
GBHT: Gradient Boosting Histogram Transform for Density Estimation

Jingyi Cui 1 * Hanyuan Hang 2 * Yisen Wang 1 Zhouchen Lin 1 3

Abstract
In this paper, we propose a density estimation
algorithm called Gradient Boosting Histogram
Transform (GBHT), where we adopt the Negative
Log Likelihood as the loss function to make the
boosting procedure available for the unsupervised
tasks. From a learning theory viewpoint, we first
prove fast convergence rates for GBHT with the
smoothness assumption that the underlying den-
sity function lies in the space C0,α. Then when
the target density function lies in spaces C1,α,
we present an upper bound for GBHT which is
smaller than the lower bound of its corresponding
base learner, in the sense of convergence rates.
To the best of our knowledge, we make the first
attempt to theoretically explain why boosting can
enhance the performance of its base learners for
density estimation problems. In experiments, we
not only conduct performance comparisons with
the widely used KDE, but also apply GBHT to
anomaly detection to showcase a further applica-
tion of GBHT.

1. Introduction
Regarded as one of the most important tasks in unsuper-
vised learning, density estimation aims at inferring the true
distribution of targeted unknown variables through limited
samples. While basic statistical analysis can be directly
carried out on density functions (Scott, 2015), density esti-
mation is further regarded as an imperative cornerstone to
more sophisticated tasks, such as anomaly detection (Nach-
man & Shih, 2020; Zhang et al., 2018; Amarbayasgalan
et al., 2018) and clustering (Chen et al., 2020; Parmar et al.,
2019; Ghaffari et al., 2019; Jang & Jiang, 2019).

On the other hand, as one of the most successful algorithms
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over two decades (Bühlmann & Yu, 2003), boosting attracts
more and more attention in researches on machine learn-
ing (Mathiasen et al., 2019; Cortes et al., 2019; Parnell
et al., 2020; Duan et al., 2020; Cai et al., 2020; Suggala
et al., 2020). However, when boosting method shows its
power and strength in the field of supervised learning, few
studies focus on unsupervised learning, especially on the
density estimation problem. Furthermore, previous attempts
(Ridgeway, 2002; Rosset & Segal, 2003) focus more on
methodology study instead of statistical theories. To the
best of our knowledge, there remains little understood of
the theoretical advantage of boosting over its base learners
from the statistical learning point of view.

Under such background, by combing the boosting frame-
work (Rosset & Segal, 2003) with the random histogram
transforms (López-Rubio, 2013; Blaser & Fryzlewicz,
2016), this paper aims to establish a new boosting algorithm
called Gradient Boosting Histogram Transform (GBHT) for
density estimation, which not only has satisfactory perfor-
mance but also has solid theoretical foundations. To be
specific, we adopt the Negative Log Likelihood loss, which
makes the boosting method, typically used in supervised
learning tasks, available for density estimation which is an
unsupervised problem. Moreover, through complete learn-
ing theory analysis, we for the first time provide theoretical
supports to the benefit of the boosting procedure in the den-
sity estimation problem. GBHT starts with generating a
random histogram transform consisting of random rotations,
stretchings, and translations. (The histogram transforms
are i.i.d. generated at each iteration). Then the input space
is partitioned into non-overlapping cells corresponding to
the unit bin in the transformed space. On those cells, we
obtain base learners where piecewise constant functions are
applied. Then the iterative process is started with adding a
sequence of random histogram transforms for minimizing
empirical negative log-likelihood loss by a natural adaption
of gradient descent boosting algorithm. Finally, after the it-
erative process, we inversely transform the partitioned space
to the original and obtain the GBHT density estimator.

The contributions of this paper come from the model, theo-
retical, and experimental perspectives:

• While majority studies of boosting focus on supervised
learning, we exploit boosting to improve the accuracy
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in density estimation by taking an unsupervised loss
function.

• From a learning theory point of view, we prove the fast
convergence rates of GBHT with assumptions that the
underlying density functions lie in the Hölder space
C0,α.

• To our best knowledge, we are the first to explain the
strength of boosting density estimation from the theo-
retical point of view. To be specific, in the space C1,α,
we show that HT density estimator obtains lower bound
as O(n−2/2+d), which turns out to be greater than the
upper bound for GBHT O(n−2(1+α)/4(1+α)+d).

• In experiments, we validate the performances of our
algorithms through parameter analysis and real data
comparisons. Moreover, we apply GBHT as part of a
density-based anomaly detection algorithm, where the
results show the promising compatibility of our GBHT.

2. Related Works
Density Estimation. The best-known and most traditional
density estimation methods are histogram density estimation
(HDE) and kernel density estimation (KDE), while the for-
mer one is often criticized for its lack of smoothness and the
latter one is found weak against outlier and local adaptivity.
In order to solve these problems, partition-based methods
(Klemelä, 2009; Liu & Wong, 2014; López-Rubio, 2013),
e.g. decision tree-based algorithms (Ram & Gray, 2011; Cri-
minisi et al., 2011; Criminisi & Shotton, 2013) have been
taken into consideration. However, partition-based algo-
rithms inherently suffer from boundary discontinuity, i.e.
the density estimation of adjacent partition cells may not
correspond on their shared boundary. In this paper, inspired
by histogram density estimation, we aim at solving the
boundary discontinuity by aggregating random histogram
transform density estimators with the help of boosting.

Boosting. Boosting is a widely used learning technique
in machine learning. It boosts the performance of a base
learner by combining multiple weak learners. In boosting,
the weak learner in each iteration learns from the distance
between truth and the estimated one, e.g. residuals in regres-
sion and wrong labels in classification. Based on these ideas,
various boosting algorithms such as AdaBoost (Schapire &
Freund, 1995; Freund & Schapire, 1997), GBDT and GBRT
(Friedman, 2001), and XgBoost (Chen & Guestrin, 2016)
become popular.

Despite its great success in supervised learning, very few
studies focus on exploiting the effectiveness of boosting in
unsupervised learning, especially in density estimation prob-
lems. For instance, Rosset & Segal (2003) considers boost-
ing as a gradient descent search method, and transforms

the density estimation problem into a supervised learning
problem by rationally adjusting the loss function. Ridgeway
(2002) brings EM algorithm in to conduct boosting den-
sity estimation. These authors suggest that more researches
can be done with boosting for density estimation problems,
since present researches about boosting density estimation
focus mainly on methodology following the derivation pro-
cess of gradient descent and none of the above-mentioned
boosting works present a satisfactory explanation from the
statistical optimization view.

This paper aims at filling the blank in studies of boosting in
unsupervised learning, and at providing sound theoretical
analysis to explain why boosting can enhance the perfor-
mance of its base learners for density estimation problems.

3. Methodology
3.1. Notations

Throughout this paper, we assume that X ⊂ Rd is compact
and non-empty. For any fixed r > 0, we denote Br as
the centered hyper-cube of Rd with size 2r, that is, Br :=
[−r, r]d := {x = (x1, . . . , xd) ∈ Rd : xi ∈ [−r, r], i =
1, . . . , d}, and for any r′ ∈ (0, r), we write B+

r,r′ := [−r +

r′, r−r′]d. Recall that for 1 ≤ p <∞, the Lp-norm of x =
(x1, . . . , xd) is defined by ‖x‖p := (|x1|p+ · · ·+ |xd|p)1/p,
and the L∞-norm is defined by ‖x‖∞ := maxi=1,...,d |xi|.

Throughout this paper, we use the notation an . bn and
an & bn to denote that there exist positive constant c and c′

such that an ≤ cbn and an ≥ c′bn, for all n ∈ N. Moreover,
for any x ∈ R, let bxc denote the largest integer less than or
equal to x. In the sequel, the following multi-index notations
are used frequently. For any vector x = (xi)

d
i=1 ∈ Rd,

we write bxc := (bxic)di=1, x−1 := (x−1i )di=1, log(x) :=
(log xi)

d
i=1, x = maxi=1,...,d xi, and x = mini=1,...,d xi.

3.2. Negative Log Likelihood Loss

Let f be the underlying density function of an unknown
probability measure P on X . Based on a dataset D :=
{x1 . . . , xn} consisting of i.i.d. observations drawn from P,
our goal in the density estimation is to construct a measur-
able function f̂ : X → [0,∞) satisfying

∫
X f̂(x) dx = 1

to approximate f properly. To evaluate the quality of f̂ , we
use the Negative Log Likelihood loss L : X × [0,∞)→ R
defined by

L(x, f̂) := − log f̂(x). (1)

Then the risk is defined by RL,P(f̂) :=
∫
X L(x, f̂) dP(x)

and the empirical risk is defined by RL,D(f̂) :=
1
n

∑n
i=1 L(xi, f̂(xi)). The Bayes risk, which is the

smallest possible risk with respect to P and L, is
given by R∗L,P := inf{RL,P(f̂)|f̂ : X →



GBHT: Gradient Boosting Histogram Transform for Density Estimation

[0,∞) measurable and
∫
X f̂(x) dx = 1}. It is easy to ver-

ify that the f̂(x) that minimizesRL,P is indeed the true den-
sity. Therefore, it is reasonable to consider the framework
that using gradient-based functional optimization algorithms
to generate density estimators.

3.3. Histogram Transform (HT) for Density Estimation

To give a clear description of one possible construction pro-
cedure of histogram transforms, we introduce a random
vector (R,S, b) where each element represents the rotation
matrix, stretching matrix, and translation vector, respec-
tively.

To be specific, R denotes the rotation matrix which is a real-
valued d×d orthogonal square matrix with unit determinant,
that is R> = R−1 and det(R) = 1; S stands for the stretch-
ing matrix which is a positive real-valued d×d diagonal scal-
ing matrix with diagonal elements (si)

d
i=1 that are certain

random variables. Obviously, we have det(S) =
∏d
i=1 si.

Moreover, we denote s = (si)
d
i=1, and the bin width vector

defined on the input space is given by h = s−1. The transla-
tion parameter b ∈ [0, 1]d is a d dimensional vector named
translation vector. Different from rotation and stretching
that make no changes to the centroid of data, translation
alters the relative position of the transformed data and his-
togram partition grids. Since we take h′i = 1, where h′i
denotes the bin with of the histogram partition in the trans-
formed space, then if we select bi ≥ 1, i ∈ [d], the same
effect can be achieved by using bi − 1. Thus we only need
to consider bi ∈ [0, 1], i.e. b ∈ [0, 1]d.

We define the histogram transform H : X → X by

H(x) := R · S · x+ b. (2)

Figure 1 illustrates two-dimensional examples of histogram
transforms. The left subfigure is the original data and the
other two subfigures are possible histogram transforms of
the original sample space, with different rotating orienta-
tions and scales of stretching.

Figure 1. Two possible histogram transforms in 2-D.

It is important to note that there is no point to consider the
bin width h′i 6= 1 in the transformed space, since the same
effect can be achieved by scaling the transformation matrix
H ′. Therefore, let bH(x)c be the transformed bin indices,

then the transformed bin is A′H(x) := {H(x′) | bH(x′)c =
bH(x)c} and the corresponding histogram bin containing
x ∈ X in the input space is AH(x) := {x′ | H(x′) ∈
A′H(x)}. Note that here we use AH(x) and A′H(x) to de-
note the cells containing x in the input space and the trans-
formed space, respectively. We further denote all the bins
induced by H as A′j = {AH(x) : x ∈ X} with the repeti-
tive bin counted only once, and IH as the index set for H
such that for j ∈ IH , we have A′j ∩Br 6= ∅. As a result, the
set πH := {Aj}j∈IH := {A′j ∩Br}j∈IH forms a partition
of Br. For simplicity and uniformity of notations, in the se-
quel, we denote h0 = s−10 and h0 = s−10 . Then we show a
uniform range of hi, denoted as hi ∈ [h0, h0] = [s−10 , s−10 ],
for i = 1, . . . , d.

Given a histogram transform H , the set πH = {Aj}j∈IH
forms a partition of Br. We consider the following function
set FH containing piecewise constant density functions

FH :=

{∑
j∈IH

cj1Aj

∣∣∣∣ cj ≥ 0,
∑
j∈IH

cjµ(Aj) = 1

}
, (3)

where 1Aj (·) denotes the indicator function, i.e. 1Aj (x) =
1 when x ∈ Aj and 0 otherwise, and µ(·) is the Lebesgue
measure. In order to constrain the complexity of FH , we
penalize on the bin width h := (hi)

d
i=1 of the partition πH .

Then the histogram transform (HT) density estimator can
be produced by the regularized empirical risk minimization
(RERM) over FH , i.e.

(fD,H , h
∗) = arg min

f∈FH , h∈Rd
Ω(h) +RL,D(f), (4)

where Ω(h) := λh−2d0 . It is worth pointing out that we
adopt the isotropic penalty for each dimension rather than
each elements h1, . . . , hd for simplicity of computation.

3.4. Gradient Boosting Histogram Transform (GBHT)
for Density Estimation

In this work, we mainly focus on the boosting algorithm
equipped with histogram transform density estimators as
base learners since they are weak predictors and enjoy com-
putational efficiency. Before we proceed, we need to intro-
duce the function space that we are most interested in to
establish our learning theory. Assume that {Ht}Tt=1 is an
i.i.d. sequence of histogram transforms drawn from some
probability measure PH and Ft := FHt , t = 1, . . . , T , are
defined as in (3). Then we define the function space E by

E :=

{
f : Br → R

∣∣∣∣ f =

T∑
t=1

wtft, ft ∈ Ft s.t.
T∑

t=1

wi = 1

}
.

(5)

As is mentioned above, boosting methods may be viewed
as iterative methods for optimizing a convex empirical cost
function. To simplify the theoretical analysis, following
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the approach of Blanchard et al. (2003), we ignore the dy-
namics of the optimization procedure and simply consider
minimizers of an empirical cost function to establish the
oracle inequalities, which leads to the following definition.

Definition 1 Let E be the function space (5) and L be the
negative log-negative loss. Given λ > 0, we call a learning
method that assigns to every D ∈ (X × Y)n a function
fD,λ : X → R such that

(fD,λ, h
∗) = arg min

f∈E, h∈Rd
Ω(h) +RL,D(f) (6)

a gradient boosting histogram transform (GBHT) algorithm
for density estimation with respect to E, where Ω(h) :=
λh−2d0 .

The regularization term is added to control the bin width
of the histogram transform, which has been discussed in
Section 3.3. In fact, it is equivalent to adding the Lp-norm
of the base learners ft, since they are piecewise constant
functions on the cells with volume no more than h

d

0.

With all these preparations, we now present the gradient
boosting algorithm GBHT to solve the optimization problem
(6) in Algorithm 1.

Algorithm 1 Gradient Boosting Histogram Transform
(GBHT) for Density Estimation

Input: Training data D := {x1, . . . , xn};
Bandwidth parameters h0, h0;
Number of iterations T .

Initialization: F0 is set to be uniformly distributed on
cells Aj ∈ πH satisfying Aj ∩D 6= ∅.
for t = 1 to T do

Set the sample weight ωt,i = 1/Ft−1(xi);
For random histogram transformation Ht (2):
Find ft = arg maxf∈Ft

∑n
i=1 ωt,if(xi);

Find αt := arg minα
∑n
i=1− log

(
(1−α)Ft−1(xi) +

αft(xi)
)
;

Update Ft = (1− αt)Ft−1 + αtft;
end for
Output: FT .

The algorithm proceeds iteratively, that is, for t = 1, . . . , T ,
Ft(xi) = (1−αt)Ft−1+αtft, where Ft denotes the density
estimator after t iterations, ft ∈ Ft denotes the t-th base
learner, and αt ∈ (0, 1). Obviously we have Ft = wt,0F0 +∑t
j=1 wt,jfj , where wt,j = (1− αt) · · · (1− αj+1)αj for

j = 1, . . . , t, and wt,0 =
∏t
j=1(1 − αj). By initiating

F0 ∈ F0 := FH , we have Ft ∈ E. Then we aim to search
the base learner ft under partition Ht and step size αt to
result in Ft with lower empirical risk RL,D(Ft) in each
iteration. In the t-th iteration, for every αt ∈ (0, 1), the
minimization of RL,D(Ft) equals to the minimization of

∑n
i=1− log(Ft−1(xi)+εtft(xi)), where εt = αt/(1−αt).

Using Taylor expansion, we get∑
i

− log(Ft−1(xi) + εtft(xi))

=
∑
i

− log(Ft−1(xi))− εt · ωt,ift(xi) +O(ε2t ),

where ωt,i := 1/Ft−1(xi). For sufficiently small εt (or αt),
we can ignore the higher order term and find the maximum
gradient maxft∈Ft

∑n
i=1 ωt,ift(xi). Then we determine

the step size αt by line search, which ensures that the up-
dated Ft remains to be a probability distribution.

It is worth mentioning that GBHT enjoys two advantages.
First, the algorithm can be locally adaptive by applying ran-
dom rotations, stretchings, and translations to the original
input data. Regular density estimators such as KDE adopt
uniform bandwidth, regardless of the fact that the local struc-
tures of real-world data usually vary from area to area. On
the contrary, it is well known that boosting algorithms take
local data structures into consideration by updating its vul-
nerable part in each iteration, and the adopted histogram
transform catches exactly various local features of the input
data. Thus, good combinations of random weak learners
and the boosting procedure can lead to great local adaptiv-
ity. Second, the boosting procedure brings smoothness to
histogram-based density estimators, thanks to the random-
ness of base learners. Through iteration, GBHT adds more
information obtained by the base learners into the boosting
estimator, and it turns out to be the weighted average of
all random base learners with different partition boundaries.
As a result, it can be more smooth than regular histogram
density estimators, which will also be theoretically veri-
fied in Section 4 and experimentally validated by numerical
simulations in Section 5.3.

4. Theoretical Results
Our theoretical analysis is built on the fundamental assump-
tion on the smoothness of the underlying density function.
Recall that a function f : X → R is (k, α)-Hölder con-
tinuous, α ∈ (0, 1], k ∈ N0, if there exists a constant
cL ∈ (0,∞) such that

‖∇`f‖ ≤ cL for all ` ∈ {1, . . . , k} and (7)

‖∇kf(x)−∇kf(x′)‖ ≤ cL‖x− x′‖α (8)

for all x, x′ ∈ Br. The set of such functions is denoted
by Ck,α(Br). Note that the functions contained in the
space Ck,α with larger k enjoy a higher level of smoothness.
Throughout this paper, we make the following assumptions
on the bin width h.
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Assumption 1 Let the bin width h ∈ [h0, h0] and assume
that there exists some constant c0 ∈ (0, 1) such that c0h0 ≤
h0 ≤ c−10 h0. Moreover, if the bin width h depends on
the sample size n, that is, hn ∈ [h0,n, h0,n], we still have
c0h0,n ≤ h0,n ≤ c−10 h0,n.

Assumption 1 indicates that the upper and lower bounds of
the bin width h are of the same order. In other words, we
assume that under a certain partition, the extent of stretching
in each dimension cannot vary too much.

Furthermore, to remove the boundary effect on the conver-
gence rate, we denote Lh0

(x, t) as the negative log loss
function restricted to B+

R,
√
d·h0

, that is,

Lh0
(x, t) := 1B+

R,
√
d·h0

(x)L(x, t), (9)

where L(x, t) is the negative log loss.

4.1. Convergence Rates for GBHT in C0,α

Theorem 1 Let fD,λ be as in (6) and the density function
f ∈ C0,α(Br). Then for all τ > 0 and for any δ ∈ (0, 1),
there exists a constant N0 such that for all n ≥ N0, there
holds

RL,P(fD,λ)−R∗L,P . n−
2α

(4−2δ)α+d

with probability Pn ⊗ PH at least 1− 3e−τ .

Theorem 1 presents the fast convergence rates of the GBHT
density estimator in the sense of “with high probability”,
which is a stronger claim than the convergence results “in
expectation”. Moreover, convergence rates, a finite sam-
ple property of GBHT, also indicate the consistency of
RL,P(fD,λ) when n→∞.

With the boosting procedure, the function space E becomes
more complicated, e.g. the number of cells increases and
their shape becomes irregular. This will affect the VC di-
mension (Vapnik & Chervonenkis, 2015) of the function
space, and further enlarge the estimation error term. Thus
the convergence rate of GBHT turns out to be suboptimal.
However, a more complex function space will lead to a
smaller approximation error, which means that our GBHT
can better estimate smooth density functions than ordinary
histograms.

4.2. Convergence Rates for GBHT in C1,α

Theorem 2 Let fD,λ be as in (6) and the density function
f ∈ C1,α(Br). Moreover, let Lh0

(x, t) be the restricted
negative log loss as in (9). Then for all τ > 0 and δ ∈ (0, 1),
there exists a constant N1 such that for all n ≥ N1, by
choosing Tn & n2α/(2(1+α)(2−δ)+d), there holds

RLh0 ,P(fD,λ)−R∗Lh0 ,P . n−
2(1+α)

2(1+α)(2−δ)+d (10)

with probability Pn not less than 1− 4e−τ in expectation
with respect to PH .

In Theorem 2, the excess risk decreases as Tn grows at
first, and when Tn achieves a certain level, the algorithm
achieves the best convergence rate. Moreover, comparing
with Theorem 1, when the underlying density function turns
more smooth, GBHT achieves a better convergence rate
with f ∈ C1,α(Br) than that with f ∈ C0,α(Br), where
a relatively large Tn helps the density estimator to achieve
asymptotic smoothness.

4.3. Lower Bound for HT Density Estimation in C1,α

Theorem 3 Let fD,H be as in (4) and suppose that the
density function f ∈ C1,α(Br). Then there exists a constant
N2 such that for all n ≥ N2, there holds

sup
f∈C1,α

RL,P(fD,H)−R∗L,P & n−
2

2+d , (11)

in expectation with respect to Pn ⊗ PH .

Recall that in Theorem 2, as n→∞, the upper bound for
our GBHT attains asymptotically convergence rate which is
slightly faster than n−2(1+α)/(4(1+α)+d). When comparing
Theorem 3 with Theorem 2, we find that for any α ∈ (0, 1],
if d ≥ 2(1 + α)/α, the upper bound of the convergence
rate (10) for GBHT turns out to be smaller than the lower
bound (11) for HT density estimators, which explains the
benefits of the boosting procedure from the perspective of
convergence rates.

5. Numerical Experiments
5.1. Generation Methods of Histogram Transforms

Here we describe a practical method for the construction
of histogram transforms we are confined to in this study.
Starting with a d × d square matrix M , consisting of d2

independent univariate standard normal random variates,
a Householder QR decomposition is applied to obtain a
factorization of the form M = R ·W , with an orthogonal
matrix R and an upper triangular matrix W with positive
diagonal elements. The resulting matrix R is orthogonal by
construction and can be shown to be uniformly distributed.
Unfortunately, if R does not feature a positive determinant
then it is not a proper rotation matrix according to the defi-
nition of R. In this case, we can change the sign of the first
column of R to construct a new rotation matrix R+.

We apply the well-known Jeffreys prior for scale parameters
(Jeffreys, 1946). To be specific, we draw log(si) from the
uniform distribution over intervals [log(h0), log(s0)]. Re-
call that h = s−1 stands for the bin width vector measured
in the input space, we choose s0 and s0, recommended
by (López-Rubio, 2013), as ĥ = 3.5σn−1/(2+d), where
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σ :=
√

trace(V )/d is the standard deviation defined by
V := 1

n−1
∑n
i=1(xi − x)(xi − x)> and x := 1

n

∑n
i=1 xi.

Then we can transform the bin width vector to obtain this
scale parameter ŝ = (ĥ)−1 = (3.5σ)−1n

1
2+d , which can be

further refined as

log(s0) := smin + log(ŝ), log(s0) := smax + log(ŝ),

where smin < smax are tunable parameters.

The translation vector b is drawn from the uniform distribu-
tion over the hypercube [0, 1]d.

5.2. Evaluation Criteria

Mean absolute error (MAE). The first criterion of evaluat-
ing the accuracy of density estimator is the mean absolute
error, defined by MAE(f̂) = 1

M

∑M
j=1 |f̂(xj) − f(xj)|,

where x1, . . . , xM are test samples. It is used in synthetic
data experiments where the true density function is known.

Average negative log-likelihood (ANLL). Another effec-
tive measure of estimation accuracy, especially when fac-
ing real data and the true density function is unknown, is
the average negative log-likelihood, defined by ANLL(f̂) =

− 1
M

∑M
j=1 log f̂(xj), where f̂(xj) represents the estimated

probability density for the test sample xj and M is the size
of test samples. Note that the lower the ANLL is, the better
estimation we obtain.

5.3. Empirical Understandings

In this part, we conduct simulations concerning GBHT for
density estimation. Based on several synthetic datasets, we
show the power of boosting procedure through simulations,
and we illustrate a possible explanation for the enhance-
ment in accuracy, i.e. the asymptotic smoothness achieved.
Then we study a pair of important parameters for histogram
transforms, smin and smax.

5.3.1. SYNTHETIC DATA SETTINGS

We base the simulations on four different types of synthetic
distributions, each with dimension d ∈ {2, 5, 7}, respec-
tively. The premise of constructing data sets is that we
assume that the components Xi ∼ fi, i = 1 . . . , d, of the
random vector X = (X1, . . . , Xd) are independent of each
other. To be specific, Type I density function, represent-
ing a bimodal Gaussian distribution, enjoys high order of
smoothness, while those for Types II and III are not continu-
ous. Moreover, Types II and III represent density functions
with bounded support and unbounded support, respectively.
Finally, Type IV represents the case where the marginal dis-
tributions of each dimension are not identical. More detailed
descriptions and visual illustrations are shown in Section
C.1 of the supplementary material.

In the following experiments, we generate 2, 000 and
10, 000 i.i.d samples as training and testing data respec-
tively from each type of synthetic datasets, and each with
dimension d ∈ {2, 5, 7}.

5.3.2. THE POWER OF BOOSTING

To show the behavior of T , we carry out the experiments
with T ∈ {1, 5, 10, 20, 50, 100, 500, 1000}, and the other
two hyper-parameters are chosen by 3-fold cross-validation.
We pick smin from the set {−3 + 0.5k, k = 0, . . . , 12}
and smax − smin is chosen from the set {0.5 + 0.5k, k =
0, . . . , 5}. For each T we repeat this procedure for 10 times.

Figure 2. The study of parameter T on GBHT of Type I synthetic
distribution, where the first row illustrates the low-dimensional
results with dimension d = 2, and the second row indicates the
high-dimensional results with dimension d = 5. The left col-
umn indicates how MAE varies along parameters T , and the right
column shows the variation of ANLL.

As can be seen in Figure 2, as T grows, the accuracy per-
formance of GBHT (both MAE and ANLL) first enhances
dramatically when T grows from 1 to 1, 000, but as T con-
tinues to grow, a steady state will be reached. This coincides
with Theorem 2, where the convergence rate attains the op-
timum when Tn is greater than a certain value. Moreover,
fewer iterations are required to make GBHT convergence
when the dimension of input space is lower. A large number
of iterations lead to a more accurate model but bring about
the additional burden of computation.

For a possible explanation of the enhancement in estimation
accuracy under the boosting procedure, we conduct simula-
tions to show that GBHT achieves asymptotic smoothness
with T increasing. For the sake of more clear visualization,
we utilize a toy example with 2, 000 samples i.i.d. generated
from the one-dimensional standard normal distribution, and
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use GBHT to conduct density estimation, where the number
of trees T is set to 1, 5, 20, 50, respectively.

(a) T = 1. (b) T = 5.

(c) T = 20. (d) T = 50.

Figure 3. The study of parameter T on GBHT of the Standard
Normal distribution. The red line represents the underlying density
while the blue one represents density estimator returned by GBHT.

From Figure 3 we see that with T = 1, the base estimator
turns out to be a step function with discontinuous bound-
aries, and the estimation is far from satisfactory. Never-
theless, as the iteration T increases, the boosting estimator
becomes more continuous and smooth with the correspond-
ing accuracy enhancing greatly. With T = 50, our GBHT is
nearly smooth and achieves high estimation accuracy.

5.3.3. PARAMETER ANALYSIS

Here we mainly conduct experiments concerning the pa-
rameters of histogram transforms, namely the lower and
upper scale parameters smin, smax ∈ R. To this end, for the
sake of clear visualization, we consider the Type I synthetic
dataset of 1 dimension to see how these parameters affect
the performance of GBHT.

Recall that the scale parameters smin and smax of the stretch-
ing matrix S control the size of histogram bins. Smaller
bins are required for the regions with complex structures
of the density function while those with simple structure
calls for larger bins. A narrower range of bin size is ac-
commodated to cope with the varying scales while pre-
serving a homogeneous structure. We conduct experi-
ments over four pairs of scale parameters (smin, smax) ∈
{(−2.5,−1.5), (−2,−1), (−1.5,−0.5), (−1, 0)}. We se-
lect T = 500 to make the density estimator convergence
with sufficient boosting iterations.

As is shown in Figure 4, lower values of these parameters
(larger bin width) lead to a coarser approximation of the
underlying density function, which results in the loss of
precision. Figure 4(a) implies that the density estimator is

underfitting when the bin width is too large. On the contrary,
if the bin width is too small, then there are few samples lying
in most of the histogram bins and thus overfitting occurs as
shown in Figure 4(d). Therefore, it is of great importance to
choose smin and smax properly.

(a) (−3,−2). (b) (−2.5,−1.5).

(c) (−2,−1). (d) (−1.5,−0.5).

Figure 4. The study of parameter smin and smax on GBHT of the
Type I synthetic distribution. The red line represents the density
estimator returned by GBHT algorithm while the blue one repre-
sents the underlying density function. And the tuples in subtitle
represent (smin, smax).

5.4. Performance Comparisons

In this section, we conduct performance comparisons on
both synthetic and real datasets. Recall that both our theo-
retical results (shown in Theorems 2 and 3) and empirical
illustrations (shown in Figure 3) demonstrate that boosting
improves the performance of histogram-based methods by
enhancing the smoothness of the estimator. Therefore, we
compare our GBHT with the kernel density estimator (KDE)
which enjoys high order of smoothness. We also compare
our GBHT with MIX (Ridgeway, 2002), a boosting method
for density estimation using mixtures. We also consider the
histogram density estimator (HDE), which can be viewed
as a special case of our GBHT when T = 1 and H = I
(identity matrix). We run HDE on synthetic datasets with
the bin width chosen by Sturges’ rule (Sturges, 1926).

5.4.1. SYNTHETIC DATA COMPARISONS

Following the experimental settings in Section 5.3, we con-
duct empirical comparisons between GBHT and the prevail-
ing KDE to further demonstrate the desirable performance
of GBHT under synthetic datasets. Table 1 records aver-
age ANLL and MAE over simulation data sets for KDE and
GBHT with T = 1, 000. For higher dimensions d = 5 and
d = 7, our GBHT always outperforms KDE in terms of
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Table 1. Average ANLL and MAE over simulated datasets

d Method Type I Type II Type III Type IV
ANLL MAE ANLL MAE ANLL MAE ANLL MAE

5

GBHT (Ours) 6.26 2.41e-3 −0.80 10.31 8.23 6.61e-4 3.85 0.14
KDE 6.33 2.36e-3 −0.32 12.40 8.65 8.27e-4 3.86 0.15
MIX 6.53 3.08e-3 1.82 13.91 9.64 9.54e-4 5.35 0.14
HDE 9.33 4.86e-3 10.17 19.70 10.77 1.33e-3 6.09 0.17

7

GBHT (Ours) 8.36 4.33e-4 −0.45 34.91 10.81 5.30e-5 5.10 0.18
KDE 8.77 5.13e-4 0.03 40.74 12.48 6.05e-5 5.16 0.18
MIX 8.65 5.38e-4 2.61 42.13 11.34 6.32e-5 7.02 0.19
HDE 11.35 1.45e-3 11.48 73.97 11.49 1.05e-4 9.88 0.20

* The best results are marked in bold.

ANLL and MAE.

5.4.2. REAL DATA COMPARISONS

We conduct real data comparisons on real datasets from the
UCI repository. We put the detailed description of datasets
in Section C.2 of the supplement.

Experimental Settings. In order to evaluate the perfor-
mance of density estimators on datasets with various dimen-
sions, we apply the following data preprocessing pipeline.
Firstly, we remove duplicate observations as well as those
with missing values. Then each dimension of the datasets
is scaled to [0, 1] and each dataset is reduced to lower di-
mensions d′ through PCA, e.g. to 10%, 30%, 50% and 70%
of the original dimension d, respectively. Finally, in each
dataset, we randomly select 70% of the samples for training
and the remaining 30% for testing.

The number of iterations T is set to be 100 and the other two
hyper-parameters smin and smax − smin are chosen from
{−2 + 0.5k, k = 0, . . . , 8} and {0.5 + 0.5k, k = 0, . . . , 5},
respectively, by 3-fold cross-validation. We repeat this pro-
cedure 10 times to evaluate the standard deviation for ANLL.
The average ANLL on test sets are recorded in Table 2.

Since real density often resides in a low-dimensional mani-
fold instead of filling the whole high-dimensional space, it
is reasonable to study the density estimation problem after
dimensionality reduction. Therefore, in data preprocessing,
all data sets are reduced to various lower dimensions through
PCA. However, we need to take the to-be-reduced dimen-
sion as a hyper-parameter, since in general, the dimension
of the manifold is unknown.

Experimental Results. In Table 2, we summarize the com-
parisons with the state-of-the-art density estimator KDE on
six real datasets, which demonstrates the accuracy of our
GBHT algorithm. For most of the redacted datasets, GBHT
shows its superiority on accuracy, whereas the standard de-
viation of GBHT is slightly larger than that of KDE due to

the randomness of histogram transforms.

5.5. Gradient Boosted Histogram Transform (GBHT)
for Anomaly Detection

To showcase a potential application of GBHT, we propose
a density-based method for anomaly detection. Given a
density level ρ, we regard the sample points with low density
estimation {xi ∈ D | fD,λ(xi) ≤ ρ} as anomaly points.
Based on GBHT density estimation, we are able to present
the Gradient Boosting Histogram Transform (GBHT) for
anomaly detection in Algorithm 2.

Algorithm 2 GBHT for Anomaly Detection

Input: Training data D := {x1, . . . , xn};
Density threshold parameters ρ.

Compute GBHT fD,λ (6).
Output: Recognize anomalies as

{xi ∈ D | fD,λ(xi) ≤ ρ}.

We conduct numerical experiments to make a comparison
between our GBHT and several popular anomaly detection
algorithms such as the forest-based Isolation Forest (iForest)
(Liu et al., 2008), the distance-based k-Nearest Neighbor
(k-NN) (Ramaswamy et al., 2000) and Local Outlier Factor
(LOF) (Breunig et al., 2000), and the kernel-based one-class
SVM (OCSVM) (Schölkopf et al., 2001), on 20 real-world
benchmark outlier detection datasets from the ODDS library.
We perform ranking according to the best AUC performance
when parameters go through their parameter grids. Detailed
experimental settings and comparison results are shown in
Section C.3.

In the aspect of best performance, our method GBHT wins
in 7 out of 20 datasets, while the iForest and OCSVM win
both 4 out of 20 datasets, respectively. Moreover, our GBHT
ranks the second on 5 datasets. Finally, in the aspect of the
average performance of benchmark datasets, our method
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Table 2. Average ANLL over real data sets

Datasets d′ GBHT KDE MIX Datasets d′ GBHT KDE MIX

Adult

2 −1.2371 −0.7402 1.3572

Diabetes

1 −0.7057 −0.2627 0.7131
(0.0312) (0.0027) (0.0050) (0.1253) (0.0111) (0.0186)

4 −1.9312 −0.3075 1.7609 3 −1.5982 −0.4042 0.5193
(0.0667) (0.0032) (0.0059) (0.1011) (0.0403) (0.0600)

8 −5.5922 −2.2970 0.8562 4 −1.8605 −0.8353 0.0403
(0.1097) (0.0108) (0.3183) (0.1424) (0.0773) (0.0771)

10 −6.0740 −3.4372 −0.8975 6 −2.6134 −1.9693 −1.2393
(0.1044) (0.0110) (0.0982) (0.2310) (0.1550) (0.1087)

Australian

2 −0.7966 1.3155 1.8577

Ionosphere

3 2.8681 2.9544 3.4988
(0.0904) (0.0234) (0.0263) (0.0917) (0.0423) (0.0776)

4 −5.8510 0.8518 3.0147 10 4.1625 4.6447 −
(0.2947) (0.0291) (0.0370) (0.2150) (0.4448) −

8 −3.7957 0.6879 2.6446 17 3.8920 5.3236 −
(0.5823) (0.1056) (0.6659) (0.4198) (0.9654) −

10 −1.3659 0.4995 2.2421 24 2.1412 4.5570 −
(0.4382) (0.1748) (0.4280) (0.6710) (1.3684) −

Breast-cancer

1 0.3580 0.6907 1.3141

Parkinsons

2 −0.9465 −0.0847 1.0913
(0.0561) (0.0394) (0.0246) (0.0402) (0.0094) (0.0172)

3 −0.5446 0.1743 0.7889 7 −5.7700 −2.1513 0.1867
(0.1887) (0.1268) (0.0626) (0.1439) (0.0189) (0.0538)

6 −3.2099 −1.1397 −0.7526 11 −10.0932 −7.8291 −5.6844
(0.6068) (0.2788) (0.4959) (0.1492) (0.0340) (0.0906)

8 −6.4362 −2.1110 −3.1482 15 −16.9316 −16.8767 −15.6404
(0.8144) (0.3906) (0.6501) (0.2151) (0.1025) (0.1163)

* The best results are marked in bold, and the standard deviation is reported in the parenthesis. The results of MIX on Ionosphere
with d′ = 10, 17, 24 is corrupted due to numerical problems.

has the lowest rank-sum. Overall, our experiments on bench-
mark datasets show that our method has favorable perfor-
mance among competitive anomaly detection algorithms.

6. Conclusion
In this paper, we propose an algorithm called Gradient
Boosting Histogram Transform (GBHT) for density esti-
mation with novel theoretical analysis under the RERM
framework. It is well-known that boosting methods are hard
to apply in unsupervised learning. Therefore, we turn the
density estimation into a supervised learning problem by
changing the loss function to Negative Log Likelihood loss,
which measures the proximity between the estimated den-
sity and the true one. In each iteration of boosting methods,
histogram transform first randomly stretches, rotates, and
translates the feature space for acquiring more information,
and then an additional density function is attached to the es-
timated one with weights, which guarantees that the result is
a density function with integral equals to 1. For theoretical
achievements, we prove the convergence properties of our
algorithm under mild assumptions. It should be highlighted
that we are the first to explain the benefits of the boosting

procedure for density estimation algorithms. Last but not
least, numerical experiments of both synthetic data and real
data are carried out to verify the promising performance of
GBHT with applications to anomaly detection.
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