
A Training Configurations1

Data statistics. We summarize the data statistics in our experiments in Table 1.2

Table 1: Dataset statistics of the three learning tasks in our experiments.

Learning Task Dataset Nodes Edges Train/Dev/Test Nodes Split Ratio (%)

Semi-supervised
Cora 2,708 5,429 140/500/1,000 5.2/18.5/36.9
Citeseer 3,327 4,732 120/500/1,000 3.6/15.0/30.1
Pubmed 19,717 44,338 60/500/1,000 0.3/2.5/5.1

Fully-supervised
Cora 2,708 5,429 1624/541/543 60.0/20.0/20.0
Citeseer 3,327 4,732 1996/665/666 60.0/20.0/20.0
Pubmed 19,717 44,338 11830/3943/3944 60.0/20.0/20.0

Inductive (large-scale) Reddit 233K 11.6M 152K/24K/55K 65.2/10.3/23.6

Training hyper-parameters. For both fully and semi-supervised node classification tasks on the3

citation networks, Cora, Citeseer and Pubmed, we train our DGC following the hyper-parameters4

in SGC [4]. Specifically, we train DGC for 100 epochs using Adam [2] with learning rate 0.2. For5

weight decay, as in SGC, we tune this hyperparameter on each dataset using hyperopt [1] for 10,0006

trails. For the large-scale inductive learning task on the Reddit network, we also follow the protocols7

of SGC [4], where we use L-BFGS [3] optimizer for 2 epochs with no weight decay.8
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B.1 Proof of Theorem 110

Theorem 1. The heat kernel Ht = e−tL admits the following eigen-decomposition,11

Ht = U


e−λ1t 0 · · · 0
0 e−λ2t · · · 0
...

...
. . .

...
0 0 · · · e−λnt

U>. (1)

As a result, with λi ≥ 0, we have12

lim
t→∞

e−λit =

{
0, if λi > 0
1, if λi = 0

, i = 1, . . . , n. (2)

Proof. With the eigen-decomposition of the Laplacian L = UΛU>, the heat kernel can be written13

equivalently as14

Ht = e−tL =

∞∑
k=0

tk

k!
(−L)k =

∞∑
k=0

tk

k!

[
U(−Λ)U>

]k
= U

[ ∞∑
k=0

tk

k!
(−Λ)k

]
UT = Ue−tΛUT ,

(3)

which corresponds to the eigen-decomposition of the heat kernel with eigen-vectors in the orthogonal15

matrix U and eigven-values in the diagonal matrix e−tΛ. Now it is easy to see the limit behavior of16

the heat kernel as t→∞ from the spectral domain.17

B.2 Proof of Theorem 218

Theorem 2. For the general initial value problem19 {
dXt

dt = −LXt,
X0 = X,

(4)

with any finite terminal time T , the numerical error of the forward Euler method20

X̂
(K)
T =

(
I− T

K
L

)K
X0. (5)
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with K propagation steps can be upper bounded by21

‖e(K)
T ‖ ≤ T‖L‖‖X0‖

2K

(
eT‖L‖ − 1

)
. (6)

Proof. Consider a general Euler forward scheme for our initial problem22

X̂(k+1) = X̂(k) − hLX̂t, k = 0, 1, . . . ,K − 1, X(0) = X, (7)

where X̂(k) denotes the approximated X at step k, h denotes the step size and the terminal time23

T = Kh. We denote the global error at step k as24

ek = X(k) − X̂(k), (8)

and the truncation error of the Euler forward finite difference (Eqn. (7)) at step k as25

T(k) =
X(k+1) −X(k)

h
+ LX(k). (9)

We continue by noting that Eqn. (9) can be written equivalently as26

X(k+1) = X(k) + h
(
T(k) − LX(k)

)
. (10)

Taking the difference of Eqn. (10) and (7), we have27

e(k+1) = (1− hL)e(k) + hT(k), (11)

whose norm can be upper bounded as28 ∥∥∥e(k+1)
∥∥∥ ≤ (1 + h‖L‖)

∥∥∥e(k)
∥∥∥+ h

∥∥∥T(k)
∥∥∥ . (12)

Let M = max0≤k≤K−1 ‖T(k)‖ be the upper bound on global truncation error, we have29 ∥∥∥e(k+1)
∥∥∥ ≤ (1 + h‖L‖)

∥∥∥e(k)
∥∥∥+ hM. (13)

By induction, and noting that 1 + h‖L‖ ≤ eh‖L‖ and e(0) = X(0) − X̂(0) = 0, we have30 ∥∥∥e(K)
∥∥∥ ≤ M

‖L‖
[(1 + h‖L‖)n − 1] ≤ M

‖L‖

(
eKh‖L‖ − 1

)
. (14)

Now we note that dX
(k)

dt = −LX(k) and applying Taylor’s theorem, there exists δ ∈ [nh, (k + 1)h]31

such that the truncation error T(k) in Eqn. (9) follows32

T(k) =
1

2h
L2Xδ. (15)

Thus the truncation error can be bounded by33 ∥∥∥T(k)
∥∥∥ =

1

2h
‖L‖2‖Xδ‖ ≤

1

2h
‖L‖2‖X0‖, (16)

because34

‖Xδ‖ =
∥∥e−δLX0

∥∥ ≤ ‖X0‖ , ∀δ ≥ 0. (17)

Together with the fact T = Kh, we have35 ∥∥∥e(K)
∥∥∥ ≤ ‖L‖2‖X0‖

2h‖L‖

(
eKh‖L‖ − 1

)
=
T‖L‖‖X0‖

2K

(
eT‖L‖ − 1

)
, (18)

which completes the proof.36
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B.3 Proof of Theorem 337

For the ground-truth data generation process38

Y = XcWc + σyεy, εy ∼ N (0, I); (19)

together with the data corruption process,39

dX̃t

dt
= LX̃t, where X̃0 = Xc and X̃T∗ = X. (20)

and the final state X denote the observed data. Then, we have the following bound its population40

risks.41

Theorem 3. Denote the population risk of the ground truth regression problem with weight W as42

R(W) = Ep(Xc,Y) ‖Y −XcW‖2 . (21)

and that of the corrupted regression problem as43

R̂(W) = Ep(X̂,Y)

∥∥∥Y − [S(T̂ /K)]KX̂W
∥∥∥2 . (22)

Supposing that E‖Xc‖2 =M <∞, we have the following upper bound on the latter risk:44

R̂(W) ≤R(W) + ‖W‖2
[
σ2
x + (M + σ2

x)
∥∥∥eT?L

∥∥∥2 · (∥∥∥e−T?L − e−T̂L
∥∥∥2)+ E

∥∥∥e(K)
T?

∥∥∥2].
(23)

Proof. Given the fact that Xc = e−T
∗LX, we can decompose the corrupted population risk as45

follows46

R̂(W) = Ep(X̂,Y)

∥∥∥∥Y − [S(T̂ /K)
]K

XW

∥∥∥∥2
=Ep(X,Y)

∥∥∥∥Y −XcW +

(
e−T

?L −
[
S(T̂ /K)

]K)
XW

∥∥∥∥2
≤Ep(X,Y) ‖Y −XcW‖2 ++ ‖W‖2 Ep(X,Y)

∥∥∥∥([e−T̂L − S(T̂ /K)
]K)

X +
(
e−T

?L − e−T̂L
)

X

∥∥∥∥2
≤Ep(X,Y) ‖Y −XcW‖2 + ‖W‖2 Ep(X,Y)

∥∥∥e(K)

T̂
+
(
e−T

?L − e−T̂L
)
eT

?LX0

∥∥∥2
≤R(W) + ‖W‖2

(
E
∥∥∥e(K)

T̂

∥∥∥2 +M
∥∥∥eT?L

∥∥∥2 ∥∥∥e−T?L − e−T̂L
∥∥∥2) ,

(24)
which completes the proof.47
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