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Abstract
As an important branch of weakly supervised
learning, partial label learning deals with data
where each instance is assigned with a set of can-
didate labels, whereas only one of them is true.
Despite many methodology studies on learning
from partial labels, there still lacks theoretical
understandings of their risk consistent properties
under relatively weak assumptions, especially on
the link between theoretical results and the em-
pirical choice of parameters. In this paper, we
propose a family of loss functions named Lever-
aged Weighted (LW) loss, which for the first time
introduces the leverage parameter β to consider
the trade-off between losses on partial labels and
non-partial ones. From the theoretical side, we
derive a generalized result of risk consistency for
the LW loss in learning from partial labels, based
on which we provide guidance to the choice of
the leverage parameter β. In experiments, we ver-
ify the theoretical guidance, and show the high
effectiveness of our proposed LW loss on both
benchmark and real datasets compared with other
state-of-the-art partial label learning algorithms.

1. Introduction
Partial label learning (Cour et al., 2011), also called ambigu-
ously label learning (Chen et al., 2017) and superset label
problem (Gong et al., 2017), refers to the task where each
training example is associated with a set of candidate labels,
while only one is assumed to be true. It naturally arises in a
number of real-world scenarios such as web mining (Luo &
Orabona, 2010), multimedia contents analysis (Cour et al.,
2009; Zeng et al., 2013), ecoinformatics (Liu & Dietterich,
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2012), etc, and subsequently attracts a lot of attention on
methodology studies (Feng et al., 2020b; Wang & Zhang,
2020; Yao et al., 2020; Lyu et al., 2019; Wang et al., 2019).

As the main target of partial learning lies in disambiguating
the candidate labels, two general strategies have been pro-
posed with different assumptions to the latent label space:
1) Average-based strategy that treats each candidate la-
bel equally in the model training phase (Hüllermeier &
Beringer, 2006; Cour et al., 2011; Zhang & Yu, 2015). 2)
Identification-based strategy that considers the ground-truth
label as a latent variable, and assume certain parametric
model to describe the scores of each candidate label (Feng
& An, 2019; Yan & Guo, 2020; Yao et al., 2020). The former
is intuitive but has an obvious drawback that the predictions
can be severely distracted by the false positive labels. The
latter one attracted lots of attentions in the past decades
but is criticized for the vulnerability when encountering
differentiated label in candidate label sets. Furthermore, in
recent years, more and more literature focuses on making
amendments and adjustments on the optimization terms and
loss functions on the basis of identification-based model (Lv
et al., 2020; Cabannes et al., 2020; Wu & Zhang, 2018; Lyu
et al., 2019; Feng et al., 2020b).

Despite extensive studies on partial label learning algo-
rithms, theoretically guaranteed ones remain to be the minor-
ity. Some researchers have studied the statistical consistency
(Cour et al., 2011; Feng et al., 2020b; Cabannes et al., 2020)
and the learnability (Liu & Dietterich, 2014) of partial label
learning algorithms. However, these theoretical studies are
often based on rather strict assumptions, e.g. convexity of
loss function (Cour et al., 2011), uniformly sampled partial
label sets (Feng et al., 2020b), etc. Moreover, it remains to
be an open problem why an algorithm performs better than
others under specific parameter settings, or in other words,
how can theoretical results guide parameter selections in
computational implementations.

In this paper, we aim at investigating further theoretical ex-
planations for partial label learning algorithms. Applying
the basic structure of identification-based methods, we pro-
pose a family of loss functions named Leveraged Weighted
(LW) loss. From the perspective of risk consistency, we
provide theoretical guidance to the choice of the leverage
parameter in our proposed LW loss by discussing the super-
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vised loss to which LW is risk consistent. Then we design
the partial label learning algorithm by iteratively identifying
the weighting parameters. As follows are our contributions:

• We propose a family of loss function for partial la-
bel learning, named the Leveraged Weighted (LW) loss
function, where we for the first time introduce the lever-
age parameter β that considers the trade-offs between
losses on partial labels and non-partial labels.

• We for the first time generalize the uniform assump-
tion on the generation procedure of partial label sets,
under which we prove the risk consistency of the LW
loss. We also prove the Bayes consistency of our LW
loss. Through discussions on the supervised loss to
which LW is risk consistent, we obtain the potentially
effective values of β.

• We present empirical understandings to verify the theo-
retical guidance to the choice of β, and experimentally
demonstrate the effectiveness of our proposed algo-
rithm based on the LW loss over other state-of-the-art
partial label learning methods on both benchmark and
real datasets.

2. Related Works
We briefly review the literature for partial label learning.

Average-based methods. The average-based methods nor-
mally consider each candidate label as equally important
during model training, and average the outputs of all the
candidate labels for predictions. Some researchers apply
nearest neighbor estimators and predict a new instance by
voting (Hüllermeier & Beringer, 2006; Zhang & Yu, 2015).
Others further take advantage of the information in non-
candidate samples. For example, (Cour et al., 2011; Zhang
et al., 2016) employ parametric models to demonstrate the
functional relationship between features and the ground
truth label. The parameters are trained to maximize the
average scores of candidate labels minus the average scores
of non-candidate labels.

Identification-based methods. The identification-based
methods aim at directly maximizing the output of exactly
one candidate label, chosen as the truth label. A wealth of
literature adopt major machine learning techniques such as
maximum likelihood criterion (Jin & Ghahramani, 2002;
Liu & Dietterich, 2012) and maximum margin criterion
(Nguyen & Caruana, 2008; Yu & Zhang, 2016). As deep
neural networks (DNNs) become popular, DNN-based meth-
ods outburst recently. (Feng & An, 2019) introduces self-
learning with network structure; (Yan & Guo, 2020) studies
the utilization of batch label correction; (Yao et al., 2020)
manages to improve the performance by combining different
networks. Moreover, it is worth highlighting that these algo-

rithms have shown their weaknesses when facing the false
positive labels that co-occur with the ground truth label.

Binary loss-based multi-class classification. Building
multi-class classification loss from multiple binary ones
is a general and frequently used scheme. In previous works,
to extend margin-based binary classifiers (e.g., SVM and
AdaBoost) to the multi-class setting, they adopted the com-
bination of binary classification losses using constraint com-
parison (Lee et al., 2004; Zhang, 2004), loss-based decoding
(Allwein et al., 2000), etc. In this paper, inspired by these
losses for multi-class classification, we design a loss func-
tion for multi-class partial label learning via multiple binary
loss functions.

In this paper, we follow the idea of the identification-based
method, propose the LW loss function, and provide theoreti-
cal results on risk consistency. This result gives theoretical
insights into the problem why an algorithm shows better
performance under certain parameter settings than others.

3. Methodology
In this section, we first introduce some background knowl-
edge about learning with partial labels in Section 3.1. Then
in Section 3.2 we propose a family of LW loss function
for partial labels. In Section 3.3, we prove the risk consis-
tency of the LW loss and present guidance to the empirical
choice of the leverage parameter β. Finally, we present our
proposed practical algorithm in Section 3.4.

3.1. Preliminaries

Notations. Denote X ⊂ Rd as a non-empty feature space
(input space), Y = [K] := {1, . . . ,K} as the supervised
label space, where k is the number of classes, and ~Y :=
{~y | ~y ⊂ Y} = 2[K] as the partial label space, where 2[K] is
the collection of all subsets in [K]. For the rest of this paper,
y denotes the true label of x unless otherwise specified.

Basic settings. In learning with partial labels, an input
variable X ∈ X is associated with a set of potential labels
~Y ∈ ~Y instead of a unique true label Y ∈ Y . The goal is to
find the latent ground-truth label Y for the input X through
observing the partial label set ~Y . The basic definition for
partially supervised learning lies in the fact that the true
label Y of an instance X must always reside in the partial
label set ~Y , i.e.

P(y ∈ ~Y |Y = y, x) = 1. (1)

That is, we have #|~Y | ≥ 1, and #|~Y | = 1 holds if and only
if ~Y = {y}, in which case the partial label learning problem
reduces to multi-class classification with supervised labels.

Risk consistency. Risk consistency is an important tool
in studying weakly supervised algorithms (Ishida et al.,
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2017; 2019; Feng et al., 2020a;b). We say a method is risk-
consistent if its corresponding classification risk, also called
generalization error, is equivalent to the supervised clas-
sification risk R(f) given the same classifier f . Note that
risk consistency implies classifier consistency (Xia et al.,
2019), where learning from partial labels results in the same
optimal classifier as that when learning from the fully super-
vised data.

To be specific, denote g(x) = (g1(x), . . . , gK(x)) as the
score function learned by an algorithm, where gz(x) is the
score function for label z ∈ [K]. Larger gz(x) implies
that x is more likely to come from class z ∈ [K]. Then
the resulting classifier is f(x) = arg maxz∈[K] gz(x). By
definition, we denote

R(L, g) := E(X,Y )[L(Y, g(X))], (2)

as the supervised risk w.r.t. supervised loss function L :
Y × RK → R+ for supervised classification learning. On
the other hand, we denote

R̄(L̄, g) := E(X,~Y )[L̄(~Y , g)] (3)

as the partial risk w.r.t. partial loss function L̄ : ~Y ×RK →
R+, measuring the expected loss of g learned through par-
tial labels w.r.t. the joint distribution of (X, ~Y ). Then a
partial loss L̄ is risk-consistent to the supervised loss L if
R̄(L̄, g) = R(L, g).

Bayes consistency. We denote g∗L := supg∈MR(L, g) as
the Bayes decision function w.r.t. the loss function L, where
M contains all measurable functions andR∗L := R(L, g∗).
Similarly, we denote R∗ := R∗L0-1

as the Bayes decision
function w.r.t. the multi-class 0-1 loss, i.e.

L0-1(y, g(x)) := 1{arg max
k∈[K]

gk(x) 6= y}, (4)

where 1{·} denotes the indicator function. Then if there
exist a collection {gn} such that R(L0-1, gn) → R∗ as
n→∞, we say that the surrogate loss L reaches Bayes risk
consistency.

3.2. Leveraged Weighted (LW) Loss Function

In this paper, we propose a family of loss function for par-
tial label learning named Leveraged Weighted (LW) loss
function. We adopt a multiclass scheme frequently used
for the fully supervised setting (Crammer & Singer, 2001;
Rifkin & Klautau, 2004; Zhang, 2004; Tewari & Bartlett,
2005), which combines binary losses ψ(·) : R → R+, a
non-increasing function, to create a multiclass loss. We
highlight that it is the first time that the leverage parameter
β is introduced into loss functions for partial label learn-
ing, which leverages between losses on partial labels and

non-partial ones. To be specific, the partial loss function of
concern is of the form

L̄ψ(~y, g(x)) =
∑
z∈~y

wzψ(gz(x)) + β ·
∑
z/∈~y

wzψ(−gz(x)),

(5)

where ~y ∈ ~Y denotes the partial label set. It consists of
three components.

• A binary loss function ψ(·) : R → R+, where
ψ(gz(x)) forces gz to be larger when z resides in the
partial label set ~y, while ψ(−gz(x)) punishes large gz
when z /∈ ~y.

• Weighting parameters wz ≥ 0 on ψ(gz) for z ∈ [K].
Generally speaking, we would like to assign more
weights to the loss of labels that are more likely to
be the true label.

• The leverage parameter β ≥ 0 that distinguishes be-
tween partial labels and non-partial ones. Larger β
quickly rules out non-partial labels during training,
while it also lessens weights assigned to partial labels.

We mention that the partial loss proposed in (5) is a general
form. Some special cases include

1) Taking β = 0, wz = 1/#|~y| for z ∈ ~y, we achieve the
partial loss proposed by (Jin & Ghahramani, 2002), the form
of which is

1

#|~y|
∑
y∈~y

ψ(gy(x)). (6)

2) Taking β = 0, and wz∗ = 1 where z∗ = arg maxz∈~y gz ,
wz = 0 for z ∈ ~y\{z∗}, we achieve the partial loss function
proposed by (Lv et al., 2020), with the form

ψ(max
y∈~y

gy(x))⇔ min
y∈~y

ψ(gy(x)). (7)

3) By taking β = 1, and wz∗ = 1 where z∗ =
arg maxz∈~y gz , wz = 0 for z ∈ ~y \ {z∗}, wz = 1 for
z /∈ ~y, we achieve the partial loss function proposed by
(Cour et al., 2011), with the form

ψ(max
y∈~y

gy(x)) +
∑
y/∈~y

ψ(−gy(x)). (8)

3.3. Theoretical Interpretations

In this part, we first relax the assumption on the generation
procedure of the partial label set, and show the risk consis-
tency of our proposed LW loss function. Then by observing
the supervised loss to which LW is risk consistent, we study
the leverage parameter β and deduce its reasonable values.
All proofs are shown in Section A of the supplements.
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3.3.1. GENERALIZING THE UNIFORM SAMPLING
ASSUMPTION

In previous study of risk consistency, the partial label set
~Y is assumed to be independently and uniformly sampled
given a specific true label Y (Feng et al., 2020b), i.e.

P(~Y = ~y |Y = y, x) =


1

2k−1 − 1
, if y ∈ ~y,

0, otherwise.
(9)

Note that this data generation procedure is equivalent to
assuming P(y ∈ ~Z |x) = 1

2 , where ~Z is an unknown label
set uniformly sampled from [K]. The intuition behind is
that if no information of ~Z is given, we may randomly guess
with even probabilities whether the correct y is included in
an unknown label set ~Z or not.

However, in real-world situations, some combination of
partial labels may be more likely to appear than others.
Instances belonging to certain classes usually share similar
features e.g. images of dog and cat may look alike, while
they may be less similar to images of truck. Thus, given
these shared features indicating the true label of an instance,
the probability of label z 6= y entering the partial label set
may be different. For instance, when the true label is dog,
cat is more likely to be picked as a partial label than truck.

Therefore, in this paper, we generalize the uniform sampling
of partial label sets, and allow the sampling probability to
be label-specific. Denote qz ∈ [0, 1] as

qz := P(z ∈ ~Y |Y = y, x), (10)

for z ∈ [K]. Then for z = y, we have qy = 1 according
to the problem settings of learning from partial labels, and
for z 6= y, we have qz < 1 due to the small ambiguity
degree condition (Cour et al., 2011), which guarantees the
ERM learnability of partial label learning problems (Liu &
Dietterich, 2014; Lv et al., 2020). Then when the elements
in ~y is assumed to be independently drawn, the conditional
distribution of the partial label set ~Y turns out to be

P(~Y = ~y |Y = y, x) =
∏

s∈~y,s6=y

qs ·
∏
t/∈~y

(1− qt). (11)

where y is the true label of input x.

Note that the above generation procedure of the partial label
set allows the existence of [K] to be a partial label set. If we
want to rule out this set, we can simply drop it and sample
the partial label set again. By this means, the conditional
distribution becomes

P(~Y = ~y |Y = y, x) =
1

1−M
∏

s∈~y,s6=y

qs ·
∏
t/∈~y

(1− qt),

where M =
∏
z 6=y qz . Taking the special case where qz =

1/2 for all z 6= y, we reduce to the generation procedure (9)
as in (Feng et al., 2020b).

3.3.2. RISK-CONSISTENT LOSS FUNCTION

Under the above generation procedure, we take a deeper
look at our proposed LW loss and prove its risk consistency.

Theorem 1 The LW partial loss function proposed in (5) is
risk-consistent with respect to the supervised loss function
with the form

Lψ(y, g(x)) = wyψ(gy(x))

+
∑
z 6=y

wzqz
[
ψ(gz(x)) + βψ(−gz(x))

]
. (12)

Theorem 1 indicates the existence of a loss function Lψ
for supervised learning to which the LW loss L̄ψ is risk
consistent. Note that the resulting form of the supervised
loss function (12) is a widely used multi-class scheme in
supervised learning, e.g. Crammer & Singer (2001); Rifkin
& Klautau (2004); Tewari & Bartlett (2007).

It is worth mentioning that this is the first time that a risk
consistency analysis is conducted under a label-specific
sampling of the partial label set. Moreover, compared with
Lv et al. (2020), where the proposed loss function is proved
to be classifier consistent under the deterministic scenario,
our result on risk consistency is a stronger claim and applies
to both deterministic and stochastic scenarios.

The next theorem shows that as long as β > 0, the super-
vised risk induced by (12) is consistent to the Bayes riskR∗.
That is, optimizing the supervised loss in (12) can result in
the Bayes classifier under 0-1 loss.

Theorem 2 Let Lψ be of the form in (12) and L0-1 be the
multi-class 0-1 loss. Assume that ψ(·) is differentiable and
symmetric, i.e. ψ(gz(x)) + ψ(−gz(x)) = 1. For β > 0, if
there exist a sequence of functions {ĝn} such that

R(Lψ, ĝn)→ R∗Lψ ,

then we have

R(L0-1, ĝn)→ R∗.

Combined with Theorem 1, when β > 0, we have our LW
loss consistent to the Bayes classifier.

3.3.3. GUIDANCE ON THE CHOICE OF β

In this section, we try to answer the question why we should
choose some certain values of β for the LW loss L̄ψ instead
of others when learning from partial labels. Recall that
when minimizing a risk consistent partial loss function in
partial label learning, we are at the same time minimizing
the corresponding supervised loss. Therefore, by Theorem
1, a satisfactory supervised loss Lψ in supervised learning
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naturally corresponds to an LW loss L̄ψ with the desired
value of the leverage parameter β in partial label learning.

When we take a closer look at the right-hand side of (12), the
loss function Lψ to which LW loss is risk-consistent always
contains the term ψ(gy), which focuses on identifying the
true label y. On the other hand, an interesting finding is that
the leverage parameter β determines the relative scale of
ψ(gz) and ψ(−gz) for all z 6= y, while it does not affect the
loss on the true label y.

In the following discussions, we focus on symmetric binary
loss ψ(·), where ψ(gz(x)) + ψ(−gz(x)) = 1, for their fine
theoretical properties. We remark that commonly adopted
loss functions such as zero-one loss, Sigmoid loss, Ramp
loss, etc. satisfy the symmetric condition. In what follows,
we present the results of risk consistency for LW loss with
specific values of β, and discuss each case respectively.

Case 1: When β = 0 (e.g. Lv et al., 2020), the LW loss
function L̄ψ is risk-consistent to

wyψ(gy(x)) +
∑
z 6=y

wzqzψ(gz(x)). (13)

In this case, in addition to focusing on the true label y, Lψ
also gives positive weights to the untrue labels as long as
there exists a label z 6= y such that wz > 0. Since the
minimization of ψ(gz) may lead to false identification of
label z 6= y, β = 0 is not preferred for LW loss.

Case 2: When β = 1 (e.g. Jin & Ghahramani, 2002; Cour
et al., 2011), the LW loss function L̄ψ is risk-consistent to

wyψ(gy(x)) +
∑
z 6=y

wzqz. (14)

In this case, the minimization of L̄ψ indicates the minimiza-
tion of Lψ = ψ(gy(x)), aiming at directly identifying the
true label y. The idea is similar to that of the cross entropy
loss, where LCE(y, g(x)) := − log(gy(x)) . Therefore, we
take β = 1 as a reasonable choice for LW loss.

Case 3: When β = 2, the LW loss function L̄ψ is risk-
consistent with

wyψ(gy(x)) +
∑
z 6=y

wzqzψ(−gz(x)) +
∑
z 6=y

wzqz. (15)

In this case, the LW loss not only encourages the learner
to identify the true label y by minimizing ψ(gy), but also
helps rule out the untrue labels z 6= y by punishing large
value of ψ(−gz). Moreover, for a confusing label z 6= y
that is more likely to appear in the partial label set, i.e. qz
is larger, Lψ imposes severer punishment on gz . Therefore,
β = 2 is also a preferred choice for LW loss. Especially,
when taking wz = 1/qz for z ∈ [K], we achieve the form

ψ(gy(x)) +
∑
z 6=y

ψ(−gz(x)) +K − 1, (16)

which exactly corresponds to the one-versus-all (OVA) loss
function proposed by Zhang (2004).

To conclude, it is not a good choice for LW loss to take
β = 0, as most commonly used loss functions do. Our
theoretical interpretations of risk consistency show that β >
0 and especially β > 1 are preferred choices, which are also
empirically verified in Section 4.2.1.

3.4. Practical Algorithm

In the theoretical analysis in the previous section, we focus
on partial and supervised loss functions that are consistent in
risk. However, in experiments, the risk for partial label loss
is not directly accessible since the underlying distribution
of P(X, ~Y ) is unknown. Instead, on the partially labeled
sampleDn := {(x1, ~y1), . . . , (xn, ~yn)}, we try to minimize
the empirical risk of a learning algorithm defined by

R̄Dn(L̄, g(X)) =
1

n

n∑
i=1

L̄(~yi, g(xi)). (17)

Moreover, in this part we take the network parameters θ for
score functions g(x) :=

(
g1(x), . . . , gK(x)

)
into consider-

ation, and write g(x; θ) and gz(x; θ) instead.

Determination of weighting parameters. Since our goal
is to find out the unique true label after observing partially
labeled data, we’d like to focus more on the true label con-
tained in the partial label set, while ruling out the most
confusing one outside this set. Therefore, we assign larger
weights to ψ(gy(x)), where y denotes the true label of x,
and to ψ(−gz(x)), where z is the non-partial label with the
highest score among [K] \ ~y.

However, since we cannot directly observe the true label y
for input x from the partially labeled data, the weighting
parameters cannot be directly assigned. Therefore, inspired
by the EM algorithm (Dempster et al., 1977) and PRODEN
(Lv et al., 2020), we learn the weighting parameters through
an iterative process instead of assigning fixed values.

To be specific, at the t-th step, given the network parameters
θ(t), we calculate the weighting parameters by respectively
normalizing the score functions gz(x; θ) for z ∈ ~y and those
for z /∈ ~y, i.e.

w(t)
z =

exp(gz(x; θ(t)))∑
z∈~y exp(gz(x; θ(t)))

for z ∈ ~y, and (18)

w(t)
z =

exp(gz(x; θ(t)))∑
z/∈~y exp(gz(x; θ(t)))

for z /∈ ~y. (19)

By this means we have
∑
z∈~y w

(t)
z =

∑
z/∈~y w

(t)
z = 1.

Note that w(t)
z varies with sample instances. Thus for each

instance (xi, ~yi), i = 1, . . . , n, we denote the weighting
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parameter as w(t)
z,i. As a special reminder, we initialize

w
(0)
z,i = 1

#|~yi| for z ∈ ~yi and w(0)
z,i = 1

K−#|~yi| for z /∈ ~yi.

The intuition behind the respective normalization is twofold.
First of all, by respectively normalizing scores of partial
labels and non-partial ones, we achieve our primary goal of
focusing on the true label and the most confusing non-partial
label. Secondly, if we simply perform normalization on all
score functions, the weights for partial labels tend to grow
rapidly through training, resulting in much larger weights
for the partial losses than the non-partial ones. Thus, as the
training epochs grow, the losses on non-partial labels as well
as the leverage parameter β gradually become ineffective,
which we are not pleased to see.

The main algorithm is shown in Algorithm 1. Note that
here β is a hyper-parameter tuned by validation while w is
the parameter trained through data.

Algorithm 1 LW Loss for Partial Label Learning
Input: Training data Dn := {(x1, ~y1), . . . , (xn, ~yn)};

Leverage parameter β;
Learning rate ρ;
Number of Training Epochs T ;

for t = 1 to T do
Calculate R̄(t)

Dn
(L̄(t−1), g(x; θ(t−1))) by (17);

Update network parameter θ(t) and achieve g(x; θ(t)).
Update weighting parameters w(t)

z,i by (18) and (19);
end for
Output: Decision function arg maxz∈[K] gz(x; θ(T )).

4. Experiments
In this part, we empirically verify the effectiveness of our
proposed algorithm through performance comparisons as
well as other empirical understandings.

4.1. The Classification Performance

In this section, we conduct empirical comparisons with
other state-of-the-art partial label learning algorithms on
both benchmark and real datasets.

4.1.1. BENCHMARK DATASET COMPARISONS

Datasets. We base our experiments on four benchmark
datasets: MNIST (LeCun et al., 1998), Kuzushiji-MNIST
(Clanuwat et al., 2018), Fashion-MNIST (Xiao et al., 2017),
and CIFAR-10 (Krizhevsky et al., 2009). We generate par-
tially labeled data by making K − 1 independent decisions
for labels z 6= y, where each label z has probability qz to
enter the partial label set. In this part we consider qz = q for
all z 6= y, where q ∈ {0.1, 0.3, 0.5} and larger q indicates
that the partially labeled data is more ambiguous. We put

the experiments based on non-uniform data generating pro-
cedures in Section 4.2.3. Note that the true label y always
resides in the partial label set ~y and we accept the occasion
that ~y = [K]. On MNIST, Kuzushiji-MNIST, and Fashion-
MNIST, we employ the base model as a 5-layer perception
(MLP). On the CIFAR-10 dataset, we employ a 12-layer
ConvNet (Laine & Aila, 2016) for all compared methods.
More details are shown in Section B.1 of the supplements.

Compared methods. We compare with the state-of-the-
art PRODEN (Lv et al., 2020), RC and CC (Feng et al.,
2020b), with all hyper-parameters searched according to
the suggested parameter settings in the original papers. For
our proposed method, we search the initial learning rate
from {0.001, 0.005, 0.01, 0.05, 0.1} and weight decay from
{10−6, 10−5, . . . , 10−2}, with the exponential learning rate
decay halved per 50 epochs. We search β ∈ {1, 2} accord-
ing to the theoretical guidance discussed in Section 3.3. For
computational implementations, we use PyTorch (Paszke
et al., 2019) and the stochastic gradient descent (SGD) (Rob-
bins & Monro, 1951) optimizer with momentum 0.9. For all
methods, we set the mini-batch size as 256 and train each
model for 250 epochs. Hyper-parameters are searched to
maximize the accuracy on a validation set containing 10%
of the partially labeled training samples. We adopt the same
base model for fair comparisons. More details are shown in
Section B.2 of the supplements.

Experimental results. We repeat all experiments 5 times,
and report the average accuracy and the standard deviation.
We apply the Wilcoxon signed-rank test (Wilcoxon, 1992)
at the significance level α = 0.05. As is shown in Table 1,
when adopting the Sigmoid loss function with fine symmet-
ric theoretical property, our proposed LW loss outperforms
almost all other state-of-the-art algorithms for learning with
partial labels. Moreover, by adopting the widely used cross
entropy loss function, the empirical performance of LW
can be further significantly improved on MNIST, Fashion-
MNIST, and Kuzushiji-MNIST datasets. We attribute this
satisfactory result to the design of a proper leveraging param-
eter β, which makes it possible to consider the information
of both partial labels and non-partial ones.

4.1.2. REAL DATA COMPARISONS

Datasets. In this part we base our experimental comparisons
on 5 real-world datasets including: Lost (Cour et al., 2011),
MSRCv2 (Liu & Dietterich, 2012), BirdSong (Briggs et al.,
2012), Soccer Player (Zeng et al., 2013), and Yahoo! News
(Guillaumin et al., 2010).

Compared methods. Aside from the network-based meth-
ods mentioned in Section 4.1.1, we compare with 3 other
state-of-the-art partial label learning algorithms includ-
ing IPAL (Zhang & Yu, 2015), PALOC (Wu & Zhang,
2018), and PLECOC (Zhang et al., 2017), where the hyper-
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Table 1. Accuracy comparisons on benchmark datasets.

Dataset Method Base Model q = 0.1 q = 0.3 q = 0.5

MNIST

RC MLP 98.44± 0.11%∗ 98.29± 0.05%∗ 98.14± 0.03%∗
CC MLP 98.56± 0.06%∗ 98.32± 0.06%∗ 98.21± 0.07%∗
PRODEN MLP 98.57± 0.07%∗ 98.48± 0.10%∗ 98.40± 0.15%∗
LW-Sigmoid MLP 98.82± 0.04% 98.74± 0.07% 98.55± 0.07%
LW-Cross entropy MLP 98.89± 0.06% 98.81± 0.06% 98.59± 0.15%

Fashion-MNIST

RC MLP 89.69± 0.08%∗ 89.47± 0.04%∗ 88.97± 0.06%∗
CC MLP 89.63± 0.10%∗ 89.11± 0.19%∗ 88.31± 0.14%∗
PRODEN MLP 89.62± 0.13%∗ 89.17± 0.08%∗ 88.72± 0.18%∗
LW-Sigmoid MLP 90.25± 0.16% 89.67± 0.15%∗ 88.76± 0.03%∗
LW-Cross entropy MLP 90.52± 0.19% 90.15± 0.13% 89.54± 0.10%

Kuzushiji-MNIST

RC MLP 92.12± 0.17%∗ 91.83± 0.18%∗ 90.84± 0.26%∗
CC MLP 92.57± 0.14%∗ 92.08± 0.06%∗ 90.58± 0.18%∗
PRODEN MLP 92.20± 0.43%∗ 91.18± 0.15%∗ 89.64± 0.32%∗
LW-Sigmoid MLP 93.63± 0.39% 92.92± 0.28%∗ 91.81± 0.25%∗
LW-Cross entropy MLP 94.14± 0.12% 93.57± 0.13% 92.30± 0.23%

CIFAR-10

RC ConvNet 86.53± 0.12%∗ 85.90± 0.13%∗ 84.48± 0.17%∗
CC ConvNet 86.47± 0.22%∗ 85.33± 0.19%∗ 82.74± 0.22%∗
PRODEN ConvNet 89.71± 0.13%∗ 88.57± 0.10%∗ 85.95± 0.14%∗
LW-Sigmoid ConvNet 90.88± 0.09% 89.75± 0.08% 87.27± 0.15%∗
LW-Cross entropy ConvNet 90.58± 0.04%∗ 89.68± 0.10% 88.31± 0.09%

The best results are marked in bold and the second best marked in underline. The standard deviation is also reported. We use ∗ to
represent that the best method is significantly better than the other compared methods.

Table 2. Accuracy comparisons on real datasets.

Method Dataset
Lost MSRCv2 Birdsong SoccerPlayer YahooNews

IPAL 62.37± 4.81%∗ 50.34± 3.24%∗ 70.20± 4.62%∗ 55.79± 0.88%∗ 64.57± 1.51%∗
PALOC 57.80± 7.00%∗ 47.51± 3.78%∗ 70.20± 3.79%∗ 53.96± 2.38%∗ 60.36± 1.48%∗
PLECOC 63.04± 6.72%∗ 44.13± 5.06%∗ 73.88± 3.41% 29.39± 9.38%∗ 60.41± 1.50%∗
RC-Linear 75.93± 3.62%∗ 45.82± 4.74%∗ 71.73± 2.84%∗ 57.00± 2.15% 67.42± 1.11%∗
CC-Linear 75.57± 3.58%∗ 45.56± 3.97%∗ 71.83± 2.85%∗ 56.75± 1.87%∗ 67.43± 1.07%∗
PRODEN-Linear 76.33± 4.51% 44.04± 4.50%∗ 71.97± 2.73%∗ 55.93± 2.34%∗ 67.47± 1.11%∗
LW-Linear 76.50± 4.16% 46.34± 2.72%∗ 72.33± 3.29%∗ 57.29± 2.37% 68.67± 1.05%
RC-MLP 63.45± 5.03%∗ 51.60± 2.53%∗ 73.11± 4.45%∗ 53.87± 1.96%∗ 63.84± 0.65%∗
CC-MLP 65.29± 4.15%∗ 50.97± 3.05%∗ 70.97± 3.66%∗ 54.03± 1.77%∗ 62.85± 1.26%∗
PRODEN-MLP 61.41± 5.20%∗ 50.54± 3.37%∗ 72.74± 4.78%∗ 53.48± 1.74%∗ 61.88± 0.96%∗
LW-MLP 66.00± 4.10%∗ 52.23± 3.61% 73.89± 4.01% 53.64± 1.83%∗ 64.65± 0.98%∗
The best results among all methods are marked in bold and the best under the same base model is marked in underline. The standard
deviation is also reported. We use ∗ to represent that the best method is significantly better than the other compared methods.

parameters are searched through a 5-fold cross-validation
under the suggested settings in the original papers. We
adopt cross entropy loss for LW and employ both linear
model and MLP as base models. For all compared methods,
we adopt a 10-fold cross-validation to evaluate the testing
performances. Other settings are similar to Section 4.1.1.

Experimental results. In Table 2, under the same base
model, our proposed LW shows the best performance on
almost all datasets. Moreover, on all real datasets, LW loss

with proper base models always outperforms other state-
of-the-art methods. Different from the benchmark datasets,
the distribution of real partial labels remains unknown and
could be more complex. Since our proposed LW loss is risk
consistent with desired supervised loss functions under a
generalized partial label generation assumption, there is no
surprise that it presents satisfactory empirical performance.
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4.2. Empirical Understandings

In this part, we conduct a series of comprehensive experi-
ments to verify the effectiveness of our proposed LW loss.

4.2.1. PARAMETER ANALYSIS

We study the leverage parameter β of LW loss by com-
paring its performances under β ∈ {0, 1, 2, 4, 8, 16, 32}
respectively. We employ Sigmoid loss function for LW loss,
and other experimental settings are similar to Section 4.1.1.

(a) MNIST, q = 0.1. (b) Fashion-MNIST, q = 0.3.

(c) CIFAR-10, q = 0.3. (d) Kuzushiji-MNIST, q = 0.5.

Figure 1. Study of the leverage parameter β for LW loss.

As is shown in Figure 1, on all four datasets with varying
data generation probability q, LW losses with β = 1 and
β = 2 significantly outperform those with other parameter
settings. (On MNIST, LW loss with β = 4 also performs
competitively.) This coincides exactly with the theoretical
guidance to the choice of β discussed in Section 3.3.

4.2.2. ABLATION STUDY

In this part, we conduct an ablation study on effect of the
two parts in our proposed LW loss, i.e. losses on par-
tial labels

∑
z∈~y wzψ(gz(x)) and those on non-partial ones∑

z/∈~y wzψ(−gz(x)). For notational simplicity, we rewrite
the “generalized” LW loss as

α ·
∑
z∈~y

wzψ(gz(x)) + β ·
∑
z/∈~y

wzψ(−gz(x)).

We compare among performances of LW with
1) losses on partial labels only (β = 0),
2) losses on non-partial labels only (α = 0),
3) losses on both partial and non-partial labels (αβ 6= 0).
We employ the Sigmoid loss function for the LW loss. Other
experimental settings are similar to Section 4.1.1.

As is shown in Figure 2, when individually using losses

(a) MNIST, q = 0.1. (b) Fashion-MNIST, q = 0.3.

(c) CIFAR-10, q = 0.3. (d) Kuzushiji-MNIST, q = 0.5.

Figure 2. Ablation study: comparisons between LW loss with
losses on partial or non-partial labels.

on either partial labels or non-partial ones, the accuracy
results is far from satisfactory on all three datasets since
the information contained in the other half is neglected. Be-
sides, it provides little help to the empirical performance by
simply scaling the losses themselves. On the contrary, by
combining losses on both partial labels and non-partial ones
(α = β = 1), our proposed LW loss function shows its su-
periority in empirical performances, where results show that
our idea is especially effective on CIFAR-10 and Kuzushiji-
MNIST datasets.

4.2.3. THE INFLUENCE OF DATA GENERATION

In the data generation of previous subsections, the un-
true partial labels are selected with equal probabilities, i.e.
qz = q for z 6= y. In reality, however, some labels may
be more analogous to the true label than others, and thus
the probabilities qz for these labels may naturally be higher
than others. In this part, we conduct empirical comparisons
on data with alternative generation process. To be specific,
Case 1 describes a “pairwise” partial label set, where there
exists only one potential partial label for each class. In
Case 2, we assume two potential partial labels for each
class. Case 3 considers a more complex situation where
6 potential labels have different probabilities to enter the
partial label set. More details about the data generations are
shown in Section B.4 in the supplementary material. Other
experimental settings are similar to Section 4.1.1.

As is shown in Table 3, our proposed method dominates
its counterparts in all three cases. Moreover, as the data
generation process becomes more complex (from Case 1
to Case 3), there is a natural drop in accuracy for all meth-
ods. Nonetheless, our LW-Cross entropy shows stronger
resistance. For example, on Kuzushiji-MNIST, in Case
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Table 3. Accuracy comparisons with different data generation.

Dataset Method Base Model Case 1 Case 2 Case 3

MNIST

RC MLP 98.49± 0.05%∗ 98.53± 0.08%∗ 98.43± 0.03%∗
CC MLP 98.55± 0.04%∗ 98.57± 0.08%∗ 98.44± 0.02%∗
PRODEN MLP 98.64± 0.15%∗ 97.61± 0.10%∗ 98.55± 0.12%∗
LW-Sigmoid MLP 98.83± 0.04% 98.92± 0.04% 98.69± 0.11%
LW-Cross entropy MLP 98.88± 0.05% 98.88± 0.09% 98.82± 0.05%

Kuzushiji-MNIST

RC MLP 92.61± 0.17%∗ 92.47± 0.19%∗ 92.07± 0.10%∗
CC MLP 92.65± 0.15%∗ 92.68± 0.10%∗ 91.91± 0.15%∗
PRODEN MLP 93.33± 0.20%∗ 93.48± 0.33%∗ 92.30± 0.15%∗
LW-Sigmoid MLP 93.80± 0.15% 93.87± 0.14%∗ 93.09± 0.19%∗
LW-Cross entropy MLP 94.03± 0.09% 94.23± 0.08% 93.55± 0.10%

Fashion-MNIST

RC MLP 89.79± 0.10%∗ 89.88± 0.11%∗ 89.47± 0.11%∗
CC MLP 89.63± 0.12%∗ 89.58± 0.20%∗ 88.63± 0.33%∗
PRODEN MLP 90.34± 0.19%∗ 89.88± 0.27%∗ 89.60± 0.14%∗
LW-Sigmoid MLP 90.24± 0.04%∗ 90.32± 0.18% 89.69± 0.21%∗
LW-Cross entropy MLP 90.59± 0.19% 90.36± 0.15% 90.13± 0.11%

CIFAR-10

RC ConvNet 86.59± 0.34%∗ 87.26± 0.06%∗ 86.28± 0.17%∗
CC ConvNet 86.45± 0.34%∗ 86.87± 0.14%∗ 84.63± 0.40%∗
PRODEN ConvNet 89.03± 0.59%∗ 88.19± 0.10%∗ 87.16± 0.13%∗
LW-Sigmoid ConvNet 90.89± 0.10% 90.87± 0.11% 89.26± 0.19%∗
LW-Cross entropy ConvNet 90.63± 0.08%∗ 90.51± 0.14%∗ 89.60± 0.09%

* The best results are marked in bold and the second best marked in underline. The standard deviation is also reported. We use ∗ to
represent that the best method is significantly better than the other compared methods.

1 the accuracy of our LW-Cross entropy is 0.71% higher
than PRODEN, while in Case 3 the difference increases to
1.25%.

5. Conclusion
In this paper, we propose a family of loss functions, named
Leveraged Weighted (LW) loss function, to address the prob-
lem of learning with partial labels. On the one hand, we
provide theoretical guidance to the empirical choice of the
leverage parameter β proposed in our LW loss from the per-
spective of risk consistency. Both theoretical interpretations
and empirical understandings show that β = 1 and β = 2
are preferred parameter settings. On the other hand, we
design a practical algorithmic implementation of our LW
loss, where its experimental comparisons with other state-
of-the-art algorithms on both benchmark and real datasets
demonstrate the effectiveness of our proposed method.
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