adaptively drops connections. An illustration of how

EnTranNAS-DST changes its derived architecture in search

is shown in the supplementary video 1 and described in the

Appendix file. We see its search is still faster than PC-

DARTS but enjoys better performances and flexibilities. We

show in our ablation studies that architectures with flexible

topologies of diverse capacities can be searched by control-

ling the hyper-parameter λ.

5. Conclusion

In this paper, we introduce EnTranNAS that reduces the

gap between the architectures in search and evaluation and

saves much computational and memory cost. A feature

sharing strategy is adopted for more efficient and balanced

training of search. We further propose EnTranNAS-DST

that closes the gap by a new architecture derivation method.

It supports the search for flexible architectures without

topology constraint. Experiments show that EnTranNAS

improves the consistency and efficiency, and EnTranNAS-

DST extends the flexibility of searched architectures. We

produce state-of-the-art results on CIFAR-10 and directly

on ImageNet with obvious superiority in search cost.
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