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Abstract
Adversarial Training (AT) is known as an effec-
tive approach to enhance the robustness of deep
neural networks. Recently researchers notice that
robust models with AT have good generative abil-
ity and can synthesize realistic images, while the
reason behind it is yet under-explored. In this
paper, we demystify this phenomenon by devel-
oping a unified probabilistic framework, called
Contrastive Energy-based Models (CEM). On the
one hand, we provide the first probabilistic char-
acterization of AT through a unified understand-
ing of robustness and generative ability. On the
other hand, our CEM can also naturally general-
ize AT to the unsupervised scenario and develop
principled unsupervised AT methods. Based on
these, we propose principled adversarial sampling
algorithms in both supervised and unsupervised
scenarios. Experiments show our sampling algo-
rithms significantly improve the sampling qual-
ity and achieves an Inception score of 9.61 on
CIFAR-10, which is superior to previous energy-
based models and comparable to state-of-the-art
generative models.

1. Introduction
Adversarial Training (AT) is one of the most effective ap-
proaches developed so far to improve the robustness of deep
neural networks (DNNs) (Madry et al., 2018; Wang et al.,
2019). AT solves a minimax optimization problem, with
the inner maximization generating adversarial examples by
maximizing the classification loss, and the outer minimiza-
tion finding model parameters by minimizing the loss on
adversarial examples generated from the inner maximiza-
tion. Recently, researchers have noticed that such robust
classifiers obtained by AT are able to extract features that are
perceptually aligned with humans (Engstrom et al., 2019).
Furthermore, they are able to synthesize realistic images on
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par with state-of-the-art generative models (Santurkar et al.,
2019). Nevertheless, it is still a mystery why AT is able to
learn more semantically meaningful features and turn clas-
sifiers into generators. Besides, as generative methods, AT
requires labeled data {(xi,yi)} while canonical generative
models only require unlabeled data, e.g., VAE (Kingma &
Welling, 2014) and GAN (Goodfellow et al., 2015). Thus,
it is worth exploring if it is possible to train a robust model
without labeled data. Several recent works (Jiang et al.,
2020; Kim et al., 2020; Ho & Nvasconcelos, 2020) have
proposed unsupervised AT by adversarially attacking the
InfoNCE loss (Oord et al., 2018) (a widely used objective in
unsupervised contrastive learning), which indeed improves
the robustness of contrastive encoders. However, a depth
investigation and understanding for unsupervised AT is still
missing.

In this paper, we address the above issues by proposing a
unified framework with the following contributions:

• A unified probabilistic framework. We propose Con-
trastive Energy-based Model (CEM) that incorporates
both supervised and unsupervised learning paradigms.
Our CEM provides a unified probabilistic understand-
ing of previous standard and adversarial training meth-
ods in both supervised and unsupervised learning.

• Demystifying AT. Based on CEM, we propose the
first probabilistic interpretation for AT, that is, it is
inherently a (biased) maximum likelihood training of
the corresponding energy-based model, which explains
the generative ability of robust models learned by AT.

• Principled unsupervised AT. Specifically, under our
proposed CEM framework, we establish the equiva-
lence between the importance sampling of CEM and
the InfoNCE loss of contrastive learning, which en-
ables us to design principled adversarial training and
sampling for unsupervised learning.

• State-of-the-art adversarial sampling algorithms.
Inspired by this, we propose some novel sampling
algorithms with better sample quality than previous
methods. Notably, we show that our sampling methods
achieve state-of-the-art sample quality (9.61 Inception
score) with unsupervised robust models, which is com-
parable to both the supervised counterparts and other
state-of-the-art generative models.
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2. A Unified Probabilistic Framework
Our proposed CEM is a special kind of Enery-Based Models
(EBMs) (LeCun et al., 2006) that models the joint distribu-
tion pθ(u,v) with a contrastive similarity function fθ(u,v),

pθ(u,v) =
exp(fθ(u,v))

Z(θ)
, (1)

where u,v are two random variables, θ are model pa-
rameters and Z(θ) =

∫
exp (fθ(u,v)) dudv is the cor-

responding partition function. In CEM, the log probability
log pθ(u,v) is proportional to the similarity between u and
v, as measured by the similarity function fθ(u,v).

Parametric CEM. In the supervised scenario, we specify
the Parametric CEM (P-CEM) that models the joint distri-
bution pθ(x, y) between data x ∈ Rn and label y ∈ [K],

pθ(x, y) =
exp(fθ(x, y))

Z(θ)
=

exp(gθ(x)>wy)

Z(θ)
, (2)

where gθ : Rn → Rm denotes the encoder, g(x) ∈ Rm is
the representation of x, and wk ∈ Rm refers to the paramet-
ric cluster center of the k-th class.

Non-Parametric CEM. In the unsupervised scenario, we
do not have access to labels, thus we instead model the joint
distribution between data x and representation z as

pθ(x, z) =
exp(fθ(x, z))

Z(θ)
=

exp(gθ(x)>z)

Z(θ)
, (3)

and the corresponding likelihood gradient is

∇θEpd(x,z) log pθ(x, z)

= Epd(x,z)∇θfθ(x, z)−Epθ(x̂,ẑ)∇θfθ(x̂, ẑ).
(4)

In contrastive to P-CEM that incorporates parametric cluster
centers, the joint distribution of NP-CEM (Non-Parametric
CEM) is directly defined based on the similarity between in-
stances (Oord et al., 2018). We define the joint data distribu-
tion pd(x, z) = pd(x)pd(z|x) through re-parameterization,

z = fθ(t(x)), where t∼T and x ∼ pd(x), (5)

where T refers to the user-define pretext, e.g., a set of data
augmentation operators T = {t : Rn → Rn} 1.

3. Rediscovering Adversarial Training
In this section, we investigate why robust models have a
good generative ability from the perspective of P-CEM. In
general, AT solves the following minimax problem:

min
θ

Epd(x,y)
[

max
‖x̂−x‖p≤ε

`CE(x̂, y;θ)

]
. (6)

1For the data pair, we detach the gradient of z w.r.t. θ and
assume that x and t(x) have the same marginal distribution pd(x).

The inner maximization problem is to find an adversarial
example x̂ within the `p-norm ε-ball around the natural
example x that maximizes the CE loss. While the outer min-
imization problem is to find model parameters that minimize
the loss on the adversarial examples x̂.

Maximization Process. For the inner maximization prob-
lem, Projected Gradient Descent (PGD) (Madry et al., 2018)
is the commonly used method, which generates the adver-
sarial example x̂ by maximizing the CE loss2 starting from
x̂0 = x, that is,

x̂n+1 = x̂n + α∇x̂n`(x̂n, y;θ) = x̂n − α∇x̂n log pθ(y|x̂n)

= x̂n + α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, k))

]
− α∇x̂nfθ(x̂n, y),

while the Langevin dynamics for sampling from P-CEM
starts from random noise x̂0 = δ and updates with

x̂n+1 = x̂n + α∇x̂ log pθ(x̂n) +
√

2α · ε

= x̂n + α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, k))

]
+
√

2α · ε.

The two update rules above both have a positive logsumexp
gradient (the second term) to push up the marginal proba-
bility pθ(x̂). As for the third term, PGD starts from a data
point (x, y) such that it requires the repulsive gradient to
be away from the original data point and do the exploration
in a local region. Langevin dynamics instead starts from a
random noise and an additive noise ε is injected for explo-
ration. Thus, the maximization process in AT can be seen
as a (biased) sampling method that draws samples from
the corresponding probabilistic model pθ(x̂). Compared to
Langevin dynamics, PGD imposes specific inductive bias
for sampling. With the additional repulsive gradient and
ε-ball constraint, it explicitly encourages the samples to be
misclassified around the original data. In practice, adver-
sarial training with such adversarial examples is generally
more stable than training P-CEM with Langevin samples,
which indicates that PGD attack is a competitive alternative
for the negative sampling method for P-CEM training.

Minimization Process. To begin with, the gradient of the
joint log likelihood for P-CEM can be written as:

∇θEpd(x,y) log pθ(x, y)

= Epd(x,y)∇θfθ(x, y) − Epθ(x̂,ŷ)∇θfθ(x̂, ŷ)

= Epd(x,y)∇θfθ(x, y) − Epθ(x̂)pθ(ŷ|x̂)∇θfθ(x̂, ŷ),

where (x, y) ∼ pd(x, y) denotes the positive data pair, and
(x̂, ŷ) ∼ pθ(x̂, ŷ) denotes the negative sample pair. As dis-
cussed above, the adversarial examples x̂ generated by the
maximization process can be regarded as negative samples,

2Note that we omit the projection operation and the gradient
re-normalization steps for simplicity.
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and ŷ ∼ pθ(ŷ|x̂) denotes the predicted label of x̂. To see
how the maximum likelihood training of P-CEM is related
to the minimization process of AT, we add an interpolated
adversarial pair (x̂, y) into Eqn. (3) and decompose it as the
consistency gradient and the contrastive gradient:

∇θ Epd(x,y) log pθ(x, y)

= Epd(x,y)⊗ pθ(x̂,ŷ) [∇θfθ(x, y)−∇θfθ(x̂, ŷ)]

= Epd(x,y)⊗ pθ(x̂,ŷ)

[
∇θfθ(x, y)−∇θfθ(x̂, y)︸ ︷︷ ︸

consistency gradient

+∇θfθ(x̂, y)−∇θfθ(x̂, ŷ)︸ ︷︷ ︸
contrastive gradient

]
.

Next, we show that the two parts correspond to two effective
mechanisms developed in the adversarial training literature.

AT loss. As the two sample pairs in the contrastive gradient
share the same input x̂, we can see that the contrastive
gradient (second term) can be written equivalently as

Epd(x,y)⊗ pθ(x̂,ŷ) [∇θfθ(x̂, y)−∇θfθ(x̂, ŷ)]

= Epd(x,y)⊗ pθ(x̂)

[
∇θfθ(x̂, y)− Epθ(ŷ|x̂)∇θfθ(x̂, ŷ)

]
= Epd(x,y)⊗ pθ(x̂)[∇θ log pθ(y|x̂)],

which is exactly the negative gradient of the AT loss
`CE(x̂, y;θ) in Eqn. (6) (see details in Appendix).

Regularization. As for the consistency gradient (first term),
original AT (Madry et al., 2018) simply ignores it. Its vari-
ant TRADES (Zhang et al., 2019) instead proposes the KL
regularization KL(p(·|x̂)‖p(·|x)) that regularizes the con-
sistency of the predicted probabilities on all classes, whose
optimum implies that the consistency gradient vanishes, i.e.,
p(·|x̂) = p(·|x)→ fθ(x, y) = fθ(x̂, y).

The above analysis indicates that the minimization objective
of AT is closely related to the maximum likelihood training
of P-CEM, and TRADES further injects adversarial robust-
ness prior by regularizing the consistency gradient. Together
with the analysis on the maximization process, we show that
AT is a competitive alternative for training P-CEM (a gen-
erative model) with more stable training behaviors. That
explains why robust models with AT are also generative.

3.1. Discussion on Standard Training

In the above discussion, we have explained why adversarial
training is generative from the perspective of P-CEM. In fact,
it can also help characterize why classifiers with Standard
Training (ST) are not generative (i.e., poor sample quality).
A key insight is that if we replace the model distribution
pθ(x̂) with the data distribution pd(x) in Eqn. (3), we have

∇θEpd(x,y) log pθ(x, y)

= Epd(x,y)∇θfθ(x, y)−Epθ(x̂)pθ(ŷ|x̂)∇θfθ(x̂, ŷ)

≈ Epd(x,y)∇θfθ(x, y)− Epd(x)pθ(ŷ|x)∇θfθ(x, ŷ)

=∇θEpd(x,y) log pθ(y|x),

which is the negative gradient of the CE loss. Thus, ST is
equivalent to training P-CEM by simply replacing model-
based negative samples x̂ ∼ pθ(x) with data samples
x ∼ pd(x). This approximation makes ST computation-
ally efficient with good accuracy on natural data, but sig-
nificantly limits its robustness on adversarial examples (as
model-based negative samples). Similarly, because ST ig-
nores exploring negative samples while training, standard
classifiers also fail to generate realistic samples.

3.2. Extension to Unsupervised AT

In the above discussion, we establish the connection be-
tween AT and CEM in the supervised scenarios. Moreover,
this perspective also enables us to generalize adversarial
training to unsupervised scenarios via our unified frame-
work, CEM. Specifically, we can extend the discussion of
P-CEM (supervised) to NP-CEM (unsupervised) and derive
the corresponding inner and outer optimization objectives
in a principled way. Due to the limit of space, more details
are provided in the Appendix.

4. Principled Adversarial Sampling
The interpretation of AT through our unified framework also
inspires us to design principled sampling algorithms from
robust models. Below, we present our adversarial sampling
algorithms for both supervised and unsupervised scenarios.

4.1. Supervised Scenario

Targeted Attack (TA). Previously, to draw samples from
a robust classifier, Santurkar et al. (2019) utilize a targeted
attack that optimizes the input initialized by a random noise
x̂0 towards a specified class ŷ ∼ pd(ŷ):

x̂n+1 = x̂n + α∇xn log pθ(ŷ|x̂n) (7)

=x̂n + α∇xf(x̂n, ŷ)− α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, k))

]
.

Compared to PGD attack in Eqn. (??), while pushing x̂
towards ŷ, TA has a negative logsumexp gradient that de-
creases the marginal probability pθ(x̂). This could explain
why TA is less powerful for adversarial attack and is rarely
used for adversarial training.

Conditional Sampling (CS). To overcome the drawback
of targeted attack, a natural idea would be dropping the
negative logsumexp gradient. In fact, we can show that this
is equivalent to sampling from the conditional distribution:

pθ(x|ŷ) =
exp(fθ(x, ŷ))

Zx|ŷ(θ)
, Zx|ŷ(θ) =

∫
x

exp(fθ(x, ŷ))dx,

and its Langevin dynamics takes the form:

x̂n+1 = xn + α∇x̂n log pθ(x̂n|ŷ) +
√

2α · ε
= x̂n + α∇x̂nfθ(x̂n, ŷ) +

√
2α · ε.
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Table 1. Inception Scores (IS) and Fréchet Inception Distance
(FID) of different generative models. Results marked with ? are
taken from Shmelkov et al. (2018).

Method IS (↑) FID (↓)
Auto-regressive

PixelCNN++? (Salimans et al., 2017) 5.36 119.5

GAN-based

DCGAN? (Radford et al., 2016) 6.69 35.6
WGAN-GP (Gulrajani et al., 2017) 7.86 36.4
PresGAN (Dieng et al., 2019) - 52.2
StyleGAN2-ADA (Karras et al., 2020) 10.02 -

Score-based

NCSN (Song & Ermon, 2019) 8.87 25.32
DDPM (Ho et al., 2020) 9.46 3.17
NCSN++ (Song et al., 2020) 9.89 2.20

EBM-based

P-CEM (Grathwohl et al., 2019) 8.76 38.4
DRL (Gao et al., 2021) 8.58 9.60

AT-based

TA (Santurkar et al., 2019) (w/ ResNet50) 7.5 -
Supervised CEM (w/ ResNet50) 9.77 56.26
Unsupervised CEM (w/ ResNet18) (ours) 8.68 36.4
Unsupervised CEM (w/ ResNet50) (ours) 9.61 40.25

Samples drawn this way essentially follow an approximated
model distribution, pθ(x̂, ŷ) ≈ pd(ŷ)pθ(x̂|ŷ). Thus, CS
can be seen as a debiased targeted attack algorithm.

4.2. Unsupervised Scenario

Without labels, we can also draw samples from pθ(x) from
our unsupervised robust models, i.e., NP-CEM, by perform-
ing Langevin dynamics with K negative samples {z−k }:

x̂n+1 = x̂n + α∇x̂n log pθ(x̂n) +
√

2α · ε

≈ x̂n + α∇x̂n

[
log

1

K

K∑
k=1

pθ(x̂n, z
−
k )

]
+
√

2α · ε

= x̂n + α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, z
−
k ))

]
+
√

2α · ε.

In comparison, as we do not have access to real data points
as our anchor points for adversarial attack, PGD attack may
not be effective at sampling for the unsupervised scenario.

5. Experiments
In this section, we validate our proposed method by evalu-
ating the adversarial sampling algorithms derived from our
framework. Specifically, we evaluate the sample equality
with both supervised and unsupervised robust models on
CIFAR-10. For supervised robust models, we adopt the
same pretrained ResNet50 checkpoint on CIFAR-10 as San-

Table 2. Inception Scores (IS) and Fréchet Inception Distance
(FID) of different sampling methods for adversarially robust mod-
els. Cond: conditional. Uncond: unconditional.

Training Sampling Method IS (↑) FID (↓)

Supervised Cond

TA 9.26 56.72
Langevin 9.65 63.34
CS 9.77 56.26

Unsupervised
(w/ ResNet18)

Uncond PGD 5.35 74.27
Langevin 8.24 41.80

Cond PGD 5.85 68.54
Langevin 8.68 36.44

Unsupervised
(w/ ResNet50)

Uncond PGD 5.24 141.54
Langevin 9.57 44.86

Cond PGD 5.37 137.68
Langevin 9.61 40.25

turkar et al. (2019). As for the unsupervised case, we are the
first to consider sampling from unsupervised robust models.
We train ResNet18 and ResNet50 (He et al., 2016) encoders
following the setup of an existing unsupervised adversarial
training method ACL (Jiang et al., 2020). The training at-
tack is kept the same as that of the supervised case for a fair
comparison. As for the sampling algorithms, we tune the
step size α, noise scale ε, and number of steps K for better
sample quality. More details are provided in Appendix.

Comparison with other generative models. In Table 1,
we compare the sample quality of adversarial sampling
methods with different kinds of generative models, where
our adversarial sampling methods outperform many deep
generative models and obtain state-of-the-art Inception
scores on par with StyleGAN2 (Karras et al., 2020).

Comparison among adversarial sampling methods. In
Table 2, we further compare the sample quality of differ-
ent adversarial sampling methods. For supervised models,
we can see that indeed TA obtains the lowest IS, while CS
can significantly refine the sample quality. For unsuper-
vised models, we can see that Langevin dynamics outper-
forms PGD consistently by a large margin. In particular,
conditional sampling initialized with class-wise noise can
improve a little on the sample quality compared to uncondi-
tional sampling.

6. Conclusion
In this paper, we proposed a unified probabilistic framework,
named Contrastive Energy-based Model (CEM), which not
only explains the generative ability of adversarial train-
ing, but also provides a unified perspective of adversarial
training and sampling in both supervised and unsupervised
paradigms. Extensive experiments show that sampling meth-
ods derived from our framework indeed demonstrate better
robustness and sample quality than state-of-the-art methods.
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A. Principled Unsupervised Adversarial
Training with CEM

In this section, we show that with our unified framework,
we can naturally extend the interpretation developed for
supervised adversarial training to the unsupervised scenario.

A.1. Understanding Unsupervised Standard Training

Recently, the following InfoNCE loss is widely adopted for
unsupervised contrastive learning of data representations
(Oord et al., 2018; Chen et al., 2020; He et al., 2020),

`NCE(x, x̄, X̂ ;θ) = − log
exp(fθ(x, x̄))∑K
i=j exp(fθ(x, x̂j))

, (8)

where fθ(x, x̂) = gθ(x)>gθ(x̂) calculates the similarity
between the representations of the two data samples, x, x̄
are generated by two random augmentations (drawn from T )
of the same data example, and X̂ = {x̂j}Kj=1 consists of K
independently drawn negative samples. In practice, one of
the K negative samples is chosen to be the positive sample
x̄. Therefore, InfoNCE can be seen as an instance-wise
K-class cross entropy loss for non-parametric classification.

Perhaps surprisingly, we show that the InfoNCE loss is
equivalent to the importance sampling estimate of our NP-
CEM by approximating the negative samples from pθ(x)
with data samples from pd(x), as what we have done in
standard supervised training (Section C.3):

Epd(x,z)∇θfθ(x, z)− Epθ(x̂,ẑ)∇θfθ (x̂, ẑ)

=Epd(x,z)∇θfθ(x, z)− Epθ(x̂)pθ(ẑ)
pθ(ẑ|x̂)

pθ(ẑ)
∇θfθ(x̂, ẑ)

≈Epd(x,z)∇θfθ(x, z)− Epd(x̂)pd(ẑ)
pθ(ẑ|x̂)

pθ(ẑ)
∇θfθ(x̂, ẑ)

≈ 1

N

N∑
i=1

∇θ log
exp(fθ(xi, zi))∑K
k=1 exp(fθ(xi, z

−
ik))

, (9)

which is exactly the negative gradient of the InfoNCE loss.
In the above analysis, for an empirical estimate, we draw
N positive pairs (xi, zi) ∼ pd(x, z), and for each anchor
xi, we further draw K negative samples {z−ik} from pd(ẑ)
through reparameterization (Eqn. (5)).

The negative phase of NP-CEM is supposed to sample from
pθ(ẑ|x̂), where samples semantically close to the anchor
sample x̂, a.k.a. hard negative samples, should have high
probabilities. However, InfoNCE adopts a non-informative
uniform proposal pd(ẑ) for importance sampling, which
is very sample inefficient because most samples are use-
less (Kalantidis et al., 2020). This observation motivates
us to design more efficient sampling scheme for contrastive
learning by mining hard negatives. For example, Robin-
son et al. (2021) directly replace the plain proposal with
p̃θ(ẑ|x̂) = exp(βfθ(x̂,ẑ))

Zβ(θ)
while keeping the reweighing term.

From the perspective of NP-CEM, it will introduce bias into
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the importance sampling, which should be treated carefully.
In all, NP-CEM provides a principled framework to charac-
terize and develop contrastive learning algorithms.

A.2. Proposed Unsupervised Adversarial Training

AT is initially designed for supervised learning, where adver-
sarial examples can be clearly defined by misclassification.
However, it remain unclear what is the right way to do Un-
supervised Adversarial Training (UAT) without access to
any labels. Previous works (Jiang et al., 2020; Ho & Nvas-
concelos, 2020; Kim et al., 2020) have carried out UAT
with the adversarial InfoNCE loss, which works well but
lacks theoretical justification. Our unified CEM framework
offers a principled way to generalize adversarial training
from supervised to unsupervised scenarios.

Maximization Process. Sampling from pθ(x) can be more
difficult than that in supervised scenarios because it does
not admit a closed form for variable z. Thus, we perform
Langevin dynamics with K negative samples {z−k },

x̂n+1 = x̂n + α∇x̂n log pθ(x̂n) +
√

2α · ε (10)

≈ x̂n + α∇x̂n

[
log

1

K

K∑
k=1

pθ(x̂n, z
−
k )

]
+
√

2α · ε

= x̂n + α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, z
−
k ))

]
+
√

2α · ε.

While the PGD attack of the InfoNCE loss (Eqn. 18),

x̂n+1 = x̂n + α∇x̂n log
exp(fθ(x̂n, z))∑K

k=1 exp(fθ(x̂n, z
−
k ))

(11)

=x̂n + α∇x̂n

[
log

K∑
k=1

exp(fθ(x̂n, z
−
k ))

]
− α∇θfθ(x̂n, z),

resembles the Langevin dynamics as they both share the
positive logsumexp gradient that pushes up pθ(x̂), and dif-
fers by a repulse negative gradient −fθ(x̂, z) away from
the anchor z, which is a direct analogy of the PGD attack
in supervised learning (Section 3). Therefore, we believe
that the PGD attack of InfoNCE is a proper way to craft
adversarial examples by sampling from pθ(x).

Minimization Process. Following the same routine in Sec-
tion C.2, with the adversarial example x̂ ∼ pθ(x̂), we can
insert an interpolated adversarial pair (x̂, z) and decompose
the gradient of NP-CEM into the consistency gradient and
the contrastive gradient,

∇θEpd(x,z) log pθ(x, z)

=Epd(x,z)⊗ pθ(x̂,ẑ) [∇θfθ(x, z)−∇θfθ(x̂, z)]

=Epd(x,z)⊗ pθ(x̂,ẑ)

[
∇θfθ(x, z)−∇θfθ(x̂, z)︸ ︷︷ ︸

consistency gradient

+∇θfθ(x̂, z)−∇θfθ(x̂, ẑ)︸ ︷︷ ︸
contrastive gradient

]
.

(12)

Seed

TA

Langevin

CS

PGD

Langevin

PGD

Langevin

Figure 1. Randomly drawn samples with different sampling meth-
ods. Four groups of samples from top to bottom: initial seed,
supervised models (ResNet50), unsupervised models (ResNet18),
unsupervised models (ResNet50).

Following the analysis for supervised AT, it is also easy to
see that the contrastive gradient is equivalent to the gradient
of the Adversarial InfoNCE loss utilized in previous work
(Jiang et al., 2020; Ho & Nvasconcelos, 2020; Kim et al.,
2020) with adversarial example x̂,

Epd(x,z)⊗ pθ(x̂,ẑ) [∇θfθ(x̂, z)−∇θfθ(x̂, ẑ)]

=Epd(x,z)⊗ pθ(x̂)

[
∇θfθ(x̂, z)− Epθ(ẑ|x̂)∇θfθ(x̂, ẑ)

]
≈Epd(x,z)⊗ pθ(x̂)

[
∇θfθ(x̂, z)− Epd(ẑ)

pθ(ẑ|x̂)

pθ(ẑ)
∇θfθ(x̂, ẑ)

]
≈ 1

N

N∑
i=1

∇θ log
exp(fθ(x̂i, zi))∑K
k=1 exp(fθ(x̂i, z

−
ik))

. (13)

B. More Details on Adversarial Sampling
In this part, we provide more details of our adversarial
sampling experiments.

Models. For supervised robust models, we adopt the same
pretrained ResNet50 checkpoint on CIFAR-10 as Santurkar
et al. (2019) 3 for a fair comparison. The model is ad-
versarially trained with `2-norm PGD attack with random
start, maximal perturbation norm 0.5, step size 0.1 and 7
steps. As for the unsupervised case, we are the first to con-
sider sampling from unsupervised robust models. We train
ResNet18 and ResNet50 (He et al., 2016) encoders follow-
ing the setup of an existing unsupervised adversarial training
method ACL (Jiang et al., 2020). The training attack is kept
the same as that of the supervised case for a fair comparison.
More details are provided in Appendix.

3We download the checkpoint from the repository https://
github.com/MadryLab/robustness_applications.

https://github.com/MadryLab/robustness_applications
https://github.com/MadryLab/robustness_applications
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Sampling protocol. In practice, our adversarial sampling
methods take the following general form as a mixture of the
PGD and Langevin dynamics,

xn+1 = Π‖xn−x0‖2≤β [xn + αgk + ηεk] ,

x0 = δ, εk ∼ N (0,1), k = 0, 1, . . . ,K,

where gk is the update gradient, εk is the diffusion noise,
ΠS is the projector operator, and δ is the (conditional) initial
seeds drawn from the multivariate normal distribution whose
mean and covariance are calculated from the CIFAR-10 test
set following Santurkar et al. (2019) (details in Appendix).
Note that there are four hyper-parameters in our sampling
protocol: step size α, `2-ball size β, noise scale η, and
iteration steps K, for which we list our choice in Table ??
(the analysis on these parameters can be found in Appendix).
We evaluate the sample quality quantitatively with Inception
Score (IS) (Salimans et al., 2016) and Fréchet Inception
Distance (FID) (Heusel et al., 2017).

Visualization. We also demonstrate our randomly drawn
(not cherry-picking) samples in Figure 1. It can be seen
that both our supervised and unsupervised methods achieve
significantly better sample quality than previous baselines.

C. Omitted Technical Details
For a concise presentation, we have omitted several tech-
nical details in the main text. Here we present a complete
description of the derivation process.

C.1. Log Likelihood Gradient of EBM

In Section 3, we have introduced Energy-based Models
(EBM) and the gradient of their log likelihood. We now
show how it can be derived out.

For a EBM in the following form,

pθ(x) =
exp (−Eθ(x))

Z(θ)
, (14)

the gradient of the log likelihood can be derived as follows:

∇θEpd(x) log pθ(x) (15)

=− Epd(x)∇θEθ(x)−∇θ logZ(θ)

=Epd(x)∇θEθ(x) +
∇θ

∫
x
exp(−Eθ(x))

Z(θ)

=− Epd(x)∇θEθ(x) +

∫
x̂

exp(−Eθ(x̂))

Z(θ)
∇θEθ(x̂)

=− Epd(x)∇θEθ(x)︸ ︷︷ ︸
positive phase

+ Epθ(x̂)∇θEθ(x̂)︸ ︷︷ ︸
negative phase

.

C.2. Equivalence between AT Loss and Contrastive
Gradient in Supervised Learning

In Section 3, we have claimed that the contrastive gradient
equals to the negative gradient of the AT loss) following the

same deduction in Eqn. (17),

Epd(x,y)⊗ pθ(x̂,ŷ) [∇θfθ(x̂, y)−∇θfθ(x̂, ŷ)]

=Epd(x,y)⊗ pθ(x̂)

[
∇θfθ(x̂, y)− Epθ(ŷ|x̂)∇θfθ(x̂, ŷ)

]
=Epd(x,y)∇θ log

exp(fθ(x̂, y))∑K
k=1 exp(fθ(x̂, k)

=Epd(x,y)⊗ pθ(x̂)∇θ log pθ(y|x̂), (16)

which is exactly the negative gradient of the canonical AT
loss (Madry et al., 2018).

C.3. Connection between Standard Training and JEM

In Section 3.1, we have claimed that if we replace the model
distribution pθ(x̂) with the data distribution pd(x) in Eqn.
(3), the log likelihood gradient of JEM is equivalent to the
negative gradient of the CE loss. Here we give a detailed
proof as follows:

∇θEpd(x,y) log pθ(x, y)

=Epd(x,y)∇θfθ(x, y)−Epθ(x̂)pθ(ŷ|x̂)∇θfθ(x̂, ŷ)

≈Epd(x,y)∇θfθ(x, y)− Epd(x)pθ(ŷ|x)∇θfθ(x, ŷ)

=Epd(x,y)
[
∇θfθ(x, y)− Epθ(ŷ|x)∇θfθ(x, ŷ)

]
=Epd(x,y)

[
∇θfθ(x, y)−

K∑
k=1

pθ(k|x)∇θfθ(x, k)

]

=Epd(x,y)

[
∇θfθ(x, y)−

K∑
k=1

exp(fθ(x, k))∇θfθ(x, k)∑K
j=1 exp(fθ(x, j))

]

=Epd(x,y)

[
∇θfθ(x, y)−

K∑
k=1

∇θ exp(fθ(x, k))∑K
j=1 exp(fθ(x, j))

]

=Epd(x,y)

[
∇θfθ(x, y)−

∇θ

∑K
k=1 exp(fθ(x, k))∑K

j=1 exp(fθ(x, j))

]

=Epd(x,y)

[
∇θfθ(x, y)−∇θ log

K∑
k=1

exp(fθ(x, k))

]

=Epd(x,y)∇θ log
exp(fθ(x, y))∑K
k=1 exp(fθ(x, k)

=∇θEpd(x,y) log pθ(y|x). (17)

C.4. Equivalence between InfoNCE Loss and
Non-parametric CEM

In Section A.1, we have claimed that the the log likelihood
gradient of NP-CEM equals to exactly the negative gradi-
ent of the InfoNCE loss when we approximate pθ(x) with
pd(x). The derivation is presented as follows:
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Epd(x,z)∇θfθ(x, z)− Epθ(x̂,ẑ)∇θfθ (x̂, ẑ)

=Epd(x,z)∇θfθ(x, z)− Epθ(x)pθ(z|x)∇θfθ (x̂, ẑ)

=Epd(x,z)∇θfθ(x, z)− Epθ(x̂)pθ(ẑ|x̂)∇θfθ (x̂, ẑ)

=Epd(x,z)∇θfθ(x, z)− Epθ(x̂)pθ(ẑ)
pθ(ẑ|x̂)
pθ(ẑ)

∇θfθ(x̂, ẑ)

≈Epd(x,z)∇θfθ(x, z)− Epd(x̂)pd(ẑ)
pθ(ẑ|x̂)
pθ(ẑ)

∇θfθ(x̂, ẑ)

=Epd(x,z)

[
∇θfθ(x, z)− Epd(ẑ)

pθ(ẑ|x̂)
pθ(ẑ)

∇θfθ(x, z)

]
≈ 1

N

N∑
i=1

[
∇θfθ(xi, zi)−

K∑
k=1

exp(fθ(x, z
−
ik))∇θfθ

(
x, z−ik

)∑
k exp(fθ(x, z

−
ik))

]

=
1

N

N∑
i=1

[
∇θfθ(xi, zi)−∇θ log

K∑
k=1

exp(fθ(x, z
−
ik))

]

≈ 1

N

N∑
i=1

∇θ log
exp(fθ(xi, zi))∑K

k=1 exp(fθ(xi, z
−
ik))

. (18)

C.5. Equivalence between Adversarial InfoNCE and
NP-CEM

In Section A.2, we have developed the unsupervised analogy
of AT loss and regularization. In particular, we have claimed
that contrastive gradient is equivalent to the gradient of the
Adversarial InfoNCE loss (i.e., the InfoNCE loss of the
adversarial example x̂) utilized in previous work (Jiang
et al., 2020; Ho & Nvasconcelos, 2020; Kim et al., 2020). It
can be derived following Eqn. (18):

Epd(x,z)
⊗

pθ(x̂,ẑ) [∇θfθ(x̂, z)−∇θfθ(x̂, ẑ)]

=Epd(x,z)
⊗

pθ(x̂)

[
∇θfθ(x̂, z)− Epθ(ẑ|x̂)∇θfθ(x̂, ẑ)

]
≈Epd(x,z)

⊗
pθ(x̂)

[
∇θfθ(x̂, z)− Epd(ẑ)

pθ(ẑ|x̂)
pθ(ẑ)

∇θfθ(x̂, ẑ)

]
≈ 1

N

N∑
i=1

∇θ log
exp(fθ(x̂i, zi))∑K

k=1 exp(fθ(x̂i, z
−
ik))

. (19)


