1

2

© N o 0o b~ w

20

A Training Configurations

Data statistics. We summarize the data statistics in our experiments in Table [T}

Table 1: Dataset statistics of the three learning tasks in our experiments.

Learning Task Dataset Nodes Edges Train/Dev/Test Nodes Split Ratio (%)
Cora 2,708 5,429 140/500/1,000 5.2/18.5/36.9
Semi-supervised Citeseer 3,327 4,732 120/500/1,000 3.6/15.0/30.1
Pubmed 19,717 44,338 60/500/1,000 0.3/2.5/5.1
Cora 2,708 5,429 1624/541/543 60.0/20.0/20.0
Fully-supervised Citeseer 3,327 4,732 1996/665/666 60.0/20.0/20.0
Pubmed 19,717 44,338 11830/3943/3944 60.0/20.0/20.0
Inductive (large-scale) Reddit 233K 11.6M 152K/24K/55K 65.2/10.3/23.6

Training hyper-parameters. For both fully and semi-supervised node classification tasks on the
citation networks, Cora, Citeseer and Pubmed, we train our DGC following the hyper-parameters
in SGC [4]. Specifically, we train DGC for 100 epochs using Adam [2] with learning rate 0.2. For
weight decay, as in SGC, we tune this hyperparameter on each dataset using hyperopt [1]] for 10,000
trails. For the large-scale inductive learning task on the Reddit network, we also follow the protocols
of SGC [4], where we use L-BFGS [3]] optimizer for 2 epochs with no weight decay.

B Omitted Proofs

B.1 Proof of Theorem 1

Theorem 1. The heat kernel H, = e~ admits the following eigen-decomposition,

e~ Mt 0 0

0 L 0
H,=U|[ . . R I O (1)

0 0 e At
As a result, with \; > 0, we have
. s 0, ifN>0 .
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Proof. With the eigen-decomposition of the Laplacian L = UAU, the heat kernel can be written
equivalently as

_ =Ltk >tk k =Ltk _
Hy=e M=) E(—L)k => il AU =U ) E(—A)’“ U? = ueAUT,
k=0 k=0 k=0

3)
which corresponds to the eigen-decomposition of the heat kernel with eigen-vectors in the orthogonal

matrix U and eigven-values in the diagonal matrix e ~*A. Now it is easy to see the limit behavior of
the heat kernel as t — oo from the spectral domain. O

B.2 Proof of Theorem 2

Theorem 2. For the general initial value problem

aX, _
R @
X, =X,
with any finite terminal time T, the numerical error of the forward Euler method
K
- T
X = (1-=L) X, 5
T ( K ) 0 ( )
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with K propagation steps can be upper bounded by

) < TILIIXoll ¢ rywy _
e < = (M 1)) ©)

Proof. Consider a general Euler forward scheme for our initial problem
XEH) = xX®) _p1X,, k=0,1,...., K -1, X=X, (7)

where X(*) denotes the approximated X at step k, h denotes the step size and the terminal time
T = Kh. We denote the global error at step k as

ep = XM —X®), 8)
and the truncation error of the Euler forward finite difference (Eqn. (7)) at step k as

X (k+1) _ x (k)

- +LX "), 9)

1)

We continue by noting that Eqn. (9) can be written equivalently as
X+ — X0 4 py (T(k) - LXUf)) . (10)
Taking the difference of Eqn. (I0) and (7), we have

et = (1 — pL)e® + hT®) (11)

whose norm can be upper bounded as
] <o o] o]
Let M = maxp<g<x 1 | T*)|| be the upper bound on global truncation error, we have
He(kH)H < (1+h|L|) He<k>H + hM. (13)

By induction, and noting that 1 4+ A[|L|| < e"“ll and ©® = X(©) — X () = 0, we have

M M
|| < o [+ BILI" = 1] < = (eFHIM 1) (14)
€ = < e .
H 1L L]
Now we note that % = —LX*) and applying Taylor’s theorem, there exists § € [nh, (k + 1)h]
such that the truncation error T**) in Eqn. () follows
1
T = —L*X,. 15
o 5 (15)
Thus the truncation error can be bounded by
||| = S ILIXsl < 5 JLIZ1Xo (16)
2h ~ 2h ’
because
[Xs]l = [|e ™" Xo|| < IXo]l, V6 > 0. (17)
Together with the fact ' = K h, we have
L|?[[Xo|| T|L| [ Xoll
(K)H < IEIFIXoll ( KhIL| _ 1) _ TIL]IXoll ( L) _ 1) 18
He = onn \° ok \° ’ (1%
which completes the proof. O



37

38

39

40
41

42

43

44

45
46

47

48

49
50
51

52

53
54

55

B.3 Proof of Theorem 3

For the ground-truth data generation process

Y =X W, +o0yey, g, ~N(0,I); (19)
together with the data corruption process,
dX - - -
Wt = LX}, where Xy = X, and Xp- = X. (20)

and the final state X denote the observed data. Then, we have the following bound its population
risks.

Theorem 3. Denote the population risk of the ground truth regression problem with weight W as
R(W)=E,x, v)|[Y - X.W|>. 1)

and that of the corrupted regression problem as

R ~ R 2
ROW)=E, 5 v, HY - [S<T/K>]KXWH : (22)

iyl

(23)

Supposing that E||X.||? = M < oo, we have the following upper bound on the latter risk:

R 2 . 2
R(W) <R(W) + [W|? [ai + (M +02) K (He—T Lo e ) +E|eft

‘eTL

Proof. Given the fact that X, = e~ 7 X, we can decompose the corrupted population risk as
follows

2

- K
— T/K
R(W)=E, 5.y, HY— s/ xw

* 7 1K 2
=E,x.v) HY ~ X W (e—T L_ {S(T/ K) ) XW

. . K % 2 2
<E,xx) [Y = X WP ++ [W]* Eyx v) ([e‘“ —s(1/] ) X+ (e e h) XH

* 7 * 2
<Eyxv) Y = XWI* + [WIP By ) el + (75 = e 1) 71X |

2 N L2
e - e )

2 *
<R(W) + |[W|? <JEHe;K)H +MH6T L
(24)
which completes the proof. O
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