
Efficient Equivariant Network

Lingshen He1, Yuxuan Chen1, Zhengyang Shen3, Yiming Dong1, Yisen Wang1,2, Zhouchen Lin1,2,4∗
1Key Laboratory of Machine Perception (MOE), School of Artificial Intelligence, Peking University

2Institute for Artificial Intelligence, Peking University
3School of Mathematical Sciences and LMAM, Peking University

4Pazhou Lab, Guangzhou 510330, China
lingshenhe@pku.edu.cn, yuxuan chen1997@outlook.com,

shenzhy@pku.edu.cn, yimingdong ml@outlook.com,
yisen.wang@pku.edu.cn, zlin@pku.edu.cn

Abstract

Convolutional neural networks (CNNs) have dominated the field of Computer Vi-
sion and achieved great success due to their built-in translation equivariance. Group
equivariant CNNs (G-CNNs) that incorporate more equivariance can significantly
improve the performance of conventional CNNs. However, G-CNNs are faced
with two major challenges: spatial-agnostic problem and expensive computational
cost. In this work, we propose a general framework of previous equivariant models,
which includes G-CNNs and equivariant self-attention layers as special cases. Un-
der this framework, we explicitly decompose the feature aggregation operation into
a kernel generator and an encoder, and decouple the spatial and extra geometric
dimensions in the computation. Therefore, our filters are essentially dynamic
rather than being spatial-agnostic. We further show that our Equivariant model is
parameter Efficient and computational Efficient by complexity analysis, and also
data Efficient by experiments, so we call our model E4-Net. Extensive experiments
verify that our model can significantly improve previous works with smaller model
size. Especially, under the setting of training on 1/5 data of CIFAR10, our model
improves G-CNNs by 5%+ accuracy, while using only 56% parameters and 68%
FLOPs.

1 Introduction

In the past few years, convolutional neural networks (CNNs) have been widely used and achieved
superior results on multiple vision tasks, such as image classification [31, 55, 51, 22], semantic
segmentation [3], and object detection [44]. A compelling explanation of the good performance of
CNNs is that their built-in parameter sharing scheme brings in translation equivariance: shifting an
image and then feeding it through a CNN layer is the same as feeding the original image and then
shifting the resulted feature maps. In other words, the translation symmetry is preserved by each layer.
Motivated by this, Cohen and Welling [9] proposed Group Equivariant CNNs (G-CNNs), showing
how convolutional networks can be generalized to exploit larger groups of symmetries. Following
G-CNNs, researchers have designed new neural networks that are equivariant to other transformations
like rotations [9, 61, 24, 49] and scales [65, 53]. However, G-CNNs still have two main drawbacks:
1) In the implementation, G-CNNs would introduce extra dimensions to encode new transformations,
such as rotations and scales, thus have a very high computational cost. 2) Although G-CNNs achieve
group equivariance by sharing kernels, like vanilla CNNs, they lack the ability to adapt kernels
to diverse feature patterns with respect to different spatial positions, namely, the spatial-agnostic
problem [68, 39, 70, 71, 54, 67, 36].

∗Corresponding author.

35th Conference on Neural Information Processing Systems (NeurIPS 2021).



Some previous works focus on solving these two problems. Cheng et al. [4] proposed to decompose
the convolutional filters over joint steerable bases to reduce model size. However, it is essentially
G-CNNs which still have the inherent spatial-agnostic problem. To incorporate dynamic filters,
one solution is introducing attention mechanism into each convolution layer in G-CNNs without
disturbing inherent equivariance [48, 45]. The cost is that they introduce extra parameters and increase
the complexity of space and time. Another solution is to replace group convolution layers with stand-
alone self-attention layers by designing a specific position embedding to ensure equivariance [47, 26].
However, the self-attention mechanism suffers from quadratic memory and time complexity, because
it has to compute the attention score at each pair of inputs.

Actually, Cohen et al. [7], Kondor et al. [29] and Bekkers [1] revealed that an equivariant linear
layer is essentially a convolution-like operation. Inspired by this, we further discover that a general
feature-extraction layer, either linear or non-linear, being equivariant is equivalent to that the feature
aggregation mechanism between each pair of inputs only depends on the relative positions of these
two inputs. Based on this observation, we propose a generalized framework of previous equivariant
models, which includes G-CNNs and equivariant attention networks as special cases. Under this
generalized framework, we design a new equivariant layer to conquer the aforementioned difficulties.
Firstly, to avoid quadratic computational complexity, the feature aggregation operator is explicitly
decomposed into a kernel generator and an encoder which takes one single feature as the input. Since
our kernels are calculated based on input features, they are essentially dynamic rather than being
spatial-agnostic. In addition, we decouple the feature aggregation mechanism across spatial and
extra geometric dimensions to reduce the inter-channel redundancy in convolution filters [4] and
further accelerate computation. Extensive experiments show that our method can process data very
efficiently and perform significantly better than previous works using lower computational cost. As
our method is parameter Efficient, computational Efficient, data Efficient and Equivariant, we name
our new layer as E4-layer.

We summarize our main contributions as follows:

• We propose a generalized framework of previous equivariant models, which includes G-
CNNs and attention-based equivariant models as special cases.

• Under the generalized framework, we explicitly decompose the feature aggregation operator
into a kernel generator and an encoder, and further decouple the spatial and extra geometric
dimensions to reduce computation.

• Extensive experiments verify that our method is also data efficient and performs competi-
tively with lower computational cost.

2 Related Work

Vanilla CNNs [34] are naturally translation equivariant. More symmetries are considered to be
exploited into the network for different tasks, such as rotations over plane [9, 66, 35, 12, 61, 59, 49,
37, 52, 4, 41, 2, 10, 58, 21, 24], rotations over 3D space [62, 16, 57, 64, 14, 60, 15, 50, 28, 6], scaling
[65, 40, 53, 46], symmetries on manifold [8, 11], and other general symmetry groups [17, 56, 18].
These works accomplish equivariance by constraining the linear mappings in layers, followed by
pointwise non-linearities to enhance their expressive power. In general, researchers [29, 7, 1] pointed
out that an equivariant linear mapping can always be written as a convolution-like integral, i.e.,
G-CNNs in practice. However, their theory is still limited to linear cases.

As works [68, 39, 70, 71, 54, 67, 36] point out the spatial-agnostic problem of CNNs and attention
mechanisms [25, 63, 43, 13, 20] achieve impressive results on various vision tasks, researchers
start to consider non-linear equivariant mapping. Romero et al. [48, 45] directly reweighted the
convolution kernels with attention weights generated by features and obtained non-linear equivariant
models. However, compared with G-CNNs, these methods introduce extra parameters and operations,
resulting in an even heavier computational burden. Also, some works [47, 26, 23] proposed group
equivariant self-attention [43, 13]. Fuchs et al. [19] incorporated self-attention into 3D equivariant
networks and proposed SE(3)-Transformers. However, since their filters are essentially calculated
based on a pair of inputs, the computational complexity is quadratic.

In this work, we further extend the linear equivariant theory to a more general situation, including
non-linear cases. Under the framework, we design a new equivariant layer to solve both the spatial-
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agnostic problem in convolution-based equivariant models and heavy computation cost problem in
most equivariant models.

3 A Unified Framework of Previous Group Equivariant Models

In this section, we first briefly review two representative group equivariant models: the linear model
G-CNNs [9], and the non-linear model equivariant self-attention [47, 26]. Then, we propose a general
framework of previous equivariant models based on the inner relationship among these specific
models.

3.1 Equivariance

Equivariance indicates that the outputs of a mapping transform in a predictable way with the transfor-
mation of the inputs. Formally, a group equivariant map Ψ satisfies that

∀u ∈ G, Ψ [Tu[f ]] = T ′u[Ψ[f ]], (1)

where G is a transformation group, f is an input feature map, and Tu and T ′u are group actions,
indicating how the transformation u acts on the input and output features, respectively. Besides, since
we hope that two transformations u, v ∈ G acting on the feature maps successively is equivalent
to the composition of transformations uv ∈ G acting on the feature maps directly, we require that
TuTv = Tuv , where uv is the group product of u and v. The same is the case with T ′u.

Now we examine the specific form of the transformation group G. In this work, we focus on the
analysis of 2D images defined on R2. Consequently, we are most interested in the groups of the form
G = R2 o A, resulting from the semi-product (o) between the translation group R2 and a group
A acts on R2, e.g., rotations, scalings and mirrorings. This family of groups is referred to as affine
groups and their group product rule is:

uv = (xu, au)(xv, av) = (xu + auxv, auav), (2)

where u = (xu, au) and v = (xv, av), in which xu, xv ∈ R2 and au, av ∈ A. For ease of
implementation, following [9], we take A as the cyclic group C4 or the dihedral group D4, then G
becomes p4 or p4m. As for the group action, we employ the most common regular group action in
this work, i.e.,

Tu[f ](v) = f(u−1v). (3)
Here, we only care about the group action over the feature maps defined on G, because we always
use a lifting operation to lift the input images defined on R2 to the feature maps on G, where the
equivariance can be preserved properly, as will be shown in Section 3.2.

3.2 G-CNNs

Let f (l) : X → RCl and W : G → RCl+1×Cl be the input feature and the convolutional filter in the
l-th layer, respectively, where Cl denotes the channel number of the l-th layer. X is taken as R2 for
the first layer, and taken as G for the following layers. Then for any g ∈ G, the group convolution
[29, 7, 1] of f (l) and W on G at g is given by

f (l+1)(g) = Ψ[f (l)](g) =

∫
X
W (g−1g̃)f (l)(g̃)dµ(g̃), (4)

where µ(·) is the Haar measure. When X is discrete, Eqn. (4) can be rewritten as

f (l+1)(g) =
∑
g̃∈X

W (g−1g̃)f (l)(g̃). (5)

G-CNNs essentially generalize the translation equivariance of conventional convolution to a more
general group G.

In fact, the first layer maps the 2D images to a function defined on G, while the following layers map
one feature map on G to another. As a result, the computational complexity of the first layer and the
following layers are of the order O(k2|A|) and O(k2|A|2), respectively, where k is the kernel size
in the spatial space. As a result, G-CNNs have a much larger computational cost when A is large,
especially for the intermediate layers. In this work, we employ the first layer of G-CNNs as a lifting
operation, and focus on reducing the computation of the latter layers.
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3.3 Equivariant Attention Networks

Group Equivariant Self-Attention (G-SA) [47, 26] is a representative method of equivariant attention
networks, whose form can be simplified as follows:

f (l+1)(g) =
∑
g̃∈G

Softmaxg̃[hTQ(f (l)(g))(hK(f (l)(g̃)) + Pg−1g̃)]hV (f (l)(g̃)), (6)

where hV : RCl → RCl+1 , and hQ, hK : RCl → Rd are the embedding functions of values, querys
and keys, respectively, which are neural networks in the most general case. d is the dimension of
the low dimensional embeddings, and Pg−1g̃ ∈ Rd encodes the relative positions of the query f (l)(g)

and the key f (l)(g̃).

3.4 Generalized Equivariant Framework

As more and more group equivariant structures emerge, researchers start to deduce the most general
equivariant structures. To this end, Cohen et al. [7], Kondor et al. [29] and Bekkers [1] proposed
a general theory of linear group equivariant structures, which indicates that G-CNNs are the most
general equivariant linear layers. Besides, a lot of non-linear equivariant structures appear recently,
such as equivariant self-attention layers [47, 26]. This motivates us to investigate a more general
framework.

In all, with only slight modification, most of layers in a neural network can be viewed as a kind of
aggregation of pair-wise feature interaction as follows:

f (l+1)(g) =
∑
g̃∈G

Hg,g̃(f (l)(g), f (l)(g̃)), (7)

where the feature aggregation operator Hg,g̃(·, ·) : RCl × RCl → RCl+1 is a mapping indexed
by a pair of location g and g̃, which describes how to aggregate the input feature pair f(g) and
f(g̃). In general, the above layer is not equivariant. However, we can find a general constraint for
Hg,g̃(f (l)(g), f (l)(g̃)) to make this layer equivariant over G.

Theorem 1 The layer formulated as Eqn.(7) is group equivariant if and only if there is a mapping
H̃ĝ : RCl × RCl → RCl+1 which is indexed by a single group element ĝ, such that, ∀f (l) and
∀g, g̃ ∈ G, the layer satisfies:∑

g̃

Hg,g̃(f (l)(g), f (l)(g̃)) =
∑
g̃

H̃g−1g̃(f (l)(g), f (l)(g̃)) (8)

Proof ⇒ Firstly, ∀u, g and g̃ ∈ G,

Tuf (l+1)(g) = f (l+1)(u−1g) =
∑
g̃∈G

Hu−1g,g̃(f (l)(u−1g), f (l)(g̃)).

On the other hand,∑
g̃∈G

Hg,g̃(Tuf (l)(g), Tuf (l)(g̃)) =
∑
g̃∈G

Hg,g̃(f (l)(u−1g), f (l)(u−1g̃)) =
∑
g̃∈G

Hg,ug̃(f (l)(u−1g), f (l)(g̃)).

As Tuf (l+1)(g) =
∑

g̃∈G Hg,g̃(Tuf (l)(g), Tuf (l)(g̃)),

⇒ ∀f (l), g, u,
∑
g̃∈G

Hg,ug̃(f (l)(u−1g), f (l)(g̃)) =
∑
g̃∈G

Hu−1g,g̃(f (l)(u−1g), f (l)(g̃)).

Let g → ug, we get:

∀f (l), g, u,
∑
g̃∈G

Hug,ug̃(f (l)(g), f (l)(g̃)) =
∑
g̃∈G

Hg,g̃(f (l)(g), f (l)(g̃)).
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then, we let u to be g−1,

∀f (l), g,
∑
g̃∈G

He,g−1g̃(f (l)(g), f (l)(g̃)) =
∑
g̃∈G

Hg,g̃(f (l)(g), f (l)(g̃)).

We denote H̃g−1g̃(·, ·) as He,g−1g̃(·, ·), we can get exactly the Eqn.(8)

⇐ This is obvious. Q.E.D �

From the theorem, we can get a group equivariant layer:

f (l+1)(g) =
∑
g̃∈G

H̃g−1g̃(f (l)(g), f (l)(g̃)), (9)

which is also the only equivariant form of Eqn. (7). Actually, the above theorem also reveals the
essence of equivariance in previous works, i.e., if the relative positions of (g1,g̃1) and (g2,g̃2) are
the same, i.e., g1

−1g̃1 = g−1
2 g̃2 = ĝ, the feature pairs located at the two tuples should be processed

equally. In other words, we should employ the same function H̃ĝ to act on these two input feature
pairs.

From this perspective, we can readily see that both the kernel sharing used in G-CNNs, Eqn. (4), and
the relative position encoding adopted in the G-SA, Eqn. (6), utilizes the above rule. According to
Theorem 1, designing a group equivariant layer becomes much more easily and flexibly than ever,
as we only need to design a new function H̃ĝ. In addition, the new formulation provides a more
general perspective on the group equivariant layer, i.e., sharing the parameters of function H̃ĝ , which
generalizes the kernel sharing schemes in G-CNNs. Based on the above understanding, we can see
that if we replace the feature vector in the right hand side of Eqn. (9) with the local patch at group
element g and g̃, respectively, it is still equivariant.
Proposition 1 The following layer is equivariant,

f (l+1)(g) =
∑
g̃∈G

H̃g−1g̃(FN1(g),FN2(g̃)) (10)

where for i = 1, 2, the FNi(g) denote the local patches of g, in which Ni(g) represent g’s neighbor-
hood {gg′|g′ ∈ Ni(e)} and Ni(e) is the predefined neighborhood of the identity element e ∈ G.

One remarkable advantages of introducing local patch is that it contains more semantic information
than feature vector. Notice, we acquire the local patches by concatenating features in the neighbor-
hoods of g and g̃ in a predefined order onN1(e) andN2(e) respectively, i.e., f(g′) is concatenated at
the same place in FN1(g) as f(g−1g′) in FN1(e). We denote the concatenation operator as

⋃
, and

will discuss the above in detail in Section 4.1, which shows that concatenating features can not only
make our framework more flexible, but also help to reduce the computational burden of our newly
proposed equivariant layer.

4 Efficient Equivariant Layer

A straight-forward and easy case of Eqn. (10) is to adopt H̃ĝ, ∀ĝ ∈ G, as a multi-layer perceptron
(MLP), where the subscript ĝ is used to identify different MLPs. However, in Eqn. (10), we have to
compute a mapping from two high dimensional vectors to another high dimensional one for each
input pair of g and g̃, which is very expensive. A similar issue exists in computing the attention score
in self-attention. To deal with this problem, we decompose H̃ into the following form to reduce the
computation, i.e.,

∀ĝ ∈ G, H̃ĝ(x, y) = Kĝ(x)� V (y) (11)

where � means element-wise product, and Kĝ : RCl|N1(e)| → RCl+1 is a kernel generator and
V : RCl|N2(e)| → RCl+1 is an encoder. We use | · | to denote the numbers of elements in a set.
Hence, we can compute Kĝ(x) and V (y) separately. In addition, to further save computation, we
split the kernel into several slices along the channels, such that Kĝ is shared across these slices,
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Figure 1: An example of our E4-layer on p4 group. We firstly concatenate features along rotation
dimension in a predefined order on the C4 and then pass them through the MLP and the linear layer
to generate kernel and encode features, respectively. After this, the element-wise product is carried
out to compute H̃g−1g̃ , and finally spatial-wise aggregation is performed to acquire the output. Note
that when computing output features at different rotation dimensions, the generated kernel should be
rotated by a specific degree to keep the correct relative position.

i.e., ∀ 1 ≤ i, j ≤ Cl+1, K
i
ĝ = Kj

ĝ if i ≡ j (mod s), where s is the number of slices, and i and j
are channel indexes. The Kĝ is essentially a dynamic filters which is adaptive to features around
g, avoiding the spatial-agnostic problem in G-CNNs. Unlike conventional dynamic filters, which
are matrices, the output of Kĝ is a vector, which can be viewed as a depth wise kernel [5]. This
can decouple channel dimension with spatial dimension during feature aggregation to reduce the
computational cost. Position information is implicitly encoded in the organized output form of
our kernel generator, rather than using explicit positional embedding in the group self-attention
layer [26, 47].

In practice, we can view the whole kernel family {Kĝ}ĝ∈G as the output of a single mapping, i.e., K̃:
RCl|N1(e)| → R|G|Cl+1 . Then, we resize the output of K̃ to be a |G| × Cl+1 matrix, with different
rows represent different Kĝ. Namely, if we adopt K̃ as an MLP, the computations and parameters
used for hidden layer are shared across Kĝ for different ĝ, which is another merit of the Eqn. (11).
However, there is still a large search space for H̃ĝ, as Eqn (11) is only a special structue of H̃ĝ, we
leave a more complete study of H̃ĝ in the future work.

4.1 Implementation on Affine Group

In this section, we design a very efficient equivariant layer based on Eqn. (11) for affine group
R2 oA. The computation of the operator is:

f (l+1)(g) =
∑

g̃∈N (g)

Kg−1g̃

 ⋃
g′∈N1(g)

f (l)(g′)

� V
 ⋃

g̃′∈N2(g̃)

f (l)(g̃′)

 . (12)

Following the standard practice in computer vision, aggregation is done only on the local neighbor-
hood of g, N (g). To save computation, we choose N (g) to be only spatial-wise neighborhood, i.e.,
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N (g) = {g(v, eA) | v ∈ Ω}, where Ω ∈ R2 and eA is the identity element of group A. However,
aggregating information along spatial neighborhood only discards the information interaction along
A, which could lead to a drop in performance [32]. We alleviate the issue by concatenating the feature
map along A, i.e., we choose N1(g) and N2(g) to be {g(0, a)|a ∈ A}. The order of concatenation
is predefined on A. As will be shown in the later experiments, this concatenation does not introduce
much computation but can significantly improve performance. Compared to group convolution,
such a design enables us to decouple the feature aggregation across the spatial dimension and the A
dimension to further reduce computational cost.
In practice, we adopt the K̃ as a two layer MLP: K̃(x) = W2Relu(W1x), where W1 ∈
RCl/r×Cl|A|,W2 ∈ R|Ω|s×Cl/r, and r is the reduction ratio which saves both parameters and
computation, s is the number of slices defined before. For 2D images, Ω is usually adopted as a
k × k square mesh grids and |Ω| = k2, where k is the kernel size. We simply adopt the encoder V as
a linear transform: V (y) = W3y, where W3 ∈ RCl+1×Cl|A|. For better illustration, we visualize a
concrete layer of Eqn. (12) by choosing G as p4 in Figure 1.

4.2 Computational Complexity Analysis

In practice, the feature map is defined on discrete mesh grids. We use h and w to denote the height
and the width of mesh grids. As the numbers of the input and output channels are usually the same,
we assume Cl = Cl+1 = c.

Parameter Analysis The number of learnable parameters of E4-layer (12) is c2|A|(1 + 1/r) +
csk2/r. As s � c, parameter counts are dominated by the first term when k is not too large,
and increasing kernel size will not significantly increase parameter counts, which is shown in later
experiments. The parameters count of group convolution layer is c2k2|A|. Notice that (1+1/r)� k2

and s/r � c|A|, parameters count of our E4-layer is significantly less than that of group convolution
layer.

Time Complexity Analysis The FLOPs of E4-layer and group convolution layer are (1 +
1/r)c2|A|2hw + (1 + s/r)k2c|A|hw and k2c2|A|2hw, respectively. Similarly, as (1 + 1/r)� k2

and (1 + s/r)� c|A|, the FLOPs of E4-layer is significantly lower than that of group convolutional
layer.

It can be observed that both the parameter count and FLOPs of our E4-layer are composed of two
terms, one depending on k2 and the other not relying on k, which is a result of disentangling across
spatial dimension with both channels and A during feature aggregation.

5 Experiments

In this section, we conduct extensive experiments to study and demonstrate the performance of
our model. The experimental results show that our model has a greater capacity than the group-
convolution-based one in terms of parameter efficiency, computational efficiency, data efficiency and
accuracy. On the MNIST-rot dataset, we detailedly study the effect of hyperparameters on the number
of parameters, computation FLOPs and performance of our model. All the experiments are done on
the GeForce RTX 3090 GPU.

5.1 Rotated MNIST

Table 1: Test error on rot-MNIST(with standard deviation under
5 random seed variations)

Model Test error (%) Params FLOPs

p4_SA [47] 2.54±0.052 44.67K 400M
p4_CNN [9] 1.79±0.043 77.54K 46.2M
α_p4_CNN[45] 1.69±0.021 73.13K 27.0M
E4-Net (Ours) 1.29±0.023 18.8K 17M
E4-Net(Large)(Ours) 1.17±0.019 41.1K 36.9M

The MNIST-rot dataset [33] is the
most widely used benchmark to
test the equivariant models. It
contains 62k 28×28 randomly ro-
tated gray-scale handwritten dig-
its. Images in the dataset are split
into 10k for training, 2k for vali-
dation and 50k for testing. Ran-
dom rotation of digits and only
20 percent of training data of the
standard MNIST dataset increases the difficulty of classification.
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For a fair comparison, we keep both training settings and architectures of our model as close as
possible to previous works [9, 47]. In addition, we adopt the p4 group to construct all our models in
this section. In our first experiment, we adopt our E4-Net given in the supplementary material to
make a comparison to previous works. This is a very lightweight model which contains only 18.8K
learnable parameters. It is composed of one group convolutional layer which lifts the image to the
p4 group, six E4-layers and one fully connected layer. Two 2× 2 max-pooling layers are inserted
after the first and the third E4-layer to downsample feature maps. The last E4-layer is followed by
a global max group pooling layer [9], which takes the maximum response over the entire group, to
ensure the predictions invariant to rotations.

Our model is trained using the Adam optimizer [27] for 200 epochs with a batch size of 128. The
learning rate is initialized as 0.02 and is reduced by 10 at the 60th, 120th and 160th epochs. The
weight decay is set as 0.0001 and no data augmentation is used during training. The results are listed in
Table 1. Our models significantly outperform G-CNNs [9] using only about 25% parameters and 40%
FLOPs. For G-SA [47], which is a group equivariant stand-alone self-attention model, even performs
inferiorly to G-CNNs with much more computational cost. The α-p4-CNN model [45] further
introduces the attention mechanism to group convolution along both spatial and channel dimensions
to enhance the expressiveness of G-CNNs, while our E4-Net still significantly outperforms it with
less computational cost. We also experiment with a larger model to further demonstrate the capacity
of our model, which is listed in the last line of Table 1.

Table 2: The effect of concatenation
Concate Test error (%) Params FLOPs

None 4.10±0.085 9.9K 8.9M
only K 1.96±0.045 14.4K 13M
only V 1.52±0.036 14.4K 13M
K&V 1.29±0.023 18.8K 17M

Ablation Study of Concatenation: In the E4-
layer (12), we introduce the concatenation oper-
ation to enable the disentanglement across the
rotation and the spatial information interaction.
To study the importance of concatenation, we
carry out experiments on the case that neither
Kĝ nor V in Eqn. (12) use concatenation, i.e.,
N1(g) = g, N2(g̃) = g̃. As shown in the first line of Table 2, this leads to a significant drop in
performance. This is because if aggregation in Eqn.(12) is done merely in the spatial neighborhoods
without concatenation, there is no information interaction along the rotation dimensions. We also
experiment the cases using concatenation only in Kĝ or V , and the performance of both is better than
the case without concatenation but is still inferior to the case with concatenation in both Kĝ and V .
This further illustrates the importance of concatenation along A.

Table 3: Hyperparameters Analysis
Hyperparam Test error (%) Params FLOPs

s=1 1.45±0.022 16.3K 14.9M
s=2 1.29±0.023 18.8K 17M
s=4 1.24±0.026 23.9K 21.2M

r=1 1.29±0.023 18.8K 17M
r=2 1.33±0.026 13.0K 12M
r=4 1.37±0.025 10.1K 9.5M

k=3 1.46±0.031 15.6K 14.3M
k=5 1.29±0.023 18.8K 17M
k=7 1.27±0.021 23.8K 21.1M

Hyperparameters Analysis: We investi-
gate the effect of various hyperparameters
used in the E4-layer. The reduction ratio r
and the slice number s in the Kĝ and kernel
size k control the computations and param-
eters of the layer. Based on the baseline
model, we vary the three hyperparameters
respectively. As shown in the Table 3, im-
provement is observed when decreasing the
reduction ratio and increasing the slice num-
ber, with the cost of computational burden
increasing. Especially, the improvement of
s = 2 over s = 4 and r = 1 over r = 2 is
marginal, which is attributes to redundancy
in the kernel [4]. In conclusion, appropriately increasing the reduction ratio r and decreasing the
slice number s can help to reduce computational cost while preserving performance. Keeping other
hyperparameters fixed, we study the effect of kernel size on our model. In Table 3, the performance
peaks when kernel size equals 7. In general, a larger kernel size leads to improved performance due
to a larger receptive field. In addition, as explained in Section 4.2, increasing kernel size does not
dramatically increase parameters and FLOPs as standard convolution.

5.2 Natural Image Classification

In this section, we evaluate the performance of our model on the two common natural image datasets,
CIFAR10 and CIFAR100 [30]. The CIFAR-10 and the CIFAR100 datasets consist of 32× 32 images
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Table 4: Test error on CIFAR10 and CIFAR100. (with standard deviation under 5 random seed
variations)

Model CIFAR10 (%) CIFAR100 (%) Params FLOPs

R18 9.7±0.43 34±0.76 11M 0.56G
p4-R18 7.53±0.21 27.96±0.56 11M 2.99G
p4-E4R18(Ours) 6.72±0.14 26.59±0.36 5.8M 1.85G
p4m-R18 5.83±0.17 24.95±0.42 10.8M 5.63G
p4m-E4R18(Ours) 4.96±0.16 22.18±0.46 6.0M 3.87G

belonging to 10 and 100 classes, respectively. Both of the datasets contain 50k training data and 10k
testing data. Before training, images are normalized according to the channel means and standard
deviations.

In this experiment, we adopt ResNet-18 [22] as the baseline model(short as R18), which is composed
of an initial convolution layer, followed by 4 stage Res-Blocks and one final classification layer.
Following the standard practice in [9], we replace all the conventional layers with p4 (p4m) convo-
lutions in R18 and increase the width of each layer by

√
4 (
√

8) to keep the learnable parameters
approximately the same. We denote the resulting models as p4-R18 (p4m-R18). We replace the
second group convolution layer in each Res-Block of p4-R18 (p4m-R18) with our E4-layer, resulting
in the p4-E4R18 (p4m-E4R18). For a fair comparison, all the above models are trained under the
same training settings. We use the stochastic gradient descent with an initial learning rate of 0.1,
a Nesterov momentum of 0.9 and a weight decay of 0.0005. The learning rate is reduced by 5 at
60th, 120th, and 160th epochs. Models are trained for 200 epochs using 128 batch size. No data
augmentation is used during training to illustrate data efficiency of our model.

The classification accuracy, parameters count and FLOPs of all models on CIFAR10 and CIFAR100
are reported in Table 4. We can see that models incorporating more symmetry achieve better
performance, i.e., R18 ≤ p4-R18 ≤ p4m-R18. Our p4 and p4m models significantly outperform
their counterparts on both CIFAR10 and CIFAR100. Furthermore, our model decreases the parameter
count and FLOPs by 45% and 32%, respectively. Notice that the model size reduction is purely
caused by the introduction of our E4-layers, as topological connections and width of each layer of
E4 model and its counterparts are the same.

Figure 2: Trend of test error(%) on vari-
ous training data sizes.

Data Efficiency: To further study the performance of our
model, we train all the models listed in Table 4 on CI-
FAR10 with different sizes of training data. To be specific,
we consider 5 settings, where 1k, 2k, 3k, 4k and 5k train-
ing data of each class are randomly sampled from the
CIFAR10 training set. Testing is still performed on the
original test set of CIFAR10. Other training settings are
identical to the above. We visualize the results in Figure 2.

It is observed that the performance gap between p4, p4m
and R2 models tend to increase as we reduce the training
data. This is mainly because that the prior that the label
is invariant to rotations is more important when training
data are fewer. The trend is also observed in the gap be-
tween our models and their counterparts. For instance, the
gap between p4m-E4R18 and p4m-R18 is 0.87% when
training data of each class is 5k, while it is enlarged to
5.22% when training data of each class is reduced to 1k.
Especially, we observe the line of p4-E4R18 intersects with the one of p4m-R18, which further
indicates that our model is much more data efficient than G-CNNs. As indicated above, symmetry
prior is more important when training data are fewer, and the data efficiency of our model implies
that p4-E4R18 and p4m-E4R18 can better exploit the symmetry of data.
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6 Limitation and Future Work

From the theory perspective, although we extend the general equivaraint framework from linear cases
to common non-linear cases, there’s two limitations on the generalization: 1) we only focus on layers
with such pair-wise interactions proposed in Eqn.(7), and higher-order interactions cases are not
included. 2) We only consider regular group action in this framework, which is a special case of
general group actions. We leave extending this equivariant framework to these cases as future work.

From the practice perspective, we only give a special implementation of Eqn.(10) in an intuitive
insight, and further exploration in the space of equivariant map is in demand. An alternative is to
exploit searching algorithms from neural architecture search [42, 38, 69] to find a more powerful
and efficient model. Besides this, our E4-layer is slower than G-CNN despite less FLOPs due to
convolutions are optimized by many speedup libraries. Our layer is implemented only in a naive way,
that is, using the unfold operation followed by a summation operation for the aggregation step. In the
future, we will try to implement a customized CUDA kernel for GPU acceleration to reduce training
and inference time of our model.

7 Conclusions

In this work, we propose a general framework of group equivariant models which delivers a unified
understanding on the previous group equivariant models. Based on the new understanding, we propose
a novel efficient and powerful group equivariant layer which can serve as a drop-in replacement for
convolutional layers. Extensive experiments demonstrate the E4-layer is more powerful, parameter
efficient and computational efficient than group convolution layers and their variants. Through a
side by side comparison with G-CNNs, we demonstrate our E4-layer can significantly improve data
efficiency of equivariant models, which show great potential for reducing the cost of collecting data.
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