
Pattern Recognition 113 (2021) 107813 

Contents lists available at ScienceDirect 

Pattern Recognition 

journal homepage: www.elsevier.com/locate/patcog 

Reconstruction regularized low-rank subspace learning for 

cross-modal retrieval 

Jianlong Wu 

a , ∗, Xingxu Xie 

b , Liqiang Nie 

a , ∗, Zhouchen Lin 

b , Hongbin Zha 

b 

a School of Computer Science and Technology, Shandong University, China 
b Key Laboratory of Machine Perception (MOE), School of EECS, Peking University, China 

a r t i c l e i n f o 

Article history: 

Received 11 March 2020 

Revised 6 November 2020 

Accepted 7 December 2020 

Available online 12 January 2021 

Keywords: 

Cross-modal retrieval 

Low-rank subspace learning 

Reconstruction regularization 

a b s t r a c t 

With the rapid increase of multi-modal data through the internet, cross-modal matching or retrieval has 

received much attention recently. It aims to use one type of data as query and retrieve results from the 

database of another type. For this task, the most popular approach is the latent subspace learning, which 

learns a shared subspace for multi-modal data, so that we can efficiently measure cross-modal similarity. 

Instead of adopting traditional regularization terms, we hope that the latent representation could recover 

the multi-modal information, which works as a reconstruction regularization term. Besides, we assume 

that different view features for samples of the same category share the same representation in the latent 

space. Since the number of classes is generally smaller than the number of samples and the feature di- 

mension, therefore the latent feature matrix of training instances should be low-rank. We try to learn the 

optimal latent representation, and propose a reconstruction based term to recover original multi-modal 

data and a low-rank term to regularize the learning of subspace. Our method can deal with both super- 

vised and unsupervised cross-modal retrieval tasks. For those situations where the semantic labels are 

not easy to obtain, our proposed method can also work very well. We propose an efficient algorithm 

to optimize our framework. To evaluate the performance of our method, we conduct extensive experi- 

ments on various datasets. The experimental results show that our proposed method is very efficient and 

outperforms the state-of-the-art subspace learning approaches. 

© 2021 Elsevier Ltd. All rights reserved. 

1

i

d

a

s

u

fi

w

m

f

r

n

s

i

n

i

w

m

f

m

c

k

s

i

T

m

d

s

f

e

n

h

0

. Introduction 

Along with the arrival of information age, people get a grow- 

ng number of multimedia information everyday. These multime- 

ia data are often collected from diverse modalities, such as im- 

ge, text, video and etc. These heterogeneous data are usually as- 

ociated with the same entity. There is a great need for users to 

se data of one modality as query to search relevant documents or 

les of other modalities. For example, people can use text or key- 

ords to retrieve related images or videos. Therefore, cross-modal 

atching has received much attention. In this paper, we mainly 

ocus on cross-modal retrieval which has been actively studied in 

ecent years. 

For various modalities data of one object, there are heteroge- 

eous properties between them, even though they share the same 

emantic information. The main challenge of cross-modal retrieval 

s how to reduce the heterogeneous gap between different modal- 
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ty features and then measure their cross-modal similarity. To- 

ards this issue, a lot of work have been proposed. Among existing 

ethods, latent subspace learning is the most popular approach 

or cross-modal matching. By learning a shared subspace for multi- 

odal data, we can reduce the heterogeneous gap and measure the 

ross-modal relevance in the common space. There are mainly two 

inds of subspace learning methods. The first one is the projection 

pace learning method which hopes to project multi-modal data 

nto one common space with some regularizations, such as [1–3] . 

he other one [4] can be referred to as the intact space learning 

ethod which wants to learn an original space where multi-view 

ata are projected from. Both these two kinds of methods are rea- 

onable and achieve good performance. So the problem is trans- 

ormed to how to learn an intrinsic subspace for multi-modal data. 

Besides, there is another issue that we should take into consid- 

ration. There are a lot of situations where the semantic labels are 

ot easy to obtain. So it is necessary to present a framework that 

an also be applied to unsupervised situation. 

In view of all above issues, we propose a reconstruction regular- 

zed low-rank subspace learning (RRLSL) method for cross-modal 

etrieval to learn the essential low-rank representation for multi- 
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Fig. 1. The brief overview of our proposed reconstruction regularized low-rank subspace learning method. For multi-modal features, we project them into a low-rank 

subspace with modality-specific projection matrix, and use the relevant weights to reconstruct the original data as a regularization term. For unsupervised learning, the 

shared low-rank subspace S is jointly learned with all the projection matrices. 
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views. 
odal data. In Fig. 1 , we present a brief overview of the proposed

ethod. Specifically, we project multi-modal data into a shared 

atent subspace with low-rank constraint as we assume that dif- 

erent view features for samples of the same category share the 

ame representation in this latent space. In the meantime, in- 

tead of adding traditional regularization terms, we hope the latent 

epresentation could recover the multi-modal information, which 

orks as a reconstruction regularization term. Our proposed RRLSL 

ethod can be applied to both supervised and unsupervised cross- 

odal retrieval tasks. For unsupervised situation, the optimal la- 

ent subspace is jointly learned with the projection matrices. For 

upervised task, we directly use the label space as the shared la- 

ent subspace. We also propose an efficient algorithm to optimize 

his problem. 

Main contributions of our work are summarized as follows: 

(1) We propose a novel reconstruction regularized low-rank 

ubspace learning method for cross-modal retrieval, which can 

earn the essential low-rank representation shared by multi-modal 

ata. The latent representation can well capture the essential in- 

ormation and reconstruct the original data. 

(2) Within this framework, an efficient algorithm is proposed to 

olve this optimization problem, learning the optimal latent sub- 

pace and projection matrices. Both the computation and space 

omplexities of our method are very low. It can be extended to 

arge-scale retrieval applications. 

(3) Our proposed method can deal with both supervised and 

nsupervised cross-modal matching tasks. Experimental results on 

arious datasets with different features show that our method can 

utperform the start-of-the-art methods for both supervised and 

nsupervised situations. 

The remainder of the paper is organized as follows. In Section 2 , 

e will briefly review the related work of cross-modal retrieval. 

n Section 3 , we will illustrate the details of our RRLSL method 

nd optimization process. Experimental results are presented in 

ection 4 . Finally, Section 5 concludes our paper. 

. Related work 

In this section, we briefly review the related studies about la- 

ent subspace learning for cross-modal retrieval. Existing methods 

an be divided into two categories, including the traditional latent 

ubspace learning methods and the deep learning methods. 
2 
.1. Traditional latent subspace learning methods 

Latent subspace learning is the most popular method for cross- 

odal retrieval. By projecting multi-modal data into one common 

ubspace, we can measure their similarity effectively. Canonical 

orrelation Analysis (CCA) [5] , Partial Least Squares (PLS) [6] and 

ilinear Model (BLM) [7] are three main classic unsupervised 

ethods. CCA aims to learn a latent space by maximizing the cor- 

elation between cross-modal features. There are also many CCA 

ased extensions, such as kernel CCA [8] . PLS tries to learn the op- 

imal projection direction by maximizing their covariance. Sharma 

t al. [9] applied PLS for cross-modal face recognition. BLM [7] at- 

empts to capture the variation in the latent space and is proposed 

o separate style and content. Recently, Liang et al. [10,11] tried 

o learn the unsupervised embedding based on self-paced learning 

nd groupwise correspondences. 

Despite the above unsupervised methods, there are many ap- 

roaches that incorporate label information to improve the re- 

rieval results. Label space is often used as the latent subspace. 

egularization terms are well studied in these methods. Sharma 

t al. [12] presented a general multi-view feature extraction ap- 

roach called generalized multi-view analysis which extended lin- 

ar discriminant analysis (GMLDA) and marginal Fisher analy- 

is (GMMFA) to their multi-view cases. Wang et al. [1] proposed 

 method to learn coupled feature space with � 21 -norm projec- 

ion matrix penalty and low-rank constraint on the projected data. 

hen they employed a multi-modal graph regularization term to 

reserve the local relationship [2] . Zhai et al. [13] also adopted the 

raph regularization to learn heterogeneous metric. In [14,15] , the 

uthors presented a joint representation learning method to ex- 

lore the influence of pairwise constraint during latent space re- 

ression. Kang et al. [3] added a local group-based priori and an 

-dragging term for robust representation. Zhang et al. [16] pro- 

osed a metric learning framework to learn multi-ordered dis- 

riminative structured subspace. Instead of using the simple la- 

el information as the latent subspace. Wu et al. [17] came up 

ith a joint latent subspace learning and regression method to 

earn the optimal common subspace for projection. Different from 

he above projection subspace learning methods , Xu et al. [4] as- 

umed that multi-modal data are projected from an intact space, 

nd they proposed the multi-view intact space learning method 

o integrate the encoded complementary information in multiple 
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Besides these above subspace clustering methods, dictionary 

earning methods [18–20] are also very popular in cross-modal re- 

rieval. Zhuang et al. [21] proposed the coupled dictionary learn- 

ng with group structures for multi-modal retrieval. Huang and 

rank Wang [18] came up with the coupled dictionary and fea- 

ure space learning method for cross-domain image synthesis and 

ecognition. Xu et al. [19] presented the semi-supervised coupled 

ictionary learning for cross-modal retrieval. Deng et al. [22] tried 

o capture the discriminative patterns and presented the dis- 

riminative dictionary learning with common label alignment. Liu 

t al. [23] first combined CNN with dictionary learning to learn 

parse representation, and then built a structure-guided multi- 

odal dictionary learning model to learn the concept-level repre- 

entation [24] . 

According to previous work, existing studies mainly focus on 

he learning of latent subspace and regularization terms. It is also 

ecessary to come up with a framework that can be applied to 

oth supervised and unsupervised situations. So we propose the 

RLSL method, where we hope that the representation in the 

earned subspace could reconstruct the multi-modal data by pro- 

ecting in some way. And we also investigate the correlation among 

amples based on the low-rank regularization. This novel recon- 

truction and low-rank terms work as regularization terms in our 

ramework, which is much different from previous regularization 

elated methods. 

.2. Deep learning based cross-model retrieval 

Deep learning based methods receive more and more at- 

ention in the past decade. For unsupervised learning, Andrew 

t al. [25] proposed DCCA that uses the objective function of CCA 

o guide the training of deep learning. Then Wang et al. [26] com- 

ined it with autoencoder. Feng et al. [27] also used the au- 

oencoder but defined the correlation based on distance metric. 

or supervised cross-modal retrieval, Peng et al. [28] proposed 

he deep hierarchical learning with multiple deep networks. Hua 

t al. [29] explored the cross-modal correlation by adaptive hier- 

rchical semantic aggregation. Wang et al. [30] adopted the adver- 

arial learning to investigate the correlation between two modal- 

ties. Liong et al. [31] focused on learning the coupled metric for 

eep cross-modal matching. Liu et al. [32] combined dictionary 

earning with deep learning to learn better representation. Semedo 

t al. [33] proposed the scheduled adaptive margin constraints to 

earn deep subspace. Besides the above cross-modal retrieval, there 

re also many work focus on cross-modal hashing [34–38] . 

We mainly focus on traditional latent subspace learning in this 

aper. But we can also use the pre-trained model to extract deep 

eatures as the input for our subspace learning method to improve 

he performance of cross-modal retrieval. 

. Reconstruction regularized low-rank subspace learning 

.1. Model formulation 

Suppose that we have a collection of data from M different 

odalities, X i = (x i 
1 
, x i 

2 
, . . . , x i n ) , i = 1 , . . . , M, where features in X i 

re in d i dimensions, and n is the total number of samples. Multi- 

odal features x 1 
j 
, x 2 

j 
, . . . , x M 

j 
of the jth object share the same se-

antic label. For traditional latent subspace learning methods, they 

earn a projection matrix W i ∈ R 

c×d i for each modality to map each 

odality features X i ∈ R 

d i ×n into the shared latent space S ∈ R 

c×n ,

here c is the dimension in the latent space. By adding related 

egularization on projection matrix W and subspace S, the general 

bjective function for latent space learning can be formulated as: 
3 
in 

W,S 

M ∑ 

i =1 

‖ W i X i − S‖ 

2 
F + α�(S) + β�(W i , . . . , W M 

) , (1) 

here α and β are balance parameters, �(S) and ψ(W ) are regu- 

arizations on W and S, respectively. 

For the regularization term �(W ) , the commonly used 

orms include sparse [15] , low rank [1] , and the graph Lapla- 

ian [2,17] regularizations. Different from them and inspired by the 

ntact space learning method [4] , we hope that the representation 

n the latent subspace S should contain all essential information 

f this object, so that we can reconstruct the original multi-modal 

ata based on S. Besides, for the latent representation, samples be- 

ong to same category should have the same representation. As the 

umber of classes is much smaller than the number of training 

amples and the dimension of the latent subspace, the represen- 

ation matrix of training samples S should be low-rank. Since it is 

P-hard to optimize the problem of rank (S) minimization, it is a 

ommonly used strategy to relax it to the nuclear norm ‖ S‖ ∗. 

By adding the low-rank constraint and the reconstruction term 

s the regularization on subspace S, we can get the primary objec- 

ive function for our RRLSL method: 

in 

W,S 

M ∑ 

i =1 

(‖ W i X i − S‖ 

2 
F + α‖ W 

∗
i S − X i ‖ 

2 
F 

)
+ γ ‖ S‖ ∗, (2) 

here α and γ are constants to balance the contributions of differ- 

nt terms, W 

∗
i 

denotes the projection matrix to reconstruct the i th 

odality data, and the nuclear norm ‖ · ‖ ∗ is defined as the sum 

f singular values for low-rank constraint. 

Similar to that in deep belief networks [39,40] , we adopt the 

ied weights to simplify the framework in Eq. (2) . That is: 

 

∗
i = W 

T 
i , i = 1 , 2 , . . . , M. (3) 

or the nuclear norm, it is also called the trace norm according to 

ts definition, and we have: 

 S‖ ∗ = tr 
(
(S T S) 1 / 2 

)
= tr 

(
S T (SS T ) −1 / 2 S 

)
. (4) 

he above transformation can benefit the optimization. Moreover, 

e add a Frobenius norm regularization term to penalize the pro- 

ection matrix to avoid trivial solution. Then the final objective 

unction for our proposed RRLSL can be written as: 

min 

,S,H 

M ∑ 

i =1 

(‖ W i X i − S‖ 

2 
F + α‖ W 

T 
i S − X i ‖ 

2 
F + β‖ W i ‖ 

2 
F 

)
+ γ tr 

(
S T HS 

)
, 

(5) 

here H = (SS T + εI) −1 / 2 , ε is a small positive constant, α, β, and

are balance parameters, and γ should decay with the increasing 

f iterations for convergence reason. 

The overview of our work is shown in Fig. 1 . We project multi- 

odal data into a common low-rank subspace, and use the rele- 

ant weights in Eq. (3) to reconstruct the original data based on 

he representation in the latent space. The reconstruction part can 

e regarded as a regularization term. For unsupervised situation, 

he latent low-rank subspace S is jointly learned with all the pro- 

ection matrices. After we get the optimal weights and latent sub- 

pace based on the training samples, we project the testing sam- 

les into the latent subspace and retrieve related cross-modal sam- 

les. 

.2. Optimization 

For the problem in Eq. (5) , there are three variables to optimize, 

nd it is hard to solve it jointly. However, with other variables 

xed, it is convex to optimize the specific variable and we can 
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ompute the close-form solution. We adopt the alternating mini- 

ization to solve this problem. 

W sub-problem: 

We first fix S and H. According to the norm properties ‖ X‖ 2 
F 

= 

 X T ‖ 2 F , the problem to optimize W can be transformed into: 

in 

W 

M ∑ 

i =1 

(‖ W i X i − S‖ 

2 
F + α‖ S T W i − X 

T 
i ‖ 

2 
F + β‖ W i ‖ 

2 
F 

)
. (6) 

e can optimize W i (i ∈ { 1 , 2 , . . . , M} ) for each view, respectively.

y setting the derivative of the objective function in Eq. (6) with 

espect to W i to zero, we can get: 

αSS T + βI) W i + W i X i X 

T 
i = (1 + α) SX 

T 
i , i = 1 , . . . , M. (7)

y denoting A = αSS T + βI, B i = X i X 
T 
i 
, and C i = (1 + α) SX T 

i 
, opti-

ization in Eq. (7) can be reformulated as: 

W i + W i B i = C i , i = 1 , 2 , . . . , M. (8)

t is obvious that the above equation is the well-known Sylvester 

quation, and it can be solved efficiently by the Bartels-Stewart 

lgorithm [41] . Please note that A = αSS T + βI should be positive 

efinite in Sylvester equation. As the initialization and update of 

cannot guarantee positive definiteness of SS T , so we incorporate 

he regularization term on W to add term βI to guarantee positive 

efiniteness of A . 

H sub-problem: 

H can be simply computed by H = (SS T + εI) −1 / 2 . 

S sub-problem: 

With W and H fixed, S can be solved by minimizing the follow- 

ng problem: 

in 

S 

M ∑ 

i =1 

(‖ W i X i − S‖ 

2 
F + α‖ W 

T 
i S − X i ‖ 

2 
F 

)
+ γ tr 

(
S T HS 

)
. (9) 

he above problem in Eq. (9) is convex with respect to S. By setting

he derivative of the objective function in Eq. (5) with respect to S

o zero, we can get: 

M 

 

i =1 

(
−2(W i X i − S) + 2 αW i (W 

T 
i S − X i ) 

)
+ γ (H + H 

T ) S = 0 . (10) 

hen we can get: 

= 

( 

2 M· I+2 α
M ∑ 

i =1 

W i W 

T 
i + γ (H + H 

T ) 

) −1 ( 

2(1 + α) 
M ∑ 

i =1 

W i X i 

) 

. 

(11) 

We summarize the optimization process of RRLSL in 

lgorithm 1 . 

lgorithm 1 Alternating Minimization for Unsupervised RRLSL. 

nput: Multi-view data X i ∈ R 

d i ×n , i = 1 , 2 , . . . , M. 

1: Set k = 1 , and initialize the subspace S 0 by K-means clustering. 

2: while not converged do 

3: for i = 1 , 2 , . . . , M do 

4: Compute A = αS k −1 (S k −1 ) T + βI, B i = X i X 
T 
i 

, and C i = (1 +
α) S k −1 X T 

i 
. 

5: Update W 

k 
i 

by solving the Sylvester equation in Eq.~(8). 

6: end for 

7: Update H 

k by H 

k = (S k −1 (S k −1 ) T + εI) −1 / 2 . 

8: Update S k by Eq.~(11). 

9: Update γk by γk = 

1 
2 γk −1 . 

0: k = k + 1 . 

11: end while 

utput: Projection matrices W i ∈ R 

c×d i , i = 1 , . . . , M. 
4 
.3. Convergence and complexity 

We briefly discuss the convergence and the computational com- 

lexity of our method. 

We solve the problem of unsupervised situation by alternating 

inimization. At each iteration, the subproblem to optimize each 

ariable with others fixed is convex, so we can compute the close- 

orm solution to update the variables. As we alternatively optimize 

 and S, the objective function is monotonically decreasing. Ac- 

ording to Tseng [42] , our algorithm will converge to a stationary 

oint. For detailed convergence analysis, please refer to the ap- 

endix. 

For the update of W i , the complexity to compute the interme- 

iate matrices A, B, and C is O(nc 2 + nd 2 
i 

+ ncd i ) , where d i is the

imension of i th modality feature and c is the dimension in the la- 

ent subspace. According to Bartels and Stewart [41] , the complex- 

ty to solve the Sylvester equation in Eq. (8) is O(d 3 
i 

+ c 3 ) , which

s irrelevant to the sample number n and only depends on the fea- 

ure dimension. Let d = max (d 1 , d 2 , . . . , d M 

) , then the complexity

o optimize W is O(nc 2 + nd 2 + d 3 + c 3 ) . For the update of S and

, the computational complexity is O(c 3 + dc 2 + ncd) . Denote the 

teration number as k, which is a small constant in practice as our 

lgorithm converges in a few steps. Then the total time complex- 

ty of our algorithm is O(k (nc 2 + nd 2 + d 3 + c 3 )) , which is linear

o the number of samples n . In general, c is much smaller than the 

argest feature dimension d, and d is smaller than the number of 

amples n . So the total time complexity of unsupervised RRLSL is 

(knd 2 ) , which is very efficient. It can be easily applied to large 

cale datasets. 

.4. Extension to supervised situation 

Our method can be directly extended to supervised version. Just 

s most existing supervised methods do, we use the label space 

 = [ y 1 , y 2 , . . . , y n ] ∈ R 

c g ×n to define the latent subspace. Here, c g 
enotes the number of classes. Then the objective function is 

ransformed to: 

in 

W 

M ∑ 

i =1 

(‖ W i X i − Y ‖ 

2 
F + α‖ W 

T 
i Y − X i ‖ 

2 
F + β‖ W i ‖ 

2 
F 

)
. (12) 

hen we set the derivative of Eq. (12) with respect to each W i to

ero. The above problem in Eq. (12) can be optimized by solving 

he following Sylvester equation: 

αY Y T + βI) W i + W i X i X 

T 
i = (1 + α) Y X 

T 
i , i = 1 , . . . , M. (13)

s introduced in the last complexity subsection, the above equa- 

ion can be solved efficiently. It can be applied to large scale 

atasets. 

.5. Relations to existing methods 

Compared with existing subspace learning methods, the main 

ifference of RRLSL method lies in the regularization term. As tra- 

itional methods add regularization terms such as structured spar- 

ity [43] , low rankness [1] , group-based priori [3] , and graph Lapla-

ian [2] , we propose a novel reconstruction based regularization, 

hich helps the latent representation preserve the essential infor- 

ation. And our low-rank constraint can better explore the cor- 

elation among samples. Besides, our RRLSL model can deal with 

oth supervised and unsupervised situations, while previous stud- 

es only focus on one situation. 

For unsupervised learning, our model looks like the autoen- 

oder as we both try to learn the latent embedding. How- 

ver, there are still much difference. Correspondence autoen- 

oder [27,44] and DCCAE [26] are two main autoencoder re- 

ated work. For cross-modal problems, correspondence autoen- 
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Fig. 2. Some example image-text pairs of the Wiki dataset (a) and the Pascal VOC dataset (b). 
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oder in [27,44] used the distance between cross-modal embed- 

ings and DCCAE [26] adopted the CCA in the latent layer as the 

egularization to optimize the latent embedding. Instead of con- 

training the distance or correlation, we learn a specific low-rank 

atent subspace S which is shared by all modalities. Besides, the 

ptimization algorithms are different. We propose an efficient it- 

rative algorithm to compute the optimal the projection matrices, 

hile other autoencoder related work uses the back propagation 

ethod to update the weights based on the loss function. In ad- 

ition, our methods can be easily extended to multi-view cases, 

hile the above two methods can only deal with the two-view 

ituation. Moreover, when we use the label space as the latent 

ubspace for supervised mode in our RRLSL method, it can be re- 

arded as the label-aware autoencoder, which will benefit the re- 

rieval. And previous autoencoder methods mainly work on the un- 

upervised situation. 

. Experiments 

.1. Datasets 

For cross-modal retrieval, the main task is the matching 

etween image and text. There are mainly three commonly 

sed datasets, including the Wiki dataset [45] , the Pascal VOC 

ataset [46] , and the NUS-WIDE dataset [47] . Some sample image- 

ext pairs of Wiki and Pascal VOC are shown in Fig. 2 . 

The Wiki dataset [45] contains 2,866 image-text pairs, which 

re generated from the featured article of Wikipedia. There are 10 

emantic categories in total. For each pair, the text is a long article 

escribing the label related information, and the image is highly 

orrelated to the content of the article. We adopt the same setting 

s that in [1,2] , which splits 2,866 pairs into a training set of 1,300

airs (130 pairs per class) and a testing set of 1,566 pairs. For text 

eatures, latent Dirichlet allocation (LDA) [48] is adopted to extract 

0 dimensional representations. For images, we extract the 128 di- 

ensional SIFT [49] descriptor histograms. 

The Pascal VOC dataset [46] contains 5,011 training and 4,952 

esting image-tag pairs collected from 20 different classes. As 

mage-tags pairs that belong to only one object of the 20 concepts 

re selected in the experiment, there are 2,808 pairs for the train- 

ng set and 2,841 pairs for the testing set. For feature extraction, 

12 dimensional GIST [50] features are used to represent the im- 
5 
ges. 399 dimensional word frequency features are used to repre- 

ent texts. 

The NUS-WIDE database [47] is a real-world web image 

atabase which is created by NUS’s lab for media search. It con- 

ains 269,648 images and the associated tags from Flickr, with a 

otal of 5,018 unique tags. There are 81 concepts in total, and some 

airs may belong to more than one concepts. Like many previous 

ork, we select image-tags pairs that exclusively belong to only 

ne of the 21 largest concepts, which results in 97,079 pairs in to- 

al for our experiments. For this task, some work also select 10 

argest concepts, which is much easier. We use the same setting 

s that in [3] , one third of the samples in each class are randomly

elected to form the testing set, and the remaining samples are 

sed as the training set. For this database, six different types of 

ow-level image features are provided by the authors. We directly 

dopt the 500-dimensional bag of words feature vectors based on 

IFT descriptions and 10 0 0-dimensional bag-of-words feature vec- 

ors to represent images and textual tags, respectively. 

.2. Evaluation metrics and parameters setting 

We mainly consider two cross-modal retrieval tasks: (1) Im- 

ge query vs. Text database and (2) Text query vs. Image database. 

ased on the training dataset, we learn the latent space as well as 

he projection matrices. Then we map the multi-modal features of 

est dataset into the common subspace based on the learned view- 

ependent projection matrices. During testing phase, one modal- 

ty data of the testing set serves as the query set and the other 

odality data of the testing set serves as the database. We use the 

uery to retrieval relevant objects of the other modality from the 

atabase. We adopt the cosine distance to measure the similarity 

etween cross-modal features. 

To evaluate the performance of our proposed RRLSL method, 

he mean average precision (MAP) is used in the experiments. 

he average precision (AP) of N retrieved results is defined by 

P = 

1 
T 

∑ N 
i =1 P (i ) δ(i ) , where T is the actual number of same cat-

gory objects in the database, P (i ) represents the precision of the 

op i retrieved results, and δ(i ) = 1 only when the i th retrieved re-

ult belongs to the same class with the query. Then we can com- 

ute the MAP by averaging the AP of all queries in the query set. 

igher MAP scores represent better result. Besides the MAP, we 

lso adopt the precision-recall curve to thoroughly evaluate the ef- 

ectiveness of different methods. 
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Table 1 

MAP scores comparison between the usupervised RRLSL and other methods on the Wiki, the Pascal VOC, and the NUS-WIDE datasets. 

Datasets 

and 

Methods 

Wiki Pascal VOC NUS-WIDE 

Image query Text query Average Image query Text query Average Image query Text query Average 

CCA 0.2541 0.2058 0.2299 0.3022 0.2298 0.2660 0.2463 0.2415 0.2434 

BLM 0.2565 0.2029 0.2297 0.3178 0.2329 0.2754 0.2621 0.2542 0.2581 

PLS 0.2615 0.2190 0.2403 0.3273 0.2578 0.2925 0.2796 0.2684 0.2740 

SCSM 0.2740 0.2170 0.2450 0.3435 0.2787 0.3111 — — —

SPGCM 0.2847 0.2229 0.2538 0.3512 0.2770 0.3141 0.2907 0.2734 0.2821 

URRLSL 0.2949 0.2267 0.2608 0.3663 0.2835 0.3249 0.3003 0.2892 0.2947 

Table 2 

P-value of statistic significance test between the results of related methods on all three datasets. 

Methods 

and 

Datasets 

Unspervised Supervised 

URRCSL VS SCSM URRCSL VS SPGCM RRCSL VS JRL RRCSL VS LGCFL 

Wiki 1 . 00 ∗ 10 −16 7 . 33 ∗ 10 −9 2 . 69 ∗ 10 −11 2 . 31 ∗ 10 −24 

Pascal VOC 1 . 26 ∗ 10 −16 1 . 32 ∗ 10 −5 1 . 90 ∗ 10 −10 4 . 00 ∗ 10 −16 

NUS-WIDE — 7 . 83 ∗ 10 −30 3 . 55 ∗ 10 −8 4 . 72 ∗ 10 −15 
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For the parameters in our proposed RRLSL method, we fine- 

une the parameters α, β and γ in Eq. (5) by searching the gird 

f { 10 −2 , 10 −1 , . . . , 10 2 , 10 3 } based on cross validation. The dimen-

ion of latent subspace is fine-tuned in the range of [1 ∗ c g , 10 ∗ c g ] .

.3. Compared methods 

For unsupervised cross-modal retrieval, we compare the unsu- 

ervised RRLSL (URRLSL) with five unsupervised algorithms, in- 

luding the CCA [5] , PLS [7] , BLM [7] , self-paced cross-modal 

ubspace matching (SCSM) [10] , and simultaneous pairwise and 

roupwise correspondences maximization (SPGCM) [11] . 

For supervised cross-modal retrieval, supervised RRLSL (SR- 

LSL) is compared with seven supervised algorithms, includ- 

ng the GMMFA [12] , GMLDA [12] , learning coupled feature 

paces (LCFS) [1] , joint representation learning (JRL) [14] , and the 

ocal group based consistent feature learning (LGCFL) [3] . In order 

o compare fairly, the kernel method used in [14] to improve the 

AP scores is not adopted for all the methods in this paper. 

.4. Experimental results of unsupervised situation 

We test the performance of unsupervised RRLSL and other 

ethods on the Wiki, the Pascal VOC, and the NUS-WIDE datasets. 

he MAP scores are presented in Table 1 . The value in bold repre-

ents the best result. SCSM fails to work on the large NUS-WIDE 

ataset since it has very high computation complexity. We can see 

hat our unsupervised RRLSL method outperforms all other unsu- 

ervised methods in MAP scores for both tasks of image and text 

uery. On the Wiki dataset, the average MAP score of our method 

s 0.2608, which is relatively 0 . 2608 
0 . 2538 − 1 = 2 . 76% higher than the 

econd best result 0.2538 achieved by the SPGCM. On the Pas- 

al VOC dataset, our MAP score 0.3249 is 3 . 44% higher than the 

PGCM’s result 0.3141. 

On the NUS-WIDE dataset, compared with the second best re- 

ult 0.2821 achieved by the SPGCM, the average MAP score of our 

ethod 0.2947 is 4 . 47% higher. Compared with the results of su- 

ervised methods shown in Table 3 , our results on the Wiki and 

he Pascal VOC datasets are much better than that of GMMFA, 

MLDA, and LCFS. Even if compared with LGCFL, the gap is also 

cceptable. In Table 2 , we test the statistic significance [51] be- 

ween the results of SCSM, SPGCM and URRLSL, and present the 

p-values. We can see that the p-values are less than 0.01 on all 

atasets, which shows that there is significant difference between 

he results of SCSM, SPGCM and our URRLSL method. 
6 
Figs. 3 and 4 present the precision-recall curves on the Wiki 

nd the Pascal VOC datasets. Our method also outperforms other 

ethods. 

.5. Experimental results of supervised situation 

For the supervised cross-modal retrieval, we test the perfor- 

ance of these supervised methods on all three datasets, includ- 

ng the Wiki, Pascal VOC, and NUS-WIDE datasets. Table 3 shows 

he MAP scores of all these methods. We can observe that the per- 

ormance of our SRRLSL method surpasses the results of all other 

ethods in tasks of both image query and text query. Compared 

ith the second best results, our results achieve an average 2% 

mprovement on these three datasets, which further verifies the 

ffectiveness of the RRLSL method. Thanks to the authors of LGCFL 

nd JRL to share their codes, we present the p-value of statistic sig- 

ificance test between results of these related methods in Table 2 . 

s p-values on all datasets are less than 0.01, there is also signifi- 

ant difference between the results of these supervised methods. 

Figs. 5 and 6 show the precision-recall curves for both tasks 

n the Wiki and the Pascal VOC datasets. We can also see that 

or both tasks on two datasets, our results are better than other 

ethods. 

.6. Performance with different types of features 

We also test the influence of different types of features of 

oth images and texts to the cross-modal retrieval performance 

n the Wiki dataset. Besides the SIFT image features and LDA 

ext features given by the Wiki dataset itself, deep image fea- 

ures and another type of text features are also extracted. The con- 

olutional neural network (CNN) is adopted to extract the 4096- 

imensional features [52] for image presentation. For text features, 

0 0 0-dimensional BOW feature vectors are learned based on the 

F-IDF. PCA [53] is adopted to reduce the dimension. In Table 4 , we

resent the MAP scores of GMLDA, LCFS, LGCFL, JRL and our super- 

ised RRLSL with different types of features on the Wiki dataset. 

e can see that with CNN features, all methods achieve much bet- 

er results, which can be attributed to the powerful representation 

bility of deep neural networks. Compared with the result of LDA 

eatures, there is no obvious improvement for the TF-IDF features. 

ompared with all other methods, our SRRLSL method achieves the 

est result with all these different kinds of features. 

To further demonstrate the effectiveness of our proposed 

ethod, we conduct experiments on the NUS-WIDE dataset and 
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Fig. 3. Performance of different unsupervised methods on the Wiki dataset, based on precision-recall curve. Best view on screen! 

Fig. 4. Performance of different unsupervised methods on the Pascal VOC dataset, based on precision-recall curve. Best view on screen! 

Fig. 5. Performance of different supervised methods on the Wiki dataset, based on precision-recall curve. Best view on screen! 

7 
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Table 3 

MAP scores comparision between the supervised RRLSL and other methods on the Wiki, the Pascal VOC, and the NUS-WIDE datasets. 

Datasets 

and 

Methods 

Wiki Pascal VOC NUS-WIDE 

Image query Text query Average Image query Text query Average Image query Text query Average 

GMLDA 0.2751 0.2098 0.2425 0.3094 0.2448 0.2771 0.3243 0.3076 0.3159 

GMMFA 0.2750 0.2139 0.2445 0.3090 0.2308 0.2699 0.2983 0.2939 0.2961 

LCFS 0.2798 0.2141 0.2470 0.3438 0.2674 0.3056 0.3830 0.3460 0.3645 

LGCFL 0.3009 0.2377 0.2693 0.3988 0.3212 0.3600 0.3780 0.3290 0.3535 

JRL 0.2979 0.2413 0.2696 0.4044 0.3166 0.3605 0.3818 0.3360 0.3589 

SRRLSL 0.3146 0.2466 0.2806 0.4134 0.3228 0.3681 0.4120 0.3666 0.3893 

Fig. 6. Performance of different supervised methods on the Pascal VOC dataset, based on precision-recall curve. Best view on screen! 

Table 4 

MAP comparison with different features on the Wiki dataset. 

Query Image Query Text Query 

Image/Text Features GMLDA LCFS LGCFL JRL SRRLSL GMLDA LCFS LGCFL JRL SRRLSL 

SIFT/LDA 0.2751 0.2798 0.3009 0.2979 0.3146 0.2098 0.2141 0.2377 0.2413 0.2466 

CNN/LDA 0.4084 0.4132 0.4532 0.4208 0.4633 0.3693 0.3845 0.3887 0.3854 0.4028 

SIFT/TF-IDF 0.2782 0.2978 0.3157 0.3023 0.3188 0.1925 0.2134 0.2461 0.2395 0.2496 

CNN/TF-IDF 0.4455 0.4553 0.4535 0.4412 0.4681 0.3661 0.3978 0.4033 0.3900 0.4169 

Table 5 

MAP comparison with deep learning based methods on NUS-WIDE-10. 

Corr-AE [27] DCCA [25] CMDN [28] CCL [54] SAM [33] SRRLSL 

Image query 0.391 0.475 0.643 0.671 0.701 0.695 

Text query 0.429 0.500 0.626 0.676 0.707 0.719 

Average 0.410 0.488 0.635 0.674 0.704 0.707 
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ompare the results with deep learning based cross-modal re- 

rieval methods. For fair comparison, we use the same setting 

s [33,54] , where only the largest 10 categories are selected to 

onstruct NUS-WIDE-10 with more than 60,0 0 0 instances. For our 

RRCSL, we use a pre-trained VGG-19 convolutional network to 

xtract the 4,096-dimensional image features, and we adopt the 

,0 0 0-dimensional bag-of-words vector for the text feature, while 

ther deep learning methods train the network on the training 

nstances. The results are shown in Table 5 . We directly copy 

he results of other methods from Peng et al. [28] . We can 

lso see that our method achieves the best average MAP. Based 

n the pre-trained deep features without fine-tune, our method 

an even outperform the state-of-the-art deep learning based 

ethods. 
8 
.7. Complexity and processing time 

In Table 6 , we compare the time complexity and space com- 

lexity of these state-of-the-art methods. We also list the train- 

ng computation time of all these methods on the Wiki, the Pascal 

OC, and the NUS-WIDE datasets. All these methods are achieved 

ith matlab code and tested on a 3.4GHZ PC with 64GB RAM. In 

able 6 , top three methods are unsupervised and last seven meth- 

ds are supervised. In the results, d is the max dimension of fea- 

ures, n is the number of samples, k is the number of iterations 

ntil convergence, s denotes seconds, t is the number of groups 

uring unsupervised clustering, c is the group number for LGCFL. 

n general, d is much smaller than n . For example, on the NUS- 

IDE dataset, d is equal to 10 0 0, while n is 97,079. We can see
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Fig. 7. Performance variations of SRRLSL for the Text query vs. Image database and Image query vs. Text database tasks with respect to α and β on the Wiki, the Pascal 

VOC, and the NUS-WIDE datasets, respectively. 

Table 6 

Complexity and processing time of all related methods on the Wiki, the Pascal VOC, and the NUS-WIDE datasets, where 

d is the max dimension of features, n is the number of samples, k is the number of iterations, s denotes seconds, t is 

the number of groups during unsupervised clustering, c is the group number for LGCFL. 

Methods Time complexity Space complexity Time on Wiki Time on Pascal VOC Time on NUS-WIDE 

SCSM O(ktn 3 ) O(n 2 ) 96.56s 1015.35s —

SPGCM O(kd 3 + ktn 2 ) O(nd) 0.15s 1.52s 32.73s 

URRLSL O(knd 2 ) O(nd) 0.07s 1.31s 21.25s 

GMLDA O(dn 2 ) O(n 2 ) 0.15s 1.13s 495s 

GMMFA O(dn 2 ) O(n 2 ) 0.22s 2.29s 790s 

LCFS O(k (d 3 + n 2 . 376 )) O(n 2 ) 1.54s 21.28s 21000s 

LGCFL O(kdnc g ) O(nd) 0.02s 0.38s 8.04s 

JRL O(kdn 2 ) O(n 2 ) 2.28s 21.23s 8000s 

SRRLSL O(nd 2 ) O(nd) 0.01s 0.23s 2.59s 

o

t

c

u

p

t  

W

h

o

i

J  

3  

r

a

4

m

s

p

{  

t

v

m

m

α

l

ur methods under both supervised and unsupervised modes have 

he lowest complexities in both time and space aspects. The pro- 

essing time is also the shortest among all these methods. For 

nsupervised methods, SCSM has the highest computation com- 

lexity O(ktn 3 ) . Even on the Pascal VOC dataset, it needs more 

han 1,0 0 0 s, while our URRLSL only need 1.31 s. For the NUS-

IDE dataset where n is very large, SCSM fails to work. SPGCM 

as the similar complexity with our method. For supervised meth- 

ds, even on the largest NUS-WIDE dataset, our method can fin- 

sh training within 3 seconds, which is very fast. In comparison, 

RL needs 8,0 0 0 s to finish training on this dataset, which is about

,0 0 0 times more than that of our method. In this case, our algo-

ithm is very efficient and it can be easily extended to large scale 

pplications. 
i

9 
.8. Parameter sensitivity analysis 

Our method is relatively stable. Due to the page limit, we 

ainly analyze the supervised situation, which is similar to un- 

upervised condition. There are two parameters α and β in su- 

ervised mode. We tune these two parameters in the range of 

 0 . 001 , 0 . 01 , 0 . 1 , 1 , 10 , 100 } . In Fig. 7 , we present the results on all

hree datasets. We can observe that the experimental results are 

ery stable with various β on all three datasets. So the proposed 

ethod is insensitive to β . When α is between 0.01 and 1, our 

ethod can achieve the best performance. It is also insensitive to 

. 

Based on all above experimental results, we can get the fol- 

owing conclusions. First of all, the result of supervised methods 

s better than that of unsupervised methods. By incorporating the 
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abel information, we can get more discriminative separation be- 

ween classes in the latent subspace, which benefits the cross- 

odal retrieval. Secondly, our RRLSL method achieves very good 

erformance in both unsupervised and supervised tasks, which can 

e attributed to the effectiveness of reconstruction regularization. 

ith the regularization to recover the original data, the embed- 

ing in the latent space of our method can preserve more essen- 

ial information. And then, good features will benefit the retrieval. 

NN features show great improvement on the results. Finally, the 

ime and space complexity of our method is very low, so it can be

caled to very large datasets. 

. Conclusion 

In this paper, we have proposed a novel RRLSL method that 

akes both the low-rank subspace learning and original data re- 

onstruction into consideration to jointly learn the latent subspace 

nd the projection matrices, which can be applied to both unsuper- 

ised and supervised cross-modal retrieval. An efficient algorithm 

s presented for optimization. Extensive experiments on several re- 

ated datasets demonstrate the superiority of the proposed method 

ver other state-of-the-art methods, especially on the supervised 

ituation. Compared with existing methods, our main strengths lie 

n the lower computational complexity, better performance, and 

ider application for different situations. For the weakness, its ap- 

lication to the semi-supervised situation could be further investi- 

ated. For the future work, we would like to extend the proposed 

RLSL to the semi-supervised situation, where only a few samples 

re labeled. 
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ppendix 

In the following, we provide the detailed convergence analysis 

f the proposed algorithm in unsupervised situation. 

Recall that our objective function is: 

min 

,S,H 
L (W, S, H) = 

M ∑ 

i =1 

(‖ W i X i − S‖ 

2 
F + α‖ W 

T 
i S − X i ‖ 

2 
F + β‖ W i ‖ 

2 
F 

)
+ γk tr 

(
S T HS 

)
. (A.1) 

ince we have three variables, we divide the convergence analysis 

nto the following four parts. 
10 
(1) With S k and H 

k fixed, the problem to optimize W can be 

ormulated as: 

min 

W 

L (W, S k , H 

k ) 

= 

M ∑ 

i =1 

(‖ W i X i − S k ‖ 

2 
F + α‖ (S k ) T W i − X 

T 
i ‖ 

2 
F + β‖ W i ‖ 

2 
F 

)
, (A.2) 

hich is strongly convex with respect to W . By setting the deriva- 

ive of the objective function in Eq. (6) with respect to W i to zero,

e can get: 

αS k (S k ) T + βI) W i + W i X i X 

T 
i = (1 + α) S k X 

T 
i , i = 1 , . . . , M. (A.3)

By denoting A = αS k (S k ) T + βI, B i = X i X 
T 
i 
, and C i = (1 + α) S k X T 

i 
,

ptimization in Eq. (7) can be reformulated as: 

W i + W i B i = C i , i = 1 , 2 , . . . , M, (A.4)

hich is equivalent to the following problem: 

I m 

� A + B 

T 
i � I n 

)
vec (W i ) = vec (C i ) , i = 1 , 2 , . . . , M. (A.5)

ince A � βI, B i � 0 , and S k S kT � 0 , we have 
(
I m 

� A + B T 
i 

� I n 
)

�
I. Then: 

 (W 

k , S k , H 

k ) − L (W 

k +1 , S k , H 

k ) ≥ β

2 

∥∥vec (W 

k +1 
i 

) − vec (W 

k 
i ) 

∥∥2 

2 

= 

β

2 

∥∥W 

k +1 
i 

− W 

k 
i 

∥∥2 

F 
. (A.6) 

2) With S k fixed, H 

k +1 = (S k (S k ) T + εI) −1 / 2 . Denote ‖ X‖ F =
ax i ‖ X i ‖ F and ‖ W 

k ‖ F = max i ‖ W 

k 
i 
‖ F , then according to Eq. (11) ,

e have: 

S k 
∥∥

F 
≤ 1 

2 M 

∗ (2(1 + α)) 

∥∥∥∥∥
M ∑ 

i =1 

W 

k 
i X i 

∥∥∥∥∥
F 

≤ 1 + α

M 

∗ M ∗ ‖ 

X ‖ F ∗
∥∥W 

k 
∥∥

F 

= (1 + α) ‖ 

X ‖ F ∗
∥∥W 

k 
∥∥

F 
. (A.7) 

ecall that we also add a regularization term on W, so W 

k 

s bounded. Therefore, S k is also bounded. For convenience, let 

 S k ‖ F ≤ B s for all k . Denote U = [ S K−1 , εI] and V = [ S K , εI] , then

≤ ‖ U‖ F ≤ B s + ε and ε ≤ ‖ V ‖ F ≤ B s + ε, where ε > 0 is a small

ositive constant. We have: 

L (W 

k +1 , S k , H 

k ) − L (W 

k +1 , S k , H 

k +1 ) 
∣∣

= 

∣∣γk tr 
(
(S k ) T H 

k S k 
)

− γk tr 
(
(S k ) T H 

k +1 S k 
)∣∣

≤ γk B 

2 
s 

∥∥H 

k − H 

k +1 
∥∥

F 

≤ γk B 

2 
s 

∥∥(U U 

T ) −1 / 2 − (V V 

T ) −1 / 2 ) 
∥∥

F 
. (A.8) 

ince 

(U U 

T ) −1 / 2 − (V V 

T ) −1 / 2 
)
(U U 

T ) −1 / 2 

+ (V V 

T ) −1 / 2 
(
(U U 

T ) −1 / 2 − (V V 

T ) −1 / 2 
)

= (U U 

T ) −1 − (V V 

T ) −1 = −(U U 

T ) −1 (U U 

T − V V 

T )(V V 

T ) −1 , 

(A.9) 

hen we can get: 

L (W 

k +1 , S k , H 

k ) − L (W 

k +1 , S k , H 

k +1 ) 
∣∣

≤ γk B 

2 
s 

∥∥(U U 

T ) −1 / 2 − (V V 

T ) −1 / 2 ) 
∥∥

F 

≤ γk B 

2 
s 

∥∥∥(
(U U 

T ) −1 / 2 
� I + I � (V V 

T ) −1 / 2 
)−1 

∥∥∥
×

∥∥U U 

T − V V 

T 
∥∥

F 

∥∥U U 

T 
∥∥−1 ∥∥V V 

T 
∥∥−1 

≤ γk B 

2 
s ∗

B s + ε ∗ 1 

4 
∗
∥∥U U 

T − V V 

T 
∥∥

F 
2 ε
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= γk 
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2 
s (B s + ε) 

2 ε4 
∗
∥∥U(U − V ) T + (U − V ) V 

T 
∥∥

F 

≤ γk 

B 

2 
s (B s + ε) 2 

ε4 
‖ 

U − V ‖ F 

= γk 

B 

2 
s (B s + ε) 2 

ε4 

∥∥S k −1 − S k 
∥∥

F 
. (A.10) 

y setting γk ≤ ε4 

(B s + ε) 4 

∥∥S k −1 − S k 
∥∥

F 
, we can get: 

L (W 

k +1 , S k , H 

k ) − L (W 

k +1 , S k , H 

k +1 ) 
∣∣ ≤

∥∥S k −1 − S k 
∥∥2 

F 
. (A.11) 

herefore, 

 (W 

k +1 , S k , H 

k ) − L (W 

k +1 , S k , H 

k +1 ) ≥ −
∥∥S k −1 − S k 

∥∥2 

F 
. (A.12) 

3) Similarly, with W 

k +1 and H 

k +1 fixed, S can be solved by mini- 

izing the following problem: 

 

k +1 = argmin 

S 

L (W 

k +1 , S, H 

k +1 ) 

= argmin 

S 

M ∑ 

i =1 

(‖ W 

k +1 
i 

X i − S‖ 

2 
F + α‖ (W 

k +1 
i 

) T S − X i ‖ 

2 
F 

)
+ γk tr 

(
S T H 

k +1 S 
)
. (A.13) 

he above problem has the following close-form solution: 

 

k +1 = 

( 

2 M · I + 2 α
M ∑ 

i =1 

W 

k +1 
i 

(W 

k +1 
i 

) T + γk (H 

k +1 + (H 

k +1 ) T ) 

) −1 

×
( 

2(1 + α) 
M ∑ 

i =1 

W 

k +1 
i 

X i 

) 

. (A.14) 

ince H 

k +1 = (S k (S k ) T ) −1 / 2 � 0 , then H 

k +1 + (H 

k +1 ) T � 0 . We also

ave W 

k +1 
i 

(W 

k +1 
i 

) T � 0 . So L (W 

k +1 , S, H 

k +1 ) is 2 M-strongly convex.

herefore, 

 (W 

k +1 , S k , H 

k +1 ) − L (W 

k +1 , S k +1 , H 

k +1 ) ≥ 2 M‖ S k +1 − S k ‖ 

2 
F . 

(A.15) 

4) By combining Eqs. (A.6) , (A.12) and (A.16) , we can get: 

 (W 

k , S k , H 

k ) − L (W 

k +1 , S k +1 , H 

k +1 ) 

≥ (2 M − 1) ‖ S k +1 − S k ‖ 

2 
F + 

β

2 

∥∥W 

k +1 
i 

− W 

k 
i 

∥∥2 

F 
. (A.16) 

n summary, our objective function will monotonically decrease 

nd it has lower bound, so it will converge to a stationary point. 
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