A Training Configurations

Data statistics. We summarize the data statistics in our experiments in Table 1.

Table 1: Dataset statistics of the three learning tasks in our experiments.

<table>
<thead>
<tr>
<th>Learning Task</th>
<th>Dataset</th>
<th>Nodes</th>
<th>Edges</th>
<th>Train/Dev/Test Nodes</th>
<th>Split Ratio (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Semi-supervised</td>
<td>Cora</td>
<td>2,708</td>
<td>5,429</td>
<td>140/500/1,000</td>
<td>5.2/18.5/36.9</td>
</tr>
<tr>
<td></td>
<td>Citeseer</td>
<td>3,327</td>
<td>4,732</td>
<td>120/500/1,000</td>
<td>3.6/15.0/30.1</td>
</tr>
<tr>
<td></td>
<td>Pubmed</td>
<td>19,717</td>
<td>44,338</td>
<td>60/500/1,000</td>
<td>0.3/2.5/5.1</td>
</tr>
<tr>
<td>Fully-supervised</td>
<td>Cora</td>
<td>2,708</td>
<td>5,429</td>
<td>1624/541/543</td>
<td>60.0/20.0/20.0</td>
</tr>
<tr>
<td></td>
<td>Citeseer</td>
<td>3,327</td>
<td>4,732</td>
<td>1996/665/666</td>
<td>60.0/20.0/20.0</td>
</tr>
<tr>
<td></td>
<td>Pubmed</td>
<td>19,717</td>
<td>44,338</td>
<td>11830/3943/3944</td>
<td>60.0/20.0/20.0</td>
</tr>
<tr>
<td>Inductive</td>
<td>Reddit</td>
<td>233K</td>
<td>11.6M</td>
<td>152K/24K/55K</td>
<td>65.2/10.3/23.6</td>
</tr>
</tbody>
</table>

Training hyper-parameters. For both fully and semi-supervised node classification tasks on the citation networks, Cora, Citeseer and Pubmed, we train our DGC following the hyper-parameters in SGC [4]. Specifically, we train DGC for 100 epochs using Adam [2] with learning rate 0.2. For weight decay, as in SGC, we tune this hyperparameter on each dataset using hyperopt [1] for 10,000 trails. For the large-scale inductive learning task on the Reddit network, we also follow the protocols of SGC [4], where we use L-BFGS [3] optimizer for 2 epochs with no weight decay.

B Omitted Proofs

B.1 Proof of Theorem 1

Theorem 1. The heat kernel \(H_t = e^{-tL} \) admits the following eigen-decomposition,

\[
H_t = U \begin{pmatrix}
 e^{-\lambda_1 t} & 0 & \cdots & 0 \\
 0 & e^{-\lambda_2 t} & \cdots & 0 \\
 \vdots & \vdots & \ddots & \vdots \\
 0 & 0 & \cdots & e^{-\lambda_n t}
\end{pmatrix} U^T.
\]

As a result, with \(\lambda_i \geq 0 \), we have

\[
\lim_{t \to \infty} e^{-\lambda_i t} = \begin{cases}
0, & \text{if } \lambda_i > 0 \\
1, & \text{if } \lambda_i = 0 \end{cases}, \quad i = 1, \ldots, n.
\]

Proof. With the eigen-decomposition of the Laplacian \(L = U\Lambda U^T \), the heat kernel can be written equivalently as

\[
H_t = e^{-tL} = \sum_{k=0}^{\infty} \frac{t^k}{k!} (-L)^k = U \left[(\Lambda U^T)^k \right] U^T = U e^{-t\Lambda} U^T,
\]

which corresponds to the eigen-decomposition of the heat kernel with eigen-vectors in the orthogonal matrix \(U \) and eigen-values in the diagonal matrix \(e^{-t\Lambda} \). Now it is easy to see the limit behavior of the heat kernel as \(t \to \infty \) from the spectral domain.

B.2 Proof of Theorem 2

Theorem 2. For the general initial value problem

\[
\begin{align*}
\frac{dX_t}{dt} &= -LX_t, \\
X_0 &= X,
\end{align*}
\]

with any finite terminal time \(T \), the numerical error of the forward Euler method

\[
\hat{X}_T^K = \left(I - \frac{T}{K}L \right)^K X_0.
\]
with K propagation steps can be upper bounded by
\[
\|e_T^{(K)}\| \leq \frac{T\|L\|\|X_0\|}{2K} \left(e^{T\|L\|} - 1\right).
\] (6)

Proof. Consider a general Euler forward scheme for our initial problem
\[
\dot{X}^{(k+1)} = \dot{X}^{(k)} - hL\dot{X}^{(k)}, \quad k = 0, 1, \ldots, K-1, \quad X^{(0)} = X,
\] (7)
where $\dot{X}^{(k)}$ denotes the approximated X at step k, h denotes the step size and the terminal time $T = Kh$. We denote the global error at step k as
\[
e_k = X^{(k)} - \hat{X}^{(k)},
\] (8)
and the truncation error of the Euler forward finite difference (Eqn. [7]) at step k as
\[
T^{(k)} = \frac{X^{(k+1)} - X^{(k)}}{h} + LX^{(k)}.
\] (9)
We continue by noting that Eqn. (9) can be written equivalently as
\[
X^{(k+1)} = X^{(k)} + h \left(T^{(k)} - LX^{(k)}\right).
\] (10)
Taking the difference of Eqn. (10) and (7), we have
\[
e^{(k+1)} = (1 - hL)e^{(k)} + hT^{(k)},
\] (11)
whose norm can be upper bounded as
\[
\|e^{(k+1)}\| \leq (1 + h\|L\|)\|e^{(k)}\| + h\|T^{(k)}\|.
\] (12)
Let $M = \max_{0 \leq k \leq K-1} \|T^{(k)}\|$ be the upper bound on global truncation error, we have
\[
\|e^{(k+1)}\| \leq (1 + h\|L\|)\|e^{(k)}\| + hM.
\] (13)
By induction, and noting that $1 + h\|L\| \leq e^{h\|L\|}$ and $e^{(0)} = X^{(0)} - \dot{X}^{(0)} = 0$, we have
\[
\|e^{(K)}\| \leq M \left((1 + h\|L\|)^n - 1\right) \leq M \left(e^{kh\|L\|} - 1\right).
\] (14)
Now we note that $\frac{dX^{(k)}}{dt} = -LX^{(k)}$ and applying Taylor’s theorem, there exists $\delta \in [nh, (k+1)h]$ such that the truncation error $T^{(k)}$ in Eqn. (9) follows
\[
T^{(k)} = \frac{1}{2h}L^2X_\delta.
\] (15)
Thus the truncation error can be bounded by
\[
\|T^{(k)}\| \leq \frac{1}{2h}\|L\|^2\|X_\delta\| \leq \frac{1}{2h}\|L\|^2\|X_0\|,
\] (16)
because
\[
\|X_\delta\| = \|e^{-\delta L}X_0\| \leq \|X_0\|, \forall \delta \geq 0.
\] (17)
Together with the fact $T = Kh$, we have
\[
\|e^{(K)}\| \leq \frac{\|L\|^2\|X_0\|}{2h\|L\|} \left(e^{Kh\|L\|} - 1\right) = \frac{T\|L\|\|X_0\|}{2K} \left(e^{r\|L\|} - 1\right),
\] (18)
which completes the proof. \qed
B.3 Proof of Theorem 3

For the ground-truth data generation process
\[Y = X_c W_e + \sigma_y \varepsilon_y, \varepsilon_y \sim \mathcal{N}(0, I); \] (19)

together with the data corruption process,
\[\frac{d\tilde{X}_t}{dt} = L\tilde{X}_t, \text{ where } \tilde{X}_0 = X_c \text{ and } \tilde{X}_{T'} = X. \] (20)

and the final state \(X \) denote the observed data. Then, we have the following bound its population risks.

Theorem 3. Denote the population risk of the ground truth regression problem with weight \(W \) as \[R(W) = \mathbb{E}_{p(x, y)} \| Y - X_c W \|^2. \] (21)

and that of the corrupted regression problem as \[\tilde{R}(W) = \mathbb{E}_{p(\tilde{x}, \tilde{y})} \| \tilde{Y} - [S^{(T/K)}]^K \tilde{X} W \|^2. \] (22)

Supposing that \(\mathbb{E}\|X_c\|^2 = M < \infty \), we have the following upper bound on the latter risk:
\[\tilde{R}(W) \leq R(W) + \| W \|^2 \left[\sigma_y^2 + (M + \sigma_y^2) \| T^* L \|^2 \cdot \left(\| e^{T^* L} - e^{-T^* L} \|^2 \right) + E \| e_{T^*}^{(k)} \|^2 \right]. \] (23)

Proof. Given the fact that \(X_c = e^{-T^* L} X \), we can decompose the corrupted population risk as follows
\[\tilde{R}(W) = \mathbb{E}_{p(\tilde{x}, \tilde{y})} \| \tilde{Y} - [S^{(T/K)}]^K \tilde{X} W \|^2 \]
\[= \mathbb{E}_{p(x, y)} \| Y - X_c W + \left(e^{-T^* L} - [S^{(T/K)}]^K \right) X W \|^2 \]
\[\leq \mathbb{E}_{p(x, y)} \| Y - X_c W \|^2 + \| W \|^2 \mathbb{E}_{p(x, y)} \left(\left(e^{-T^* L} - S^{(T/K)} \right)^K \right) X + \left(e^{-T^* L} - e^{-T^* L} \right) X \|^2 \]
\[\leq \mathbb{E}_{p(x, y)} \| Y - X_c W \|^2 + \| W \|^2 \mathbb{E}_{p(x, y)} \left(\left(e^{-T^* L} - S^{(T/K)} \right)^K \right) X + \left(e^{-T^* L} - e^{-T^* L} \right) e^{T^* L} X_0 \|^2 \]
\[\leq R(W) + \| W \|^2 \left(E \| e_{T^*}^{(k)} \|^2 + \| e^{-T^* L} \|^2 \| e^{-T^* L} - e^{-T^* L} \|^2 \right), \] (24)

which completes the proof. \(\square \)

References

