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Abstract

The compelling synthesis results of Generative
Adversarial Networks (GANs) demonstrate rich
semantic knowledge in their latent codes. To ob-
tain this knowledge for downstream applications,
encoding GANs has been proposed to learn en-
coders, such that real world data can be encoded
to latent codes, which can be fed to generators
to reconstruct those data. However, despite the
theoretical guarantees of precise reconstruction
in previous works, current algorithms generally
reconstruct inputs with non-negligible deviations
from inputs. In this paper we study this predica-
ment of encoding GANs, which is indispensable
research for the GAN community. We prove three
uncertainty principles of encoding GANs in prac-
tice: a) the ‘perfect’ encoder and generator cannot
be continuous at the same time, which implies
that current framework of encoding GANs is ill-
posed and needs rethinking; b) neural networks
cannot approximate the underlying encoder and
generator precisely at the same time, which ex-
plains why we cannot get ‘perfect’ encoders and
generators as promised in previous theories; c)
neural networks cannot be stable and accurate at
the same time, which demonstrates the difficulty
of training and trade-off between fidelity and dis-
entanglement encountered in previous works. Our
work may eliminate gaps between previous the-
ories and empirical results, promote the under-
standing of GANs, and guide network designs for
follow-up works.
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1. Introduction
Generative Adversarial Networks (GANs) (Goodfellow
et al., 2014) are powerful unsupervised models of estab-
lishing maps from simple latent distributions to arbitrarily
complex data distributions in various real world scenarios
like computer vision (Liang et al., 2017; Zhang et al., 2019;
Karras et al., 2019; 2020; Zheng et al., 2020; Liu et al.,
2019; Zha et al., 2020), natural language processing (Zhang
et al., 2017; Xu et al., 2018; Liu et al., 2018), medicine (Yi
& Babyn, 2018; Wolterink et al., 2017; Yi et al., 2018; Frid-
Adar et al., 2018), and chemistry (De Cao & Kipf, 2018).
Their impressive synthesis performance has aroused a surge
of interests in encoding data into latent spaces of GANs for
representation learning (Donahue & Simonyan, 2019; Ma
et al., 2019; Asim et al., 2020), image editing (Bau et al.,
2020; Richardson et al., 2020; Shen & Zhou, 2020; Abdal
et al., 2020b), and other downstream tasks (Lin et al., 2019;
Rosca et al., 2018; Lewis et al., 2021).

The current framework of encoding GAN researches can
be abstracted as follows. Let Z and X be the latent space
and the data manifold, and PZ and PX be the latent distri-
bution and the data distribution on Z and X , respectively.
Encoding GANs introduces a bijection between the latent
and the data: an underlying ‘perfect’ generator g transports
the latent distribution into the data one,

Pg(Z)(A) =

∫
g−1(A)

dPZ = PX (A),∀A ⊂ FX , (1)

where FX is the collection of measurable sets in X ; and an
underlying ‘perfect’ encoder e inverts the generator,

e ◦ g(z) = z, g ◦ e(x) = x,∀z ∈ Z,x ∈ X . (2)

The training algorithms then aim at approximating the un-
derlying ‘perfect’ encoder and generator with parameterized
neural networks Eθ andGφ, respectively.

The above framework of encoding GANs supports both to
encode a pre-trained GAN, or to learn a GAN equipped
with an encoder in an end-to-end manner, which divides
current encoding GAN algorithms into two training method-
ologies: 1) concurrent training, i.e. training the encoder and
generator concurrently as in ALI (Dumoulin et al., 2017)
and BiGAN (Donahue et al., 2017; Donahue & Simonyan,
2019); 2) two phase training, i.e. training an encoder to
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invert a fixed and pretrained generator as in (Perarnau et al.,
2016; Reed et al., 2016; Zhu et al., 2019). There are theoret-
ical supports for both methodologies. For concurrent train-
ing, BiGAN and ALI have proved that neural networks will
attain ‘perfect’ reconstruction and synthesis at the global
minimum of training algorithms (Theorem 2 & Proposition
3 in (Donahue et al., 2017; Donahue & Simonyan, 2019)).
For two phase training, Universal Approximation Theorem
(Cybenko, 1989; Pinkus, 1999) says that one layer neural
networks can fit a given continuous mapping (the inverse of
pretrained generator) arbitrarily well.

Despite the theoretical guarantee that neural networks can
approximate the ‘perfect’ encoder & generator, the practice
of encoding GANs is far from satisfactory. Optimization-
based GAN inversion methods (Abdal et al., 2019; 2020a;
Gabbay & Hoshen, 2019) solve the inverted latent code of
data point x by

z(x) = arg min
z∈Z
‖Gφ(z)− x‖2 + λR(z), (3)

where R(z) is the regularization term. They significantly
outperform explicit encoders in inversion quality. The en-
coder and the generator with concurrent training provide
informative representations for downstream tasks (Donahue
et al., 2017; Dumoulin et al., 2017; Donahue & Simonyan,
2019; Belghazi et al., 2018b; Chen et al., 2016; Belghazi
et al., 2018a), but generate less competitive results than
state-of-the-art GAN models (Brock et al., 2018; Karras
et al., 2019; 2020), and cannot achieve the faithful recon-
struction. While two phase training can keep the synthesis
quality of generators, it still reconstructs inputs with consid-
erable differences (Perarnau et al., 2016; Reed et al., 2016;
Zhu et al., 2019). As both the synthesis and inversion ability
are vital for downstream tasks, it is necessary to close the
gap between theory and empirical performance, uncover
the black box behind encoding GANs, and offer insights to
network designs.

Here we provide a theoretical framework for analyzing en-
coding GANs and handling challenges mentioned above.
Different from many theoretical works built on strong as-
sumptions and narrow scenarios like smoothness, Gaussian
distributions, or shallow network architectures, we only
make three mild assumptions: data lie in a manifold, the
neural networks are continuous and piece-wise continuously
differentiable, and all involved probability distributions have
densities. All assumptions are broadly accepted in the deep
learning community (Wold et al., 1987; Candès et al., 2011;
LeCun et al., 2015; Goodfellow et al., 2016; Lin et al., 2018),
and are consistent with the practice well (Glorot et al., 2011;
Ioffe & Szegedy, 2015; Krizhevsky et al., 2017). This allows
our theory to be closely connected with the practice, have
universal meaning in guiding network designs, and supple-
ment many previous theoretical works in related directions.
Our main contributions are summarized as follows:

Figure 1. A typical training process. Training algorithms guide
encoder network Eθ and generator network Gφ to the underlying
e and g by minimizing divergences from Eθ(X ) to Z and from
Gφ(Z) toX . It is worthwhile to note that, as the latent distribution
is pre-assigned and fixed, we usually have dim(Z) 6= dim(X ).

• Our theory demonstrates three uncertainty principles
1 in the practice of encoding GANs: a) the underly-
ing encoder and generator cannot be continuous at the
same time; b) neural networks cannot accurately ap-
proximate the underlying encoder and generator at the
same time; c) neural networks cannot be stable and
accurate at the same time.

• Our theorems explain why we always get ‘imperfect’
encoders and generators, why we sometimes have un-
stable training, and why we sometimes encounter trade-
off between fidelity and disentanglement (Karras et al.,
2019; 2020), despite the theoretical guarantees in (Don-
ahue et al., 2017; Donahue & Simonyan, 2019; Du-
moulin et al., 2017; Arjovsky et al., 2017; Arjovsky &
Bottou, 2017; Gulrajani et al., 2017). Our theorems
also supplement those previous theoretical works.

• We provide examples to validate the three uncertainty
principles and provide intuitive understandings on the
uncertainty principles.

Although our theoretical analysis is for encoding GANs,
we can also apply it to the encoding of other generative
models, such as Wassertein auto-encoders (Tolstikhin et al.,
2017), adversarial auto-encoders (Makhzani et al., 2015),
and auto-encoders with fixed latent distributions.

2. Preliminaries
We start by introducing our settings. See Tab. 1 for mean-
ings and examples of notations used in this paper. Fig. 1
illustrates a typical training process. Training algorithms
guide the encoder network Eθ and the generator network
Gφ to the underlying ‘perfect’ encoder e and generator g by

1Here we mean that there are always two properties that cannot
be reached together, which is similar to the uncertainty principle
in physics (Robertson, 1929).
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Table 1. Examples of notation used in this paper.

d-dimensional volume md(·)
Scalars σ, δ, ε,m, n, d
Scalar value functions f, g
Vectors x, z
Vector value functions e, g
Sets & Manifolds X ,Z,D
Neural networks Eθ,Gφ,Dψ
Distributions PX (x),PZ(z)
Induced Distributions Pg(Z)(x),PEθ(X )(z)
Intrinsic dimension of manifolds dim(X ), dim(Z)

minimizing divergence from Eθ(X ) to Z and fromGφ(Z)
to X . Popular divergences include the Jensen-Shannon di-
vergence (Donahue et al., 2017; Dumoulin et al., 2017)

DJS(PA,QB) = Ex∼PA
[
log

(
2PA(dx)

PA(dx) + QB(dx)

)]
+ Ey∼QB

[
log

(
2QB(dy)

PA(dy) + QB(dy)

)]
,

(4)

KL divergence (Makhzani et al., 2015), l2 reconstruction
loss (Choi et al., 2020; Li et al., 2017), and Wasserstein
divergence (Tolstikhin et al., 2017)

W1(PA,QB) = inf
π∈Π(PA,QB)

∫
A×B

‖x− y‖ dπ(x,y), (5)

where Π(PA,QB) is the collection of all joint distributions
of (x,y) ∈ A×B which have marginal distribution PA for
x and QB for y.

Usually, latent space Z and data space X are treated as
manifolds embedded in some Euclidean ambient spaces.
We introduce the concept of manifolds and their intrinsic
dimensions (Gallot et al., 1990) below, and give examples
in Fig. 2. Note that throughout this paper, we use the word

‘dimension’ for the intrinsic dimension of manifold, not the
dimension of its ambient space.

Definition 1 (Intrinsic Dimension and Manifold) If for
any point x ∈ A, it has a small open neighborhood U
and a continuous bijection b (also called the chart at x)
that maps U ∩A to an open set in Rn, then n is the intrinsic
dimension of A. We denote it as dim(A) = n. Accordingly,
A is called a manifold.

We introduce two specific examples of the training process.
The concurrent training process in BiGAN (Donahue et al.,
2017) solves a zero-sum game

min
θ,φ

max
ψ

V (Eθ,Gφ,Dψ), (6)

whereDψ is the discriminator network for the (x, z) pair,

and

V (Eθ,Gφ,Dψ) = Ex∼PX [log (D(x,Eθ(x)))]

+Ez∼PZ [1− log(D(Gφ(z), z))] .
(7)

Another example is the two phase training process of LIA
(Zhu et al., 2019), where a generator is trained by solving

min
θ

max
ψ

V (Gφ,Dψ), (8)

in which

V (Gφ,Dψ) = Ex∼PX [log(D(x))]

+Ez∼PZ [1− log(D(Gφ(z))],
(9)

and then an encoder is trained by optimizing

min
θ

Ex∼PX [‖Gφ ◦Eθ(x)− x‖22] + d(PEθ(X ),PZ), (10)

in which d is among the divergences of distributions intro-
duced at the beginning of this section.

Current design of generative models assigns a fixed latent
distribution to the generator, which also fixes the intrinsic
dimension of latent distribution. Specifically, for the pop-
ular standard Gaussian latents, the intrinsic dimension is
the number of variables (Goodfellow et al., 2014; Gallot
et al., 1990). We disallow the networks to adjust the latent
distribution during training, because we need each sample
z ∈ Z from the latent distribution to produce meaningful
synthesis in X through the generator. This is essentially
different from auto-encoders (Hinton & Zemel, 1994; Ng
et al., 2011) which are not designed for synthesis and al-
low self-adaptation in the latent distribution. As dim(X )
is often unclear, and dim(Z) is manually assigned before
training, we are safe to assume that the latent space Z and
domain of interest X have different intrinsic dimensions, i.e.
dim(X ) 6= dim(Z).

To build the foundation of our theory, we make the following
assumptions, which are almost the minimum requests for
theoretical analysis.

Assumption 1 Throughout this paper, we assume that:

• the data domain X is a manifold with an intrinsic
dimension n, where n is unknown;

• the neural networksEθ(x) andGφ(z) are continuous
and piece-wise continuously differentiable with respect
to inputs x and z; we do not make any assumption on
the training method or the loss function;

• the latent and the data distributions are absolutely con-
tinuous with respect to the Lebesgue measure onZ and
X respectively, which are the minimum requirements
for calculating the Jensen-Shannon and Wasserstein
divergences.
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1-D Manifold 2-D Manifold 3-D Manifold

Figure 2. Intrinsic dimensions of manifolds in R3. All the above
sets have 3-D coordinates (x, y, z) in R3, but their intrinsic dimen-
sions are different.

Remark 1 Obviously, neural network components such as
MLPs, CNNs, Relu, Tanh, LeakyRelu, Softmax, Sigmoid,
and neural networks composed of them are all continuous
and piece-wise continuously differentiable with respect to
their inputs.

Remark 2 The readers may note that we do not assume the
training technique and architecture details of the generator
and encoder. Thus the generator and encoder can also
be obtained by other methods like variational inferences
(Kingma & Welling, 2013).

3. Uncertainty Principles
3.1. Uncertainty in the Continuity of the Underlying

Encoder and Generator

Our first result suggests that the underlying encoder and
generator may not be smooth at the same time.

Theorem 1 When dim(Z) 6= dim(X ), at least one of the
underlying encoder and generator in Eq. (1) & (2) is dis-
continuous; and for any x ∈ X , δ > 0, there is a point x′

in the geodesic ball centered at x with radius δ, such that e
is not continuous at x′ or g is not continuous at e(x′). The
same thing holds for Z .

Theorem 1 almost excludes continuous underlying encoders
and generators in practice, and underlines that the discon-
tinuous points exist in every neighborhood. It reveals the
extremely bad property of the underlying encoder and gener-
ator, and nearly excludes the chance for continuous networks
to exactly represent the underlying encoder and generator.
Also, it urges us to rethink the current design of encoding
GANs, as continuity of underlying functions is so impor-
tant in theoretical foundations of universal approximation
abilities of neural networks (Cybenko, 1989; Hornik et al.,
1989; Allan, 1999; Hanin & Sellke, 2018; Johnson, 2018;
Kidger & Lyons, 2020; Park et al., 2021), representation
learning (Bengio et al., 2013), unsupervised learning (Bar-
low, 1989; Belkin & Niyogi, 2001; Belkin et al., 2006), and
other downstream tasks (Belkin & Niyogi, 2003; Zhang &

Zha, 2004; Chang et al., 2004). The uncertainty in continu-
ity no doubt strikes the heart of both network designs and
downstream tasks of encoding GANs.

3.2. Uncertainty in Universal Approximation Ability

Apart from the above, we are interested in quantitatively an-
alyzing how well the neural networks can approximate the
underlying encoder and generator. The Universal Approxi-
mation Theorem (Pinkus, 1999) states that neural networks
can approximate any continuous functions with arbitrary ac-
curacy. However, in this paper, we find that neural networks
are seldom universal approximators in encoding GANs.

Theorem 2 When dim(Z) 6= dim(X ), neural networks
are not universal approximators to the underlying encoder
and generator in Eq. (1) & (2). More specifically, we have:

inf
θ,φ

δe(θ) + δg(φ) ≥ De +Dg > 0, (11)

where

De =
1

2
sup
x∈X

lim sup
y→x

‖e(y)− e(x)‖, (12)

Dg =
1

2
sup
z∈Z

lim sup
w→z

‖g(w)− g(z)‖, (13)

and

δe(θ) = sup
x∈X
‖Eθ(x)− e(x)‖, (14)

δg(φ) = sup
z∈Z
‖Gφ(z)− g(z)‖. (15)

Moreover, if dim(Z) < dim(X ), we have

DJS(PGφ(Z),PX ) ≥ log 2

2
, (16)

and if dim(X ) < dim(Z), we have

DJS(PEθ(X ),PZ) ≥ log 2

2
. (17)

Theorem 2 seems to contradict Theorem 2 in BiGAN (Don-
ahue et al., 2017) that the underlying ‘perfect’ encoder
and generator can be reached by the training algorithms.
This contradiction comes from a potential assumption in
the proof of BiGAN: the Jensen-Shannon divergence be-
tween the induced (encoded or generated) distributions
and real (latent or data) distributions can reach exact zero.
This assumption is well consistent with practice when it
is originally used in the proof of Theorem 1 in BiGAN,
where Eθ and Gφ have indeterministic architectures, i.e.
Eθ(x) = p(z|x;θ) and Gφ(z) = p(x|z;φ) are distribu-
tions rather than specific vectors given inputs x ∈ X and
z ∈ Z . However, in the proof of Theorem 2 (Appendix
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A.3 & A.4 of (Donahue et al., 2017)) in BiGAN, Eθ(x)
andGφ(z) are limited to deterministic functions. This as-
sumption then no longer holds if dim(Z) 6= dim(X ), as
we show in Fig. 4 and 3, and Eq. (17) of Theorem 2. It then
results in the failure of the theory of BiGAN in practice. The
detailed analysis is provided in the supplementary material.

Theorem 2 estimates how close neural networks can ap-
proach the underlying encoder and generator. For all neural
networks, whatever the depth, width, architectures, and
training methods, their approximation error to e and g is
larger than De +Dg , which is a positive real number when
dim(Z) 6= dim(X ) and only depends on the task itself.

We note that the research field of universal approximations
also extensively uses another error measure, the lp distance
between neural networks and underlying targets (Lu et al.,
2017; Kidger & Lyons, 2020; Park et al., 2021). However,
this error measure for approximation may be ill-posed for
generative models. The lp error measure cares more about
how a predict (such as predicted class labels) from the input
departs from its real value (such as ground-truth labels),
while in the scenario of encoding generative models, we
care more about how much region of the data or latent dis-
tributions are covered by generated distributions or encoded
distributions (Eq. (16) & (17) offer such error measure).
Those two things are not equivalent. To demonstrate it,
consider the continuous target function

fε(x) =

{
ε

1−εx, 0 ≤ x < 1− ε,
1−ε
ε x+ 2ε−1

ε , 1− ε ≤ x ≤ 1,
(18)

where 0 < ε � 1. It is easy to see that f([0, 1 − ε)) =
[0, ε), f([1− ε, 1]) = [ε, 1]. setting g(x) = ε

1−εx, we have∫ 1

0
|fε − g|dx < ε ≈ 0, and m1(fε([0, 1]) \ g([0, 1])) =

1− ε
1−ε ≈ 1, where m1 is the Lebesgue measure on [0, 1].

As ε is very small, we have that g approximates fε very
well in l1 error, but most of the output of fε is not covered
by g. Thus, for encoding generative models, the uniform
approximation error in Eq. (11) and distribution divergence
in Eq. (16) & (17) are more meaningful.

Theorem 2 explains the gap between practice and theory of
encoding GANs we have mentioned in Introduction. For
optimization-based GAN inversion methods, they do not
need a continuous explicit encoder (Creswell & Bharath,
2018; Abdal et al., 2019; 2020a), thus do not yield the er-
ror bounds in Eq. (11) & (17). As a consequence, the
optimization-based methods may approximate the inverse
mapping more accurately than encoder-based methods if
provided suitable initialization (Zhu et al., 2019). For ex-
plicit encoders and generators (Perarnau et al., 2016; Don-
ahue et al., 2017; Rosca et al., 2017; Su, 2019; Donahue &
Simonyan, 2019; Zhu et al., 2019; Pidhorskyi et al., 2020),
the joint approximation errors in Eq. (11) & (17) & (16)
deviate at least one of the encoder and generator from high
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Figure 3. Illustration of Eq. (11). For all the neural networks,
no matter their architectures and parameters, they admit positive
distance to the underlying encoder and generator, as long as the
conditions of Theorem 2 hold.
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log2
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Figure 4. Illustration of Eq. (17). Here we give a simple example.
If the latent distribution PA is supported on a real line A, a one-
dimensional manifold, and the data distribution PB is supported
on a two-dimensional manifold B. Then for any differentiable
function h : A → B, h(A) is a curve on B. The curve can never
occupy the whole 2-D surface B, and thus the Jensen-Shannon
divergence can never reach exact zero.

quality outputs. In this case, neural networks are not univer-
sal approximators for the underlying encoder and generator,
and the universal approximation theorem (Pinkus, 1999)
does not hold in our scenario.

3.3. Uncertainty in Training Dynamics

Our last result digs into the training dynamics. It finds that
in most cases gradient explosion cannot be avoided during
training, and offers an estimation on the explosion speed.

Theorem 3 Denote n = dim(X ) and d = dim(Z). Let
md(Z) and mn(X ) be the volumes of Z and X with re-
spect to their intrinsic dimensions, respectively. Assume
that Z and X are bounded manifolds embedded in high
dimensional Euclidean spaces, but are almost everywhere
diffeomorphism to open subsets in Rd and Rn, respectively.
Denote diam(Z) = supz,w∈Z ‖z − w‖, diam(X ) =
supx,y∈X ‖x − y‖, and ωi to be the volume of unit ball
of dimension i. For simplicity, let i, j ∈ {d, n} and

Γ(A,B, i, j, a, b)

=

(
diam(A)j−imj(B)

3a(2jmj(B) + ωjdiam(A)j)

) 1
j−i bmj(B)

3
.

(19)

Then there is a trade-off between the approximation error
and the maximum gradient norm of networks if dim(Z) 6=
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Figure 5. Illustration of Theorem 3. For a one-dimensional curve,
the only way to fit a two-dimensional manifold is to twist itself, so
that it can occupy more areas.

dim(X ). Specifically, if dim(Z) < dim(X ), there exist
constants CX > 0 that only depends on PX and Cd > 0
that only depends on d, such that

W1(PGφ(Z),PX )

(
sup
z∈Z
‖∇Gφ‖+ 1

) n
n−d

≥Γ(Z,X , d, n, Cd, CX );

(20)

if DJS(PGφ(Z),PX )) < log 2, then we further have

DJS(PGφ(Z),PX )(supz∈Z ‖∇Gφ‖+ 1)
2n

n−d

(diam(Z)(supz∈Z ‖∇Gφ‖) + diam(X ))2

≥4Γ(Z,X , d, n, Cd, CX )2.

(21)

On the other hand, if dim(Z) > dim(X ), there exist con-
stants CZ > 0 that only depends on PZ and Cn > 0 that
only depends on n, such that

W1(PEθ(X ),PZ)

(
sup
x∈X
‖∇Eθ‖+ 1

) n
d−n

≥Γ(X ,Z, n, d, Cn, CZ);

(22)

if DJS(PEθ(X ),PZ)) < log 2, then we further have

DJS(PEθ(X ),PZ)(supx∈X ‖∇Eθ‖+ 1)
2n

d−n

(diam(X )(supx∈X ‖∇Eθ‖) + diam(Z))2

≥4Γ(X ,Z, n, d, Cn, CZ)2,

(23)

where W1 is the 1-Wasserstein distance (Villani, 2008).

Remark 3 Typical examples of manifolds satisfying condi-
tions of Theorem 3 are spheres, hyperbolic surfaces, ellip-
soids and their deformed shapes embedded in high dimen-
sional spaces.

Remark 4 As we do not impose conditions on the training
process, we can apply Theorem 3 to the training of GANs,
which is the first phase learning of the two phase encoding
GANs.

Remark 5 Note that the value of Γ is from two positive
constants when PZ and PX are given. Γ

j−i
j (the explosion

speed of maximum gradient norm) grows larger for fixed
j when i decreases or mj(B) increases. It is very small
when diam(A) is very large. Those changes of values are
consistent with our intuition in Fig. 5. However, in order to
get a uniform format holding for all situations, we use very
loose estimation when diam(A) is tiny in the deduction.
This makes the value of Γ not optimal when diam(A) is
extremely small and we can use better estimation for this
case. See the proof in the supplementary material for details.

Remark 6 Note that the Jensen-Shannon divergence has
a universal upper bound log 2. Thus the condition for Eq.
(21) & (23) to hold is equivalent to saying that the induced
distribution of encoder or generator network is not too far
away from the real distribution.

Theorem 3 reveals a trade-off between the Wasserstein
distance, which is often the training loss in practice, and
the maximum gradient norm of networks, if dim(Z) 6=
dim(X ). The theorem can be understood intuitively in the
following way: the only way for a one-dimensional curve to
fit a two-dimensional surface, is to twist the curve so that it
can occupy as many areas as possible. We illustrate this intu-
ition in Fig. 5. It means that the training of encoding GANs
can be rather unstable and difficult, if both W1(Pe(X ),PZ)
and W1(Pg(Z),PX ) are minimized. Some previous works
(Bengio et al., 2013; Belkin & Niyogi, 2003) on representa-
tion learning argue that a gentle gradient norm is necessary
for good representations computed by networks. Thus The-
orem 3 may also suggest bad representation quality when
the Wasserstein distance is small.

In a more practical setting, the data distribution is an empir-
ical approximation to the real underlying distribution. For
Wasserstein distance, we then have:

Corollary 1 Under the condition of Theorem 3, and let
{x1, ...,xN} be N independent samples from PX . Let
QN = 1

N

∑N
i=1 δxi

be the empirical distribution of those
samples, where δx is the Dirac distribution for sample x.
Further assume that

∫
X ‖x− y‖PX (dy) <∞,∀x ∈ X . If

d < n, then there exists a constant C > 0 such that for all
generator networkGφ

Ex1,...,xN∼PX [W1(PGφ(Z),QN )]

≥ C

(supz∈Z ‖∇Gφ‖+ 1)
n

n−d
−O(N−

1
n ).

(24)

Theorem 5 and Corollary 1 point out a case where Wasser-
stein GANs (Arjovsky et al., 2017; Arjovsky & Bottou,
2017) may suffer from gradient explosion. Wasserstein
GANs are proposed to cope with the gradient explosion
issue in GANs. They replace the original Jensen-Shannon
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divergence (Goodfellow et al., 2014) of GANs with the
Wasserstein distance. Wasserstein distance is proved to be
more stable for training than the Jensen-Shannon divergence
as it is smoother (Arjovsky & Bottou, 2017). But previous
works did not discuss whether Wasserstein divergence can
totally exclude gradient explosion. A recent theoretical
analysis (Bottou et al., 2019) points out that the Monge-
Ampère formulation (Villani, 2003; 2008) of WGAN may
not have good duality. In this paper, we further give a
negative answer in Eq. (20). When dim(Z) < dim(X ),
W1(PGφ(Z),PX ) → 0 implies supz∈Z ‖∇Gφ‖ → ∞. If
the training process meets the exploding points of ∇Gφ,
the network will then have gradient explosion.

Theorem 3 also reveals the trade-off between fidelity and dis-
entanglement of GANs when dim(Z) < dim(X ). Specif-
ically, there is a trade-off between the Fréchect Inception
Distance (FID) (Heusel et al., 2017) and Path Perceptual
Length (PPL) (Karras et al., 2019). PPL is introduced in
StyleGAN (Karras et al., 2019; 2020) to measure the seman-
tic disentanglement of generators as:

lp = Ez1,z2∼PZ
[

1

ε2
‖Vβ ◦Gφ(tz1 + (1− t)z2)

− Vβ ◦Gφ((t+ ε)z1 + (1− t− ε)z2)‖22
]
,

(25)

where t ∈ (0, 1) and 0 < ε � 1 are constants and Vβ is
the pretrained VGG network. By the chain rule of differen-
tiation, it is easy to see that supz∈Z ‖∇Gφ‖ has positive
correlation with PPL score if the computation of expecta-
tion meets z∗ = arg supz∈Z ‖∇Gφ‖ or a sequence of zk
converging to it. As the FID is smaller when the generated
and data distributions get closer, a lower FID suggests lower
Wasserstein distance, which by Eq. (20) suggests higher
maximum gradient norms, and results in a higher PPL score
(see Fig. 9 of (Karras et al., 2019) for the opposite trend of
FID and PPL in training).

4. Validating the Uncertainty Principles
This section presents a toy example to illustrate and support
our theory. The toy example aims to learn the underlying
encoder and generator between uniform distributions of
supports of intrinsic dimensions in 1 or 2. The encoder,
generator, and discriminator networks consist of 3-layer
MLPs with LeakyRelu activations. The numbers of hidden
units are 10, 100, and 10 for each MLP layer, to model
upsampling and downsampling in typical generative models
like StyleGANs (Karras et al., 2019; 2020). Considering the
simplicity of the task, we think such shallow architectures
are adequate for our purpose.

We train the networks with both concurrent training and
two phase training methods. For concurrent training, we
use the objective (6) as in BiGAN (Donahue et al., 2017);

0.2 0.80.5
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Figure 6. Illustration of the impossibility of continuous underlying
encoder and generator between a real line segment in R and a unit
square in R2. Refer to Section 4.1 for detail.

for two phase training, we use the objectives (8) and (10)
with d = dZ + drecon, where dZ is the Jensen-Shannon
divergence between the encoder output and the latent space,
and drecon is the Jensen-Shannon divergence between the
reconstructed data distribution and the real data distribution.

For the zero-sum game in objectives (6), (8), (10), we solve
it by the adversarial training process in Algorithm 1 of
(Goodfellow et al., 2014). For each experiment setting, we
further change the number of steps to apply to the discrimi-
nator (see Algorithm 1 of (Goodfellow et al., 2014) for mean-
ing of it) in each adversarial training step. For two phase
training, as there are multiple discriminators, we take the
following strategy: when dim(Z) < dim(X ), we change
the steps of discriminators which discriminate the genera-
tors’ outputs and real data; when dim(Z) > dim(X ), we
change the steps of discriminators which discriminate the
encoders’ outputs and the latents. More discriminator steps
produce more discriminative discriminators, thus the corre-
sponding generators or encoders have to align their outputs
to real distributions more precisely. We are going to explore
how this influences the results.

4.1. Uncertainty in the Continuity of the Underlying
Encoder and Generator

Theorem 1 is difficult to verify experimentally, as we do not
know the exact form of the underlying encoder & genera-
tor. However, we can infer the property of the underlying
encoder & generator from the basic geometric result:

Lemma 1 Ifh is continuous andD is connected, thenh(D)
is also connected (Rudin et al., 1964).

Let U([0, 1]) be the latent PZ and U([0, 1]2) be the data
distribution PX . Assume that both the underlying generator
g and encoder e are continuous. Then it is easy to see that
g maps [0, 1] \ {0.5} to [0, 1]2 \ {g(0.5)}, and e performs
the inversion. This is, however, against Lemma 1, as [0, 1] \
{0.5} is not connected, while [0, 1]2 \{g(0.5)} is obviously
connected, as shown in Fig. 6.



Uncertainty Principles of Encoding GANs

4.2. Uncertainty in Universal Approximation Ability

We now check whether our toy networks can approximate
the underlying encoder & generator. We can evaluate it with
divergence between induced distributions (by encoder or
generator network) and real distributions (of latents or data).
The results are reported in Fig. 8 & 7.

It may be no surprise to see that the induced distribution
is a curve while the real distribution is a surface area for
encoders and generators that try to transfer U([0, 1]) to
U([0, 1]2), regardless of the training algorithms. As curves
do not hold positive surface area, this means that the induced
distributions totally fail to capture the real distributions and
the divergence between them should be considerable.

The above observation, however, is a little weak because: 1)
our network design or training method may not be optimal;
2) we are not able to exactly estimate the error bound De +
Dg to support Eq. (11) of Theorem 2 directly. Fortunately,
we can check Eq. (17) of Theorem 2, which is the key to
the failure of theories in BiGAN (Donahue et al., 2017) and
ALI (Dumoulin et al., 2017), by the following lemma of
(Goodfellow et al., 2014):

Lemma 2 (Estimation of the JS Divergence) For a fixed
generatorG, when the discriminatorD is optimal, we have

DJS(PG,Pdata) = log 2 +
1

2
V (D,G), (26)

where
V (D,G) = Ex∼PX [log(D(x))]

+Ez∼PZ [log(1−D(G(z)))].
(27)

By Lemma 2, we develop the following strategy to estimate
the Jensen-Shannon divergence between the generated dis-
tribution and the data distribution. For a given generator
G, we fix it and maximize V (D,G) until convergence. By
Lemma 2, the maximum value of 1

2V (D,G) plus log 2
offers an estimation to the Jensen-Shannon divergence.

The results are reported in Fig. 7, where we find that the
error bound log 2

2 for the Jensen-Shannon divergence always
holds. We then look into a different case that the latent is
two-dimensional standard Gaussian N2(0,1) and the data
distribution is still U([0, 1]2), to see what would happen if
dim(Z) = dim(X ). The networks then show an estimated
Jensen-Shannon divergence smaller than log 2

2 . The experi-
ments thus can verify that dim(Z) 6= dim(X ) really forces
a positive lower bound on the Jensen-Shannon divergence,
which does not appear if dim(Z) = dim(X ), as claimed in
Theorem 2.

4.3. Uncertainty in Training Dynamics

Theorem 3 claims an increasing maximum norm of the
gradient when the approximation gets more accurate. We are
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Figure 7. Estimated Jensen-Shannon divergence and gradient
norms of networks for distributions in Fig. 8. When d =
dim(Z) 6= n = dim(X ), the estimated JSD is always larger than
log 2
2
≈ 0.347, and the gradient norm increases as there are more

steps in training discriminators. When dim(Z) = dim(X ) = 2,
the estimated JSD is smaller than log 2

2
.

curious about how well the practice yields to this theorem.

We find the following interesting facts in Fig. 7 & 8: 1)
increasing the number of steps to train discriminators makes
the generated or encoded distribution ‘longer’; 2) the gen-
erated and encoded distributions are twisted curves in R2,
and we can increase the cycles of twisting by increasing the
number of steps to apply to discriminators; 3) the norms of
gradients of the generator or encoder network do increase
as DJS gets smaller.

Recall the intuition that inspires Theorem 3, that the only
way for a one-dimensional curve to fit a two-dimensional
surface, is to twist the curve so that it can occupy as many
areas as possible. Experimental results in Fig. 8 support
this intuition (Fig. 5) and Theorem 3 behind it, which could
be the reason to the surprisingly more and more twisted
structure when adding more steps to train discriminators.

As the cycle of the twist grows, the length of the curve
of generated distribution also increases. This suggests an
increasing gradient norm, as the length of the curve is calcu-
lated from the integral on its gradient norm

Length(γ) =

∫ 1

0

‖γ′(t)‖2dt. (28)

This observation can be generalized to the following lemma:

Lemma 3 For differentiable map h : D → Rd, D ⊂ Rd,
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Figure 8. Induced distribution and real distribution of toy examples.
Odd rows are results of concurrent training, and even rows are
results of two phase training. Except the last column, the first two
rows report the encoder outputs when dim(Z) = 2, dim(X ) = 1
and the last two rows report the generator outputs when dim(Z) =
1 and dim(X ) = 2. The last column reports the encoder and
generator outputs when dim(Z) = dim(X ) = 2 to provide a
comparison with the cases of unequal dimensions. We can see that
increasing the discriminative ability of discriminators forces the
induced distribution of encoders and generators to be more twisted
when intrinsic dimensions of latent and data spaces are unequal.

we have

md(h(D)) ≤
(

sup
x∈D
‖∇h‖

)d
md(D), (29)

where md(·) is the volume of set in Rd.

In high dimensional settings, Lemma 3 suggests that the
volume of the output space is connected with the maximum
norm of gradient. We can infer that, for a high dimensional
manifold, the only way to fit a manifold of even higher
dimension is still by twisting. While twisting means larger
volume, Lemma 3 suggests gradient explosion in this case,
regardless of training methods and losses. This supports
Theorem 3 and generalizes it to broader cases.

5. Conclusion
In this paper, we investigate why encoding GANs are so
difficult to achieve their theoretical performance in previ-
ous works (Donahue et al., 2017; Dumoulin et al., 2017;
Pinkus, 1999). We find that three uncertainty principles
deviate the practice from those previous theoretical works.
The uncovered uncertainty principles give a quantifiable

description to the defects of current frameworks, explain
the previous empirical findings of the difficulties (Donahue
et al., 2017; Donahue & Simonyan, 2019; Zhu et al., 2019),
and reveal fundamental factors in the black box of encod-
ing GANs, such as smoothness, approximation ability, and
fitting stability. For each uncertainty principle, we provide
simple geometric intuition to demonstrate it. Our theories
will serve as a solid starting point of further understanding
of encoding GANs and other generative models.
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