
A Theoretical Results and Proofs1

Here, we provide the complete proof of the theoretical results in Section 3.3. More rigorously, we2

give the definition of minimal and sufficient representations for self-supervision [8], and give a more3

formal description of our results.4

Definition 1 (Minimal and Sufficient Representations for Signal S). Let Z∗ be the minimal and5

sufficient representation for self-supervised signal S if it satisfies the following conditions in the6

meantime: 1) Z∗ is sufficient, Z∗ = arg max
Z

I (Z;S); 2) Z∗ is minimal, i.e., Z∗ = argmin
Z

H (Z|S).7

The following lemma shows that the maximal mutual information of I(Z∗,S) is I(X,S).8

Lemma 1. For a minimal and sufficient representation Z that is obtained with a deterministic en-9

coder Fθ of input X with enough capacity, we have I(Z∗;S) = I(X;S).10

Proof. As the encoder Fθ is deterministic, it induces the following conditional independence: S ⊥11

⊥ Z | X, which leads to the data processing Markov chain S ↔ X → Z. Accordingly to the data12

processing inequality (DIP) [3], we have I(Z;S) ≤ I(X;S), and with enough model capacity inFθ,13

the sufficient and minimal representation Z∗ will have I(Z∗;S) = maxZ I(Z;S) = I(X;S).14

In the main text, we introduce several kinds of learning signals, the target variable T, the multi-15

view signal Sv , the predictive learning signal Sa, and the joint signal (Sv,Sa) used by our Prelax16

method. For clarity, we denote the learned minimal and sufficient representations as Zsup, Zmv,17

ZPL, ZPrelax, respectively.18

Next, we restate Theorem 1 with the definitions above and provide a complete proof.19

Theorem 1 (restated). We have the following inequalities on the four minimal and sufficient repre-20

sentations, Zsup, Zmv, ZPL, ZPrelax :21

I(X;T) = I(Zsup;T) ≥ I(ZPrelax;T) ≥ max(I(Zmv;T), I(ZPL;T)). (1)

22

Proof. By Lemma 1, we have the following properties in the self-supervised representations:23

I(Zmv;Sv) = I(X;Sv), I(ZPL;Sa) = I(X;Sa), I(ZPrelax;Sv,Sa) = I(X;Sv,Sa). (2)

Thus, for each minimal and sufficient self-supervised representation Z ∈ {Zmv,ZPL,ZPrelax} and24

the corresponding signal S ∈ {Sv,Sa, (Sv,Sa)}, we have,25

I(Z;S;T) = I(X;S;T), I(Z;S|T) = I(X;S|T). (3)

Besides, because Z is minimal, we also have,26

I(Z;T|S) ≤ H(Z|S) = 0. (4)

Together with the two equalities above, we further have the following equality on I(Z;T):27

I(Z;T) = I(Z;T;S) + I(Z;T|S)

= I(X;T;S) + I(Z;T|S)︸ ︷︷ ︸
0

= I(X;T)− I(X;T|S)

= I(Zsup;T)− I(X;T|S).

(5)

Therefore, the gap between supervised representation Zsup and each self-supervised representation28

Z ∈ {Zmv,ZPL,ZPrelax} is I(X;T|S), for which we have the following inequalities:29

max(I(X;T|Sv), I(X;T|Sa)) ≥ min(I(X;T|Sv), I(X;T|Sa)) ≥ I(X;T|Sv,Sa). (6)

Further combining with Lemma 1 and Eq. (5), we arrive at the inequalities on the target mutual30

information:31

I(X;T) = I(Zsup;T) ≥ I(ZPrelax;T) ≥ max(I(Zmv;T), I(ZPL;T)), (7)

which completes the proof.32
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Remark. Theorem 1 shows that the downstream performance gap between supervised representa-33

tion Zsup and self-supervised representation Z is I(X;T|S), i.e., the information left in X about the34

target variable T except that in S. Thus, if we choose a self-supervised signal S such that the left35

information is relatively small, we can guarantee a good downstream performance. Comparing the36

three self-supervised methods with learning signal Sv , Sa, and (Sv,Sa), we can see that our Prelax37

utilizes more information in X, and consequently, the left information I(X;T|Sv,Sa) is smaller38

than both multi-view methods I(X;T|Sa) and predictive methods I(X;T|Sa).39

In the following theorem, we further show that our Prelax has a tighter upper bound on the Bayes40

error of downstream classification tasks. To begin with, we prove a relationship between the super-41

vised and self-supervised Bayes errors following [8].42

Lemma 2. Assume that T is a K-class categorical variable. We define the Bayes error on down-43

stream task T as44

P e := Ez

[
1−max

t∈T
P (T = t|z)

]
. (8)

Denote the Bayes error of self-supervised learning (SSL) methods with signal S as P e
ssl and that of45

supervised methods as P e
sup. Then, we can show that the SSL Bayes error P e

ssl can be upper bounded46

by the supervised Bayes error P e
sup, i.e.,47

P̄ e
ssl ≤ ue := log 2 + P e

sup · logK + I(X;T|S). (9)

where P̄ e = Th(P e) = min{max{P e, 0}, 1 − 1/K} denotes the thresholded Bayes error in the48

feasible region, and ue denote the value of the upper bound.49

Proof. Denote the minimal and sufficient representations learned by SSL and supervised methods50

as Zssl and Zsup, respectively. We use two following inequalities from [4] and [3],51

P e
ssl ≤ − log (1− P e

ssl) ≤ H (T | Zssl) , (10)
H(T|Zsup) ≤ log 2 + P e

sup logK. (11)

Comparing H(T|Z) and H(T|Zsup), together with Eq. (5), we can show that they are tied with the52

following equality,53

H(T|Zssl) = H(T)− I(Zssl;T)

= H(T)− I(Zsup;T) + I(X;T|S)

= H(T|Zsup) + I(X;T|S).

(12)

Further combining Eq. (10) & (11), we have54

P e
ssl ≤ H (T | Zssl)

= H(T|Zsup) + I(X;T|S)

≤ log 2 + P e
sup logK + I(X;T|S) := ue,

(13)

which completes the proof.55

Given the upper bound in Lemma 2, and the inequalities on the downstream performance gap56

I(X;T|S) in Eq. (6), we will arrive at the following inequalities on the upper bounds on the self-57

supervised representations.58

Theorem 2 (restated). We denote the the upper bound on the Bayes error of each representation,59

Zsup,Zmv,ZPL,ZPrelax, by uesup, u
e
mv, u

e
PL, u

e
Prelax, respectively. Then, they satisfy the following60

inequalities:61

uesup ≤ uePrelax ≤ min(uemv, u
e
PL) ≤ max(uemv, u

e
PL). (14)

62

Theorem 2 shows that our Prelax enjoys a tighter lower bounds on downstream Bayes error than63

both multi-view methods and predictive methods.64
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Table 4: Linear evaluation accuracy (%) with ResNet-34 backbone.
Method CIFAR-10 CIFAR-100 Tiny-ImageNet-200

SimSiam [2] 91.2 60.9 39.0

SimSiam + Prelax-std 92.4 67.6 48.4
SimSiam + Prelax-rot 93.0 67.0 40.9
SimSiam + Prelax-all 93.9 69.3 49.4

B Experimental Details65

Evaluating Augmentations. In Table 1, we compare different augmentations with a supervised66

ResNet-18 [7] on CIFAR-10 test set. Specifically, we first train a state-of-the-art supervised ResNet-67

18 with 95.01% test accuracy on CIFAR-10. 1. The supervised training uses two data augmentations,68

Random Crop (with padding size 4), and RandomHorizontalFlip, to attain this performance, and we69

can see it is much weaker compared to unsupervised methods [1, 2]. Afterwards, we evaluate the70

effect of different augmentations to the supervised model by applying each one (separately) to pre-71

process the test images of CIFAR-10. All of the included augmentations (except Rotation) belong72

to the augmentations used in SimSiam. For a fair comparison, we adopt the same configuration as73

in SimSiam and refer to the paper for more details. For Rotation, we adopt the same configuration74

as [5], where we sample a random rotation angle {0◦, 90◦, 180◦, 270◦} and use it to rotate the raw75

image clock-wise.76

Data Augmentations and PL Targets. We offer details of the augmentations by taking the SimSiam77

[2] variant of Prelax as an example. The BYOL [6] variants are implemented in the same way. For a78

fair comparison, we utilize the same augmentations in SimSiam [2], while collecting the augmenta-79

tion parameters as the target variables for our Predictive Learning (PL) objective in Prelax. We adopt80

the PyTorch notations for simplicity. Specifically, for RandomResizedCrop, the operation randomly81

draws an (i, j, h, k) pair, where (i, j) denotes the center coordinates of the cropped region, while82

(h, k) denotes the height and width of the cropped region. Accordingly, we calculate the relative83

coordinates, the area ratio, and the aspect ratio (relative to the raw image), as four continuous target84

variables. Similarly, the ColorJitter opration randomly samples four factors corresponding to the85

adjustment for brightness, contrast, saturation, hue, respectively. We collect them as four additional86

continuous target variables. As for operations like RandomHorizontalFlip, RandomGrayscale, Ran-87

domApply, they draw a binary variable with 0/1 outcome according to a predefined probability p,88

and apply the augmentations if it is 1 and do nothing otherwise. We collect these random outcomes89

(0/1) as discrete target variables. As for the rotation operation, we take the rotation angles randomly90

drawn from the set {0◦, 90◦, 180◦, 270◦}, as a discrete 4-class categorical variable.91

C Evaluation with Larger Backbone Networks92

In the main text, we conduct experiments with the ResNet-18 backbone network. Here, for com-93

pleteness, we further evaluate our Prelax with larger backbone networks. Specifically, for SimSiam94

variants, we evaluate the ResNet-34 [7] across three datasets, CIFAR-10, CIFAR-100, and Tiny-95

ImageNet-200. For a fair comparison, we adopt the same hyper-parameters as for the ResNet-1896

backbone. As can be seen for Table 4, all our Prelax variants achieves better results than the Sim-97

Siam baseline on all three datasets. Specifically, we can see that our Prelax-all variant attains the98

best results and it achieves better results with a larger backbone. Besides, we also experiment with99

ResNet-50 for the BYOL variant, where our Prelax variant also achieves better performance by100

improving from 92.3% to 92.7%.101

D Sensitivity Analysis of Prelax Coefficients102

Here we provide a detailed discussion on the effect of each coefficient of our Prelax objectives. We103

adopt the default hyper-parameters unless specified. For Prelax-std, it has three coefficients, the104

R2S interpolation coefficient α, the similarity loss coefficient β, and the predictive loss coefficient105

γ. From Figure 4a, we can see that a positive α introduces certain degree of residual relaxation to106

the exact alignment and help improve the downstream performance. The best accuracy is achieved107

1https://github.com/kuangliu/pytorch-cifar
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(a) Prelax-std.
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(b) Prelax-rot.

Figure 4: Linear evaluation results of different Prelax-std and Prelax-rot coefficients on CIFAR-10
with SimSiam backbone. The dashed blue line denotes the result of the SimSiam baseline.

with a medium α at around 0.5. In addition, a large similarity coefficient β tends to yield better108

performance, showing the necessity of the similarity constraint. Nevertheless, too large β can also109

diminish the effect of residual relaxation and leads to slight performance drop. At last, a positive110

PL coefficient γ is shown to yield better representations, although it might lead to representation111

collapse if it is too large, e.g., γ > 0.5.112
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Figure 5: Comparison of normal and
reverse residuals for Prelax variants on
CIFAR-10 with SimSiam backbone.

For Prelax-rot, as shown in Figure 4b, the behaviors of β113

and γ are basically consistent with Prelax-std. Neverthe-114

less, we can see that only α = 1 can yield better results115

than the SimSiam baseline, while other alternatives can-116

not. This could be due to the fact that the residual relax-117

ation involves the first view x1 and its rotation-augmented118

view x3, and the R3S loss is designed between x3 and the119

second view x2. Therefore, in order to align x3 and x2120

like the alignment between x1 and x2, all the relaxation121

information in x3 (which x1 does not have) must be ac-122

counted for, which corresponds to α = 1 in R3S loss. We123

show that incorporating the rotation information in this124

way will indeed richer representation semantics and bet-125

ter performance.126

Besides, we also find that in certain cases, adopting a reverse residual r21 in the R2S loss can127

bring slightly better results. In Figure 5, we investigate this phenomenon by comparing the normal128

and reverse residuals in R2S loss (applied for Prelax-std and Prelax-all) and R3S loss (applied for129

Prelax-rot). We can see that for R2S loss, using a reverse residual improves the accuracy by around130

0.3 point, while for R3S loss, the reverse residual leads to dramatic degradation. This could be due131

to that R2S relaxes the gap between x1 and x2, whose representations are learned through swapped132

prediction in SimSiam’s dual objective. Thus, we might also need to swap the direction of the133

residual to be consistent. Instead, in R3S, the relaxation is crafted between x1 and x3, so we do134

not need to swap the direction. Last but not least, we note that with the normal residual, Prelax-std135

and Prelax-all still achieve significantly better results than the SimSiam baseline, and the reverse136

residual can further improve on it.137
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Figure 6: A comparison of learning dynamics between SimSiam [2] and Prelax (ours) on CIFAR-10.
Left: linear evaluation accuracy (%) on the test set per epoch. Middle: similarity loss per epoch.
Right: norm of the residual vector (i.e., ‖r31‖2) per epoch.

E Learning Dynamics138

In Figure 6, we compare SimSiam with Prelax-rot in terms of the learning dynamics. We can see139

that with our residual relaxation technique, both the relaxation loss and the similarity loss become140

larger than SimSiam. In particular, the size of the residual indeed converges to a large value with141

Prelax (1.1) than with SimSiam (0.6). As for the downstream classification accuracy, we notice that142

Prelax-rot starts with a lower accuracy, but converges to a large accuracy at last. This indicates that143

Prelax-rot learns to encode more image semantics, which may be harder to learn at first, but will144

finally outperform the baseline with better representation ability.145
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Azar, B. Piot, K. Kavukcuoglu, Rémi Munos, and Michal Valko. Bootstrap your own latent: A158

new approach to self-supervised learning. NeurIPS, 2020. 3159

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image160

recognition. CVPR, 2016. 3161

[8] Yao-Hung Hubert Tsai, Yue Wu, Ruslan Salakhutdinov, and Louis-Philippe Morency. Self-162

supervised learning from a multi-view perspective. ICLR, 20201. 1, 2163

5


