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A. Potential Solutions
To help understand the implication of our theory for real problems, we discuss the connection between our theory and some
potential empirical solutions in recent works.

All the difficulties of encoding GANs we mention in this paper are caused by two factors:

• the intrinsic dimensions of latent spaces and data manifolds are different;

• the neural networks to capture the underlying encoder and generator have to be smooth.

Removing either of them can free encoding GANs from the uncertainty principles uncovered in this paper. Based on that,
we introduce two potential solutions to this issue: adaptive latents and noise disturbance techniques.

Adaptive latents Perhaps the most direct and reliable way is to let the network learn a latent distribution which can adapt
to the intrinsic dimension of specific data distribution. To achieve this goal, one may train an extra network to produce
latents for the generator and encoder. We are aware that the state-of-the-art autoencoder network, NVAE (Vahdat & Kautz,
2021), applies this design in its top-down model to learn an adaptive latent space for both encoder and generator (decoder),
and achieves impressive performance. Our theory may explain the success of NVAE, and support the plausibility of this idea
in encoding GANs.

Noise disturbance A potential way is to use noise disturbance in the encoder and generator networks. Noise disturbance
to neural networks has been proved to improve robustness and generalization performance (Hayakawa et al., 1995; Baldi &
Sadowski, 2013; He et al., 2019; Jenni & Favaro, 2019). Based on our theory, the introduction of noise disturbance can
also enlarge the function space that neural network can approximate and express. With the help of noise disturbance, we
may easily build neural networks that map a curve to a surface without the worry of gradient explosion. In (Arjovsky &
Bottou, 2017), noise disturbance is also proved to help stabilize training of generators. Previous works have enabled noise
disturbance in GANs such as StyleGAN (Karras et al., 2019; 2020), but very few works apply this technique to encoders.
Although the theoretical property of noise disturbance is still unclear, it might potentially help encode GANs.

B. Preliminaries
We start by introducing our settings. See Tab. 1 for meanings and examples of notations used in this paper. The current
framework of encoding GAN researches can be abstracted as follows. Let Z and X be the latent space and the data manifold,
and PZ and PX be the latent distribution and the data distribution on Z and X , respectively. Encoding GANs introduces a
bijection between the latent and the data: an underlying ‘perfect’ generator g transports the latent distribution into the data
one,

Pg(Z)(A) =

∫
g−1(A)

dPZ = PX (A),∀A ⊂ FX , (1)

where FX is the collection of measurable sets in X ; and an underlying ‘perfect’ encoder e inverts the generator,

e ◦ g(z) = z, g ◦ e(x) = x,∀z ∈ Z,x ∈ X . (2)

The training algorithms then aim at approximating the underlying ‘perfect’ encoder and generator with parameterized neural
networks Eθ andGφ, respectively.
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Uncertainty Principles of Encoding Generative Models

Figure 1. A typical training process. Training algorithms guide encoder network Eθ and generator network Gφ to the underlying e
and g by minimizing divergences from Eθ(X ) to Z and from Gφ(Z) to X . It is worthwhile to note that, as the latent distribution is
pre-assigned and fixed, we usually have dim(Z) 6= dim(X ).

Table 1. Examples of notation used in this paper.

d-dimensional volume md(·)
Scalars σ, δ, ε,m, n, d
Scalar value functions f, g
Vectors x, z
Vector value functions e, g
Sets & Manifolds X ,Z,D
Neural networks Eθ,Gφ,Dψ
Distributions PX (x),PZ(z)
Induced Distributions Pg(Z)(x),PEθ(X )(z)
Intrinsic dimension of manifolds dim(X ), dim(Z)

Fig. 1 illustrates a typical training process. Training algorithms guide the encoder network Eθ and the generator network
Gφ to the underlying ‘perfect’ encoder e and generator g by minimizing divergence from Eθ(X ) to Z and from Gφ(Z) to
X . Popular divergences include the Jensen-Shannon divergence (Donahue et al., 2017; Dumoulin et al., 2017)

DJS(PA,QB) = Ex∼PA
[
log

(
2PA(dx)

PA(dx) + QB(dx)

)]
+ Ey∼QB

[
log

(
2QB(dy)

PA(dy) + QB(dy)

)]
, (3)

KL divergence (Makhzani et al., 2015), l2 reconstruction loss (Choi et al., 2020), and Wasserstein divergence (Tolstikhin
et al., 2017)

W1(PA,QB) = inf
π∈Π(PA,QB)

∫
A×B

‖x− y‖ dπ(x,y), (4)

where Π(PA,QB) is the collection of all joint distributions of (x,y) ∈ A× B which have marginal distribution PA for x
and QB for y.

Usually, latent space Z and data space X are treated as manifolds embedded in some Euclidean ambient spaces. We
introduce the concept of manifolds and their intrinsic dimensions (Gallot et al., 1990) below, and give examples in Fig. 2.
Note that throughout this paper, we use the word ‘dimension’ for the intrinsic dimension of manifold, not the dimension of
its ambient space.
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Definition 1 (Intrinsic Dimension and Manifold). If for any point x ∈ A, it has a small open neighborhood U and a
continuous bijection b (also called the chart at x) that maps U ∩ A to an open set in Rn, then n is the intrinsic dimension
of A. We denote it as dim(A) = n. Accordingly, A is called a manifold.

We introduce two specific examples of the training process. The concurrent training process in BiGAN (Donahue et al.,
2017) solves a zero-sum game

min
θ,φ

max
ψ

V (Eθ,Gφ,Dψ), (5)

whereDψ is the discriminator network for the (x, z) pair, and

V (Eθ,Gφ,Dψ) = Ex∼PX [log (D(x,Eθ(x)))] + Ez∼PZ [1− log(D(Gφ(z), z))] . (6)

Another example is the two phase training process of LIA (Zhu et al., 2019), where a generator is trained by solving

min
θ

max
ψ

V (Gφ,Dψ), (7)

in which
V (Gφ,Dψ) = Ex∼PX [log(D(x))] + Ez∼PZ [1− log(D(Gφ(z))], (8)

and then an encoder is trained by optimizing

min
θ

Ex∼PX [‖Gφ ◦Eθ(x)− x‖22] + d(PEθ(X ),PZ), (9)

in which d is among the divergences of distributions introduced at the beginning of this section.

Current design of generative models assigns a fixed latent distribution to the generator, which also fixes the intrinsic
dimension of latent distribution. Specifically, for the popular standard Gaussian latents, the intrinsic dimension is the number
of variables (Goodfellow et al., 2014; Gallot et al., 1990). We disallow the networks to adjust the latent distribution during
training, because we need each sample z ∈ Z from the latent distribution to produce meaningful synthesis in X through the
generator. This is essentially different from auto-encoders (Hinton & Zemel, 1994; Ng et al., 2011) which are not designed
for synthesis and allow self-adaptation in the latent distribution. As dim(X ) is often unclear, and dim(Z) is manually
assigned before training, we are safe to assume that the latent space Z and domain of interest X have different intrinsic
dimensions, i.e. dim(X ) 6= dim(Z).

To build the foundation of our theory, we make the following assumptions, which are almost the minimum requests for
theoretical analysis.
Assumption 1. Throughout this paper, we assume that:

• the data domain X is a manifold with an intrinsic dimension n, where n is unknown;

• the neural networks Eθ(x) and Gφ(z) are continuous and piece-wise continuously differentiable with respect to
inputs x and z; we do not make any assumption on the training method or the loss function;

• the latent and the data distributions are absolutely continuous with respect to the Lebesgue measure on Z and X
respectively, which are the minimum requirements for calculating the Jensen-Shannon and Wasserstein divergences.

Remark 1. Obviously, neural network components such as MLPs, CNNs, Relu, Tanh, LeakyRelu, Softmax, Sigmoid, and
neural networks composed of them are all continuous and piece-wise continuously differentiable with respect to their inputs.

C. Proof to Theorems
C.1. Proof to Theorem 1

Theorem 1. When dim(Z) 6= dim(X ), at least one of the underlying encoder and generator in Eq. (1) & (2) is
discontinuous; and for any x ∈ X , δ > 0, there is a point x′ in the geodesic ball centered at x with radius δ, such that e is
not continuous at x′ or g is not continuous at e(x′). The same thing holds for Z .

Proof. We divide the proof into two parts. In the first part we prove the discontinuity of optimal encoder and generator; in
the second part we prove that the discontinuous points are dense.
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1-D Manifold 2-D Manifold 3-D Manifold

Figure 2. Intrinsic dimensions of manifolds in R3. All the above sets have 3-D coordinates (x, y, z) in R3, but their intrinsic dimensions
are different.

C.1.1. PART I

The discontinuity is a deduction from the following invariance of domain theorem.

Proposition 1 (Invariance of Domain). Let A and B be manifolds. Suppose that dim(A) 6= dim(B), then there is no
diffeomorphism between A and B.

It is easy to check that the underlying g and f introduce diffeomorphism between X and Z if they are continuous.

C.1.2. PART II

Suppose that for some x ∈ X , there is an open geodesic ball BX (x, r) with radius r centered at x, and f is continuous on
BX (x, r). If g is also continuous on f(BX (x, r)), then it is easy to see that f(BX (x, r)) is open subset of Z . Thus f and
g introduce diffeomorphism between them, which is contradictory to Proposition 1.

C.2. Proof to Theorem 2

Theorem 2. When dim(Z) 6= dim(X ), neural networks are not universal approximators to the underlying encoder and
generator in Eq. (1) & (2). More specifically, we have:

inf
θ,φ

δe(θ) + δg(φ) ≥ De +Dg > 0, (10)

where

De =
1

2
sup
x∈X

lim sup
y→x

‖e(y)− e(x)‖, (11)

Dg =
1

2
sup
z∈Z

lim sup
w→z

‖g(w)− g(z)‖, (12)

and

δe(θ) = sup
x∈X
‖Eθ(x)− e(x)‖, (13)

δg(φ) = sup
z∈Z
‖Gφ(z)− g(z)‖. (14)

Moreover, if dim(Z) < dim(X ), we have

DJS(PGφ(Z),PX ) ≥ log 2

2
, (15)
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and if dim(X ) < dim(Z), we have

DJS(PEθ(X ),PZ) ≥ log 2

2
. (16)

Proof. By Theorem 1, we know that at least one of f and g is not continuous. Assume that it is f . It is then easy to see
Df > 0. Thus Df +Dg > 0.

Then we prove that

inf
θ
δf (θ) ≥ Df , (17)

inf
φ
δg(φ) ≥ Dg. (18)

For any ε > 0, we can pick some x ∈ X , such that

lim sup
y→x

‖f(y)− f(x)‖ > 2Df − ε. (19)

By definition, it means that we have some
{xn}∞n=1 ⊂ X ,xn → x (20)

such that there is some positive N ∈ N to satisfy

‖f(xn)− f(x)‖ > 2Df − 2ε, ∀n > N. (21)

For neural network Fθ, if
‖Fθ(x)− f(x)‖ ≥ Df , (22)

then we have Eq. (17) already. Otherwise, we have

‖Fθ(x)− f(x)‖ < Df . (23)

By triangular inequality, we have

‖Fθ(xn)− f(xn)‖+ ‖Fθ(xn)− Fθ(x)‖+ ‖Fθ(x)− f(x)‖ ≥ ‖f(xn)− f(x)‖
⇔ ‖Fθ(xn)− f(xn)‖ ≥ ‖f(xn)− f(x)‖ − ‖Fθ(xn)− Fθ(x)‖ − ‖Fθ(x)− f(x)‖

≥ 2Df − 2ε−Df − ‖Fθ(xn)− Fθ(x)‖.
(24)

Recall that Fθ is differentiable and continuous. There existsM ∈ N, such that ‖Fθ(xn)−Fθ(x)‖ < ε,∀n > max{N,M}.
Then we have

‖Fθ(xn)− f(xn)‖ ≥ Df − 3ε, ∀n > max{N,M}. (25)

Recalling that ε can be arbitrarily small and xn ∈ X , we then get

sup
x∈X
‖Fθ(x)− f(x)‖ ≥ Df . (26)

Applying the same argument to g, we can prove Eq. (10).

At last we prove Eq. (16).

By definition, we have

2DJS(PFθ(X ),PZ) = Ez∼PFθ(X)

[
log

2dPFθ(X )

dPFθ(X ) + dPZ

]
+ Ez∼PZ

[
log

2dPZ
dPFθ(X ) + dPZ

]
. (27)

Assume that dim(X ) < dim(Z). We then have Fθ(X )∩Z is a zero measure set in Z , as Fθ is continuously differentiable.
Recall we assume that all the probability distributions are absolutely continuous about the Lebesgue measure, which suggests

Ez∼PZ
[
log

2dPZ
dPFθ(X ) + dPZ

]
=

∫
Z\Fθ(X )

log
2dPZ

dPFθ(X ) + dPZ
dPZ +

∫
Fθ(X )

log
2dPZ

dPFθ(X ) + dPZ
dPZ

=

∫
Z\Fθ(X )

log
2dPZ

dPFθ(X ) + dPZ
dPZ =

∫
Z\Fθ(X )

log
2dPZ
dPZ

dPZ =

∫
Z\Fθ(X )

log(2)dPZ = log(2).

(28)
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As the KL divergence is non-negative, we have

Ez∼PFθ(X)

[
log

2dPFθ(X )

dPFθ(X ) + dPZ

]
≥ 0, (29)

thus we get
2DJS(PFθ(X ),PZ) ≥ log(2). (30)

Applying the same argument to PX completes the proof.

C.3. Proof to Theorem 3

Theorem 3. Denote n = dim(X ) and d = dim(Z). Let md(Z) and mn(X ) be the volumes of Z and X with respect
to their intrinsic dimensions, respectively. Assume that Z and X are bounded manifolds embedded in high dimensional
Euclidean spaces, but are almost everywhere diffeomorphism to open subsets in Rd and Rn, respectively. Denote diam(Z) =
supz,w∈Z ‖z −w‖, diam(X ) = supx,y∈X ‖x− y‖, and ωi to be the volume of unit ball of dimension i. For simplicity,
let i, j ∈ {d, n} and

Γ(A,B, i, j, a, b)

=

(
diam(A)j−imj(B)

3a(2jmj(B) + ωjdiam(A)j)

) 1
j−i bmj(B)

3
.

(31)

Then there is a trade-off between the approximation error and the maximum gradient norm of networks if dim(Z) 6= dim(X ).
Specifically, if dim(Z) < dim(X ), there exist constants CX > 0 that only depends on PX and Cd > 0 that only depends
on d, such that

W1(PGφ(Z),PX )

(
sup
z∈Z
‖∇Gφ‖+ 1

) n
n−d

≥Γ(Z,X , d, n, Cd, CX );

(32)

if DJS(PGφ(Z),PX )) < log 2, then we further have

DJS(PGφ(Z),PX )(supz∈Z ‖∇Gφ‖+ 1)
2n
n−d

(diam(Z)(supz∈Z ‖∇Gφ‖) + diam(X ))2

≥4Γ(Z,X , d, n, Cd, CX )2.

(33)

On the other hand, if dim(Z) > dim(X ), there exist constants CZ > 0 that only depends on PZ and Cn > 0 that only
depends on n, such that

W1(PEθ(X ),PZ)

(
sup
x∈X
‖∇Eθ‖+ 1

) n
d−n

≥Γ(X ,Z, n, d, Cn, CZ);

(34)

if DJS(PEθ(X ),PZ)) < log 2, then we further have

DJS(PEθ(X ),PZ)(supx∈X ‖∇Eθ‖+ 1)
2n
d−n

(diam(X )(supx∈X ‖∇Eθ‖) + diam(Z))2

≥4Γ(X ,Z, n, d, Cn, CZ)2,

(35)

where W1 is the 1-Wasserstein distance (Villani, 2008).

Proof. Considering the Wasserstein divergence is integral over given domains, without loss of generalirity, we can assume
that both X and Z are diffeomorphism to open subsets in Rd and Rn. Let cX and cZ be those diffeomorphisms. They are
only decided by X and Z . Then cX ◦Gφ ◦ c−1

Z and cZ ◦ Fθ ◦ c−1
X are networks for encoding GANs between open subsets

of Rd and Rn.

For simplicity, we only prove the theorem for Euclidean case. For the manifold case, using the corresponding meaning of
measure, distance, and gradient induced by diffeomorphism can yield the same result.
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C.3.1. KANTOROVICH DUALITY

We first introduce the Kantorovich duality of W1 divergence (Villani, 2008; Bottou et al., 2019)

Proposition 2. When both A and B are bounded manifolds, let Q be the set of all pairs (fA, fB) of A and B-integrable
functions satisfying the property ∀x ∈ A,y ∈ B, fA(x)− fB(y) ≤ ‖x− y‖. We have

W1(PA,PB) = sup
(fA,fB)∈Q

Ex∼PA [fA(x)]− Ex∼PB [fB(x)]. (36)

It is then easy to see that

f̂A(x) = d(x,B) = inf
y∈B
‖x− y‖, f̂B(y) = 0, ∀x ∈ A, y ∈ B (37)

satisfies the condition of Proposition 2.

C.3.2. PROPERTY OF DISTANCE FUNCTION

Without loss of generality, assume that dim(Z) < dim(X ). Then it is easy to see that

Gφ(Z) = Gφ(Z) (38)

is bounded zero measure set with respect to mn(·). Let

Ωδ = {x ∈ X : d(x,Gφ(Z)) ≤ δ}. (39)

We then have mn(Ω0) = 0. On the other hand, it is easy to see lim
δ→∞

mn(Ω)→∞, and mn(Ωδ) is continuous about δ, thus

mn(Ωδ) can reach any value in R+.

When δ = diam(Z)
2 , we have Bn(x, δ) ⊂ Ωδ for any x ∈ Gφ(Z). Thus we have

mn(Ωδ) ≥ ωn
(
diam(Z)

2

)n
(40)

when δ = diam(Z)
2 , where ωn is the volume of unit ball in X . Note that

0 <
wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)
mn(X ) < ωn

(
diam(Z)

2

)n
. (41)

By the continuity of mn(Ωδ), we can conclude that there is some δ ∈ (0, diam(Z)
2 ), such that

mn(Ωδ) =
wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)
mn(X ) <

mn(X )

3
. (42)

We give an estimation to the lower bound of δ below. Assume that there are Nδ balls {Bd(zk, δ)}Nδk=1 in Rd covering Z . It
then follows that

Gφ(Z) ⊂ ∪Nδk=1Bn

(
Gφ(zk), sup

z∈Z
‖∇Gφ‖δ

)
, (43)

where Bn are balls in Rn. It is then easy to see that

Ωδ ⊂
{
x ∈ X : d

(
x,∪Nδk=1Bn

(
Gφ(zk), sup

z∈Z
‖∇Gφ‖δ

))
≤ δ
}
⊂ ∪Nδk=1Bn

(
Gφ(zk), sup

z∈Z
‖∇Gφ‖δ + δ

)
. (44)

Thus we get

mn(Ωδ) =
wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)
mn(X ) ≤ Nδωn

(
sup
z∈Z
‖∇Gφ‖+ 1

)n
δn. (45)
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In (Rogers, 1957), for ball with radius R of Rd, there is a constant Cd that only depends on d, such that Cd(Rδ )d is the upper
bound for minimal number of balls with radius δ < R to cover the ball with radius R. Thus we can pick {Bd(zk, δ)}Nδk=1 of
Rd such that

Nδ ≤ Cd
(
diam(Z)

δ

)d
. (46)

We then have

wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)
mn(X ) ≤ Cd

(
diam(Z)

δ

)d
ωn

(
sup
z∈Z
‖∇Gφ‖+ 1

)n
δn

⇔ δ ≥
(

diam(Z)n−dmn(X )

3Cd(supz∈Z ‖∇Gφ‖+ 1)n(2nmn(X ) + ωndiam(Z)n)

) 1
n−d

.

(47)

C.3.3. LOWER BOUND ESTIMATION

By the Littlewood principles of real analysis (Stein & Shakarchi, 2009), there exists compact set X ′ ⊂ X , such that

mn(X ′) ≥ 2

3
mn(X ) (48)

and the density pX of PX is continuous on it. As X is the support of pX and X ′ is compact, there exists some positive real
number CX that is only depends on PX , such that

pX (x) ≥ CX ,∀x ∈ X ′. (49)

Let IA be identity function

IA(x) =

{
1, x ∈ A
0. x /∈ A , (50)

f̂X (x) = d(x,Gφ(Z)), and f̂Gφ(Z) = 0. We then have

W1(PX ,PGφ(Z)) = sup
(fX ,fGφ(Z)∈Q

Ex∼PX [fX (x)]− Ex∼PGφ(Z)

[
fGφ(Z)(x)

]
≥ Ex∼PX

[
f̂X (x)

]
− Ex∼PGφ(Z)

[
f̂Gφ(Z)(x)

]
= Ex∼PX

[
f̂X (x)

]
= Ex∼PX

[
f̂X (x)IX\Gφ(Z)

]
+ Ex∼PX

[
f̂X (x)IX∩Gφ(Z)

]
= Ex∼PX

[
f̂X (x)IX\Gφ(Z)

]
=

∫
X\Gφ(Z)

f̂X (x)pX (x)dx

≥
∫
X ′\Gφ(Z)

f̂X (x)pX (x)dx

≥
∫
X ′\Ωδ

δCXdx

≥ δCX
mn(X )

3

≥
(

diam(Z)n−dmn(X )

3Cd(supz∈Z ‖∇Gφ‖+ 1)n(2nmn(X ) + ωndiam(Z)n)

) 1
n−d CXmn(X )

3
.

(51)

Note that in the penultimate step, we use the estimation

mn(Ωδ) =
wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)
mn(X ) ≈ mn(X )

3
. (52)
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This estimation is very loose when diam(Z) is tiny. We may use∫
X ′\Ωδ

δCXdx ≥ δCX
(

2

3
− wndiam(Z)n

3(2nmn(X ) + ωndiam(Z)n)

)
mn(X ) (53)

directly in this case to get more accurate estimation. Another issue is Eq. (47). When diam(Z) is tiny, the estimation for δ
is also very loose. A detailed analysis for this case can offer more accurate estimation, but may break the current uniform
format of the final inequality Eq. (51). As our inequality is already very complicated, we just use the current result of Eq.
(51).

C.3.4. INEQUALITY FOR JENSEN-SHANNON DIVERGENCE

Recall the inequality (Arjovsky & Bottou, 2017; Villani, 2008) induced by the Kantorovich duality

W1(P,Q) ≤ C · TV (P,Q), (54)

where TV (P,Q) is the total variation between P and Q, C is the diameter of the ball that contains the supports of P and Q,
and Pinsker’s inequality of Kullback–Leibler divergence is

TV (P,Q) ≤
√

1

2
DKL(P,Q). (55)

We then have

DJS(P,Q) ≥

(
1

2

(√
1

2
DKL(P,M) +

√
1

2
DKL(M,Q)

))2

≥ 1

4
(TV (P,M) + TV (M,Q))2

≥ 1

4
TV (P,Q)2 ≥ 1

4C2
W1(P,Q)2,

(56)

where
M =

P + Q
2

. (57)

The first inequality follows the Jensen inequality, and the third inequality follows the triangle inequality of total variation.

Note that when
DJS(P,Q) < log 2, (58)

the supports of P and Q must intersect each other, thus C is not larger than the sum of diameters of supports of P and Q.
Substituting Eq. (56) into (51) and noting that when

DJS(PX ,PGφ(Z)) < log 2, (59)

we can take C as

C = (diam(X ) + diam(Gφ(Z)) ≤
(
diam(X ) +

(
sup
z∈Z
‖∇Gφ‖

)
diam(Z)

)
. (60)

Substituting Eq. (60) into (56), we then have the inequalities in Eq. (33) & (35) for Jensen-Shannon divergence.

Applying the same process to the case of dim(Z) > dim(X ) completes the proof.

C.4. Proof to Corollary 1

Corollary 1. Under the condition of Theorem 3, we let {x1, ...,xN} be N independent samples from PX . Let QN =
1
N

∑N
i=1 δxi be the empirical distribution of those samples, where δx is the Dirac distribution for sample x. Further assume

that
∫
X ‖x− y‖PX (dy) <∞,∀x ∈ X . If d < n, then there exists constant C > 0 such that for all generator networkGφ

Ex1,...,xN∼PX [W1(PGφ(Z),QN )] ≥ C

(supz∈Z ‖∇Gφ‖+ 1)
n
n−d
−O(N−

1
n ). (61)
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Proof. Taking the following proposition (Bottou et al., 2019; Villani, 2008) and triangle inequality of Wasserstein distance
into Theorem 3 yields the proof.

Proposition 3. Let QN be defined in Corollary 1. We have

Ex1,...,xN [W1(QN ,PX )] = O(N−
1
n ). (62)

C.5. Proof to Lemma 1

Lemma 1. If h is continuous and D is connected, then h(D) is also connected.

Proof. See (Rudin et al., 1964).

C.6. Proof to Lemma 2

Lemma 2 (Estimation of the JS Divergence). For a fixed generatorG, when the discriminatorD is optimal, we have

V (D,G) = Ex∼PX [log(D(x))] + Ez∼PZ [log(1−D(G(z)))] (63)

and
DJS(PG,Pdata) = log 2 +

1

2
V (D,G). (64)

Proof. See proof of Theorem 1 in (Goodfellow et al., 2014).

C.7. Proof to Lemma 3

Lemma 3. For differentiable map h : D → Rd, D ⊂ Rd, we have

md(h(D)) ≤
(

sup
x∈D
‖∇h‖

)d
md(D), (65)

where md(·) is the volume of set of dimension d.

Proof. By definition, for any ε > 0, there is balls Bk with radius rk, k ∈ N, such that

D ⊂ ∪kBk, md(D) ≤
∑
k

rdk ≤ md(D) + ε. (66)

It is easy to see that h(Bk) is contained in some ball with radius (supx∈D ‖∇h‖)rk, thus we have

md(h(D)) ≤
(

sup
x∈D
‖∇h‖

)d∑
k

rdk ≤
(

sup
x∈D
‖∇h‖

)d
md(D) +

(
sup
x∈D
‖∇h‖

)d
ε. (67)

Let ε→ 0. We then prove the lemma.
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