
Long-Tail Hashing
Yong Chen

1,2
, Yuqing Hou

3
, Shu Leng

4
, Qing Zhang

3
, Zhouchen Lin

1,2
, Dell Zhang

5,6∗

1
Key Lab. of Machine Perception (MoE), School of EECS, Peking University, Beijing, China

2
Pazhou Lab, Guangzhou, China

3
Meituan, Beijing, China

4
Department of Automation, Tsinghua University, Beijing, China

5
Blue Prism AI Labs, London, UK

6
Birkbeck, University of London, UK

{butterfly.chinese,zlin}@pku.edu.cn;{houyuqing,zhangqing31}@meituan.com;lengshu@mail.tsinghua.edu.cn;dell.z@ieee.org

ABSTRACT

Hashing, which represents data items as compact binary codes,

has been becoming a more and more popular technique, e.g., for

large-scale image retrieval, owing to its super fast search speed

as well as its extremely economical memory consumption. How-

ever, existing hashing methods all try to learn binary codes from

artificially balanced datasets which are not commonly available

in real-world scenarios. In this paper, we propose Long-Tail Hash-
ing Network (LTHNet), a novel two-stage deep hashing approach

that addresses the problem of learning to hash for more realistic

datasets where the data labels roughly exhibit a long-tail distri-

bution. Specifically, the first stage is to learn relaxed embeddings

of the given dataset with its long-tail characteristic taken into ac-

count via an end-to-end deep neural network; the second stage is

to binarize those obtained embeddings. A critical part of LTHNet is

its dynamic meta-embedding module extended with a determinan-

tal point process which can adaptively realize visual knowledge

transfer between head and tail classes, and thus enrich image repre-

sentations for hashing. Our experiments have shown that LTHNet

achieves dramatic performance improvements over all state-of-the-

art competitors on long-tail datasets, with no or little sacrifice on

balanced datasets. Further analyses reveal that while to our surprise

directly manipulating class weights in the loss function has little

effect, the extended dynamic meta-embedding module, the usage

of cross-entropy loss instead of square loss, and the relatively small

batch-size for training all contribute to LTHNet’s success.

CCS CONCEPTS

• Information systems→ Image search; •Computingmethod-

ologies → Image representations.

KEYWORDS

learning to hash, long-tail datasets, memory network, large-scale

multimedia retrieval

∗
Zhouchen Lin and Dell Zhang are joint corresponding authors. Dell Zhang is

currently on leave from Birkbeck, University of London, and works full-time for Blue

Prism AI Labs.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGIR ’21, July 11–15, 2021, Virtual Event, Canada
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8037-9/21/07. . . $15.00

https://doi.org/10.1145/3404835.3462888

ACM Reference Format:

Yong Chen
1,2
, Yuqing Hou

3
, Shu Leng

4
, Qing Zhang

3
, Zhouchen Lin

1,2
, Dell

Zhang
5,6
. 2021. Long-Tail Hashing. In Proceedings of the 44th International

ACM SIGIR Conference on Research and Development in Information Retrieval
(SIGIR ’21), July 11–15, 2021, Virtual Event, Canada. ACM, New York, NY,

USA, 11 pages. https://doi.org/10.1145/3404835.3462888

1 INTRODUCTION

Hashing, in the context of information retrieval, refers to a spe-

cial embedding technique that aims to encode data samples into

binary codes (i.e., hash codes) [71, 84]. Since binary codes can

be economically stored and also quickly computed, hashing has

witnessed wide applications in large-scale retrieval systems for

images etc. Generally speaking, there are two kinds of hashing

methods: data-independent and data-dependent. The most rep-

resentative method in the former category is Locality Sensitive

Hashing (LSH) [19] which simply utilizes random projections as

the hash functions. The latter category is also known as learning
to hash, because such methods learn the hash functions from a set

of training samples first and then use the obtained hash functions

to predict the binary codes for the test (query) samples [3, 17, 25–

27, 48, 53, 54, 56, 65, 67, 69, 72, 73, 78, 80, 83, 84, 86, 88].

Specifically, learning to hash can be conducted in two different

ways: unsupervised or supervised. Unsupervised learning to hash

methods such as ITQ [20], DGH [50], DeepBit [43], SSDH [79],

and KNNH [30] rely on the training samples themselves only. In

contrast, supervised learning to hashmethods such as FastHash [42],

SDH [64], DPSH [40], HashNet [2], DSDH [38], FSSH [56], and

SCDH [6] make use of not only the training samples but also their

semantic labels, therefore they usually outperform unsupervised

methods.

However, existing learning to hash methods, whether unsuper-

vised or supervised, are mostly trained and tested on artificially

balanced datasets which are not commonly available in real-world

scenarios. Many recent studies [32, 52, 87, 89] indicate that real-life

image datasets have skewed distributions with a long tail, i.e., a
few dominant classes (a.k.a. head classes) account for most exam-

ples while the other classes (a.k.a. tail classes) each contain only

a few examples. Current hashing methods may not work well on

such long-tail datasets, especially for those data-poor classes. The

absence of techniques for learning to hash from realistic long-tail

datasets is the motivation of this work.

To address the above challenging problem, we propose a novel

learning to hash method named Long-Tail Hashing Network (LTH-

Net) that marries up the deep learning approach to hashing and

the mechanism of visual memory. In recent years, deep neural net-

works have proved to be superb at learning from large-scale datasets.

https://doi.org/10.1145/3404835.3462888
https://doi.org/10.1145/3404835.3462888

Particularly, deep hashing methods like DPSH [40], HashNet [2],

DSDH [38], and CSQ [81] have shown great advantages over classic,

non-deep hashing methods (a.k.a. shallow hashing methods). In or-

der to handle the long-tail distribution, we equip our deep hashing

model with an extended dynamic meta-embedding module which

adaptively combines direct features and memory features [52]. The

adaptation and utilization of dynamic meta-embedding enrich the

semantic representations of images and thus facilitate the knowl-

edge transfer from data-rich head classes to data-poor tail classes.

Our proposed LTHNet method consists of two stages: the first is

to learn relaxed embeddings of the given dataset with its long-tail

characteristic taken into account via an end-to-end neural network;

the second is to binarize those obtained embeddings. Extensive

experiments have been conducted to demonstrate that LTHNet can

achieve dramatic performance improvements over all state-of-the-

art competitors on long-tail datasets, with no or little sacrifice on

balanced datasets. Furthermore, the parameter sensitivity analy-

ses and ablation studies lead to new insights that the problem of

long-tail hashing cannot be solved simply by reweighting different

classes in the loss function, but the combination of extended dy-

namic meta-embedding, cross-entropy loss, and small batch-size

will do the trick.

As far as we know, this is the first work to learn from long-tail

datasets for hashing. Since most real-world datasets exhibit long-

tail characteristics [9, 57, 58], LTHNet is likely to be effective for a

wide range of applications, though we focus on image retrieval in

this paper.

2 RELATEDWORK

LTHNet is related to the existing work in both learning to hash and

learning from long-tail data.

2.1 Learning to Hash

The problem of learning to hash is to obtain binary codes for out-

of-sample queries by learning the hash functions from training

samples. Here, we focus on supervised learning to hash methods

because they usually perform much better than unsupervised ones.

Similar to the case in learning to rank [1, 49], such supervised

learning to hash methods could be further divided into three groups:

pointwise, pairwise, and listwise.

Pointwisemethods formulate learning to hash as a classification

problem, i.e., to train a classifier based on ground-truth labeled data

and use it to predict each sample’s class label. The representative

methods include SDH [64], FSDH [23], R2SDH [22], HC-SDH [35],

DSDH [38, 39], and SDMH [55]. All those methods could be viewed

as different variants of SDH each of which has its particular empha-

sis. For example, FSDH and R2SDH try on enhancing the efficiency

and the robustness of SDH respectively; DSDH aims to boost the

performance by utilizing deep neural networks; and SDMH is tai-

lored for multimedia search.

Pairwise methods formulate learning to hash as a regression

problem, i.e., aligning the learned binary codes’ pairwise similari-

ties with those derived from the class labels. The typical examples

in this group are KSH [51], LFH [86], COSDISH [34], SCDH [6],

EDMH [7], NRDH [80], DPSH [40], HashNet [2] and CSQ [81]. Al-

though those methods are based on essentially the same underlying

idea, they have different focuses or strengths. For example, the first

five methods listed above are shallow hashing methods that can

be trained with higher efficiency, while the rest are deep hashing

methods that are likely to achieve higher effectiveness; COSDISH

and SCDH benefit from their specifically designed algorithms for

fast discrete optimization; CSQ produces noticeable improvements

by pulling the similar samples together and pushing the dissimilar

ones apart; and EDMH generalizes the technique to cross-modal

retrieval.

Listwise methods are devised to maximize the consistency be-

tween the ground-truth relevance list and the calculated ranking

positions for any given query. Among them, RPH [74] directly op-

timizes the nDCG measure to obtain effective hashing codes with

high ranking quality; RSH [70], DTSH [76] and TDH [12] all convert

the ranking list to a set of triplets and then learn the hash functions

from those triplets.

In some sense, our proposed LTHNet approach is developed on

top of the popular pointwise SDH [64] framework.

2.2 Learning from Long-Tail Data

The phenomenon of long-tail distributions is ubiquitous in IR [8, 14,

17, 18, 47, 58, 82, 85]. Specifically, for learning from datasets with a

skewed, long-tail distribution of class labels, several strategies have

been proposed in previous studies.

Data resampling tries to reshape the original imbalanced dataset

to enforce a uniform distribution of class labels. It could be done

by either over-sampling, i.e., duplicating some samples in the tail

classes [4, 24, 28], or under-sampling, i.e., discarding some samples

in the head classes [33, 41]. Although resampling has been shown

to be helpful when the dataset is imbalanced, it also brings some

risks: duplicating too many samples could cause overfitting for the

tail classes [4] while discarding too many samples might lead to

underfitting for the head classes [33].

Class reweighting puts different importance weights on differ-

ent classes in the loss function for learning. Specifically, we would

give large weights to tail classes and small weights to head classes,

in order to mitigate the undesirable influences of class size. Lin et

al. [44, 45] generalized the cross-entropy loss function to accom-

modate weighted training samples. Cui et al. [10] replace the raw

number of samples in a class with the effective number which can

be regarded as a form of reweighting. In principle, such reweighting

methods are essentially equivalent to the aforementioned resam-

pling methods, but usually they are more computationally efficient.

Knowledge transfer is based on the idea that the hidden knowl-

edge could be shared across different classes and be leveraged to

enrich data representations via meta learning or attention mecha-

nisms. Wang et al. [77] and Cui et al. [11] deal with class imbalance

by transferring the knowledge learned from major classes to minor

classes. Liu et al. [52] devised a dynamic meta-embedding module

which combines direct image features with corresponding mem-

ory features to enrich both head and tail samples’ representations.

In brief, this kind of methods are targeted at enriching the data

representation rather than reshaping the data distribution for down-

stream tasks.

Other strategies beyond the above end-to-end learning paradigm

have emerged recently. A couple of latest papers [32, 89] reveal

Sorted Class Index

N
u

m
b

er
 o

f
T

ra
in

in
g
 I

m
a
g
es

Tail class

Head class

Head
Tail

Input CNNs

.

.

.

.

.

.

FC+ReLU

.

.

.

...

FC+Tanh

FC+Softmax

Memory
×

Selector

Hallucinator

⊙

+

Dynamic Meta-Embedding

.

.

.

Backbone

.

.

.

FC+Tanh

0.2

0.9

0.9

-0.8

.

.

.

Hash Layer

.

.

.

FC+Softmax

Classifier

.

.

.

Label y

Output h Output

-0.1

0.9

-0.7

Long-Tail Dataset

ŷ

v
meta

v
memory

v
direct e

o

Figure 1: The architecture of Long-Tail Hashing Network (LTHNet).

that it could be advantageous to decouple representation learning

and classification into two separate stages when dealing with im-

balanced datasets. In addition, an ensemble approach, RIDE [75],

trains diverse distribution-aware experts and routes an instance to

additional experts when necessary for long-tail recognition.

In this paper, we mainly explore the potentials of class reweight-

ing and knowledge transfer for learning to hash on long-tail datasets.

3 PROBLEM STATEMENT

Given a set of samples (e.g. images) X = {(x𝑛, 𝑙𝑛)}𝑁𝑛=1, x𝑛 ∈ R𝑑
denotes the 𝑑-dimensional feature vector for the 𝑛-th sample and

𝑙𝑛 ∈ {1, 2, · · · ,𝐶} corresponds to its class label index, where𝑁 is the

number of samples and𝐶 is the number of classes inX. Besides, let

𝑠𝑖 represent the number of samples in the 𝑖-th class (𝑖 = 1, 2, · · · ,𝐶).
Without loss of generality, we assume that 𝑠1 ≥ 𝑠2 ≥ · · · ≥ 𝑠𝐶 .

Then the concept of long-tail datasets and long-tail hashing can be

formally defined as follows.

Definition 1 (Long-Tail Dataset). A dataset X is called
a long-tail dataset if the sizes of its sorted classes follow the Zipf’s
law [57, 59], i.e.,

𝑠𝑖 = 𝑠1 × 𝑖−𝜇 , (1)

where 𝜇 is a parameter controlling the degree of data imbalance that
is measured by the imbalance factor (IF for short) 𝑠1/𝑠𝐶 .

In practice, the class size distribution of a real-world long-tail

dataset is probably not exactly Zipfian but following a similar dis-

tribution [9, 58].

Definition 2 (Long-Tail Hashing). Given a long-tail dataset
X = {(x𝑛, 𝑙𝑛)}𝑁𝑛=1, the problem of long-tail hashing is to learn a set
of hash functions {h𝑗 (·)}𝑞𝑗=1 based on it so that

H(x𝑛)
Δ
= [h1 (x𝑛), · · · , h𝑞 (x𝑛)]𝑇 = b𝑛, (2)

where b𝑛 ∈ {−1, +1}𝑞 denotes the hash code for the 𝑛-th sample and
𝑞 is the code length.

For any data sample x, its 𝑞-bit hash code b can be calculated as

H(x) with the learned mapping H that consists of 𝑞 hash functions

each corresponding to a specific bit.

Table 1: LTHNet configurations.

Layer Configuration

0: Input Image (e.g., x)
1: Backbone ResNet34 (pre-trained)

2: FC+ReLU 512×2000; ReLU(·)

3: Extended DME

FC+Tanh 2000×2000; Tanh(·)
FC+Softmax 2000×(𝑘 + 1)𝐶 ; Softmax(·)
Memory (𝑘 + 1)𝐶×2000

4: Hash Layer 2000×𝑞; Tanh(·)
5: Classifier 𝑞 ×𝐶 ; Softmax(·)
6: Output [vdirect,h,ŷ]

4 THE PROPOSED METHOD

In this section, we elaborate on our proposed LTHNet, a novel deep

hashing method that is designed to learn a set of hash functions H
effectively from long-tail datasets. Fig. 1 illustrates the architecture

of LTHNet which contains four key components: (1) direct feature

learning vdirect, (2) extended dynamic meta-embedding vmeta
, (3)

the hash layer h, and (4) the classifier ŷ. Although our objective

here is not really to perform classification, a classifier is included to

enable supervised learning of hash functions from labeled datasets.

Table 1 describes the detailed configurations of LTHNet.

4.1 Direct Feature Learning

Deep convolutional neural networks (CNNs) have achieved great

success in feature learning (representation learning) for images

and further facilitated a large number of downstream tasks [29,

37, 46, 66]. In this paper, we choose the popular ResNet34
1
pre-

trained on ImageNet [13] as the backbone of our LTHNet (Layer#1

in Table 1), which is followed by “FC+ReLU”, a fully connected

layer of neurons with the ReLU activation function (Layer#2 in

Table 1). From Layer#0 to Layer#2, the direct feature vdirect would
be learned. The reason why one more FC layer is built on top of the

direct output of ResNet34 is to allow for experimental comparisons

between the “deep hashing” methods and those “deep features +

1
https://pytorch.org/docs/stable/torchvision/models.html

https://pytorch.org/docs/stable/torchvision/models.html

shallow hashing” methods. The latter refers to supplying the 512-

dimensional direct features output of the pre-trained ResNet34 to

a traditional shallow hashing model such as SDH [64], FSSH [56],

and SCDH [6]. Since those (kernel-based) shallow hashing models

usually utilize 2000 anchors to achieve a good trade-off between

competitive performance and fast speed, we make use of 512×2000
FC (Layer#2) for a fair comparison.

4.2 Extended Dynamic Meta-Embedding

For head classes, there are abundant samples for embedding via

CNNs, but that is not the case for tail classes. To augment the

direct feature vdirect especially for tail classes, we extend the idea

of dynamic meta-embedding (DME) that was originally developed

for pattern recognition [52] and apply it to hashing. Specifically,

it merges direct features with memory features [63], which would

enable the transfer of semantic knowledge between data-rich and

data-poor classes. As for the visual memory, it could simply be

represented as a set of class centroids M = {m(𝑖)}𝐶
𝑖=1

, which in

fact summarizes the visual concept for each class of images in the

training dataset [31]. Let c(𝑖) denote the centroid of the 𝑖-th class’s

samples:

c(𝑖) =
∑𝑁
𝑛=1 v

direct

𝑛 1 {𝑙𝑛 = 𝑖}∑𝑁
𝑛=1 1 {𝑙𝑛 = 𝑖}

, (3)

where 1{·} is the indicator function, vdirect𝑛 is the 𝑛-th sample’s

direct feature, and 𝑖 = 1, 2, · · · ,𝐶 .
Moreover, deviating from the original DME, we argue that it

is often insufficient for a single prototype to represent a category,

especially for the tail classes [90]. Therefore, we use the determi-
nantal point process (DPP)2 [5, 16] to find 𝑘 more diverse samples

similar to the centroid of each class to further enrich the memory:

M
Δ
= {m𝑗 } (𝑘+1)𝐶𝑗=1

= ∪𝐶𝑖=1 ({c(𝑖)} ∪ DPP𝑘 (𝑖)) , (4)

whereDPP𝑘 (𝑖) is a function that returns a set of 𝑘 samples for the 𝑖-

th class as its summarizing prototypes. Thus we would have (𝑘+1)𝐶
prototypes in total. Since 𝑘 should be smaller than the minimum

size of classes, we set it to 3 by default, which would not incur

much additional cost of storage or computation. Our experiments

will show that it is indeed beneficial to employ multiple prototypes

rather than a single one for each class in the long-tail setting (see

Section 6.6).

To facilitate visual knowledge transfer from data-rich to data-

poor classes, the memory feature is designed as:

vmemory = o𝑇M =
∑︁(𝑘+1)𝐶

𝑗=1
𝑜 𝑗m𝑗 , (5)

whereM is the matrix of (𝑘 + 1)𝐶 prototype vrectors inM stacked

together, and o ∈ R(𝑘+1)𝐶 could be viewed as the attention [68]

over the class prototypes hallucinated from direct features. Con-

cretely, we use “FC+Softmax” to obtain the attention coefficients

from vdirect, i.e., o = Softmax(FC(vdirect)).
The memory feature would be more important for the data-poor

tail classes than for the data-rich head classes in terms of feature

enrichment. To reflect the different impacts of the memory feature

upon different classes, we introduce an adaptive selector (see Fig. 1).

2
https://github.com/laming-chen/fast-map-dpp

Algorithm 1: Long-Tail Hashing Network (LTHNet)

/* A deep neural network for learning to hash

from long-tail data */

1 Input: the training dataset X = {(x𝑛, 𝑙𝑛)}𝑁𝑛=1, the number

of classes 𝐶 , the maximum number of epochs MaxEpoch,
and the hyperparameter 𝛽 and 𝑘 ;

2 Initialize LTHNet parameters 𝜽 ;

3 while not MaxEpoch do

/* Memory: update M = {m𝑗 } (𝑘+1)𝐶𝑗=1
*/

4 for 𝑛 = 1 to 𝑁 do

5 [vdirect𝑛 ,∼,∼] = LTHNet(x𝑛 ; M, 𝜽);

6 end

7 Compute the centroid for each class via Eq. (3) and

retrieve 𝑘-more diverse and similar samples for each

centroid via Eq. (4), and the memory is updated as

M = {m𝑗 } (𝑘+1)𝐶𝑗=1
;

/* LTHNet training: update 𝜽 */

8 for x in Dataloader(X) do
9 [∼,∼,ŷ] = LTHNet(x; M, 𝜽);

10 𝐿CB (ŷ, y);
11 𝜽 = RMSprop(𝐿CB, 𝜽);

12 end

13 end

/* Out-of-samples (xoos) Hashing */

14 [∼,hoos,∼] = LTHNet(xoos; M, 𝜽);

15 boos = sgn(hoos);

Thus, the final output embedding vmeta
, which combines the direct

feature and the memory feature, is written as:

vmeta = vdirect + e ⊙ vmemory, (6)

where e acts as the adaptive selector of concepts and ⊙ denotes the

Hadamard product. Specifically, we use “FC+Tanh” to derive the

selector weights from vdirect, i.e., e = Tanh(FC(vdirect)).

4.3 Hash Layer

After Layer#3, each sample’s embedding would have been seman-

tically enriched. Then, a hash layer (Layer#4) is further appended

for the generation of binary codes:

htrue = sgn(FC(vmeta)), (7)

where sgn(·) is the element-wise sign function, i.e., it outputs +1
when the input is non-negative and −1 otherwise. Hence, htrue ∈
{−1, +1}𝑞 represents the hash code for the input sample x.

It is worth mentioning that sgn(·) is discontinuous and thus not

differentiable at 0, and worst of all, for all other input values its

gradient would be just zero. Thus sgn(·) poses an obstacle to the

back-propagation training of neural network [60]. To overcome this

problem, we adopt a two-stage strategy: first, the direct “hard” hash

mapping Eq. (7) is relaxed into:

h = Tanh(FC(vmeta)), (8)

whose output will consist of real values between −1 and +1, as
illustrated in Fig. 1; second, after the end-to-end learning from

https://github.com/laming-chen/fast-map-dpp

the long-tail training dataset, the real-valued output vector h is

binarized with:

b = sgn(h), (9)

and b ∈ {−1, +1}𝑞 is the final hash code for the input image sample.

Although it has been found in previous studies that such a real

relaxation of binary constraints might lead to large quantization

errors [6, 34, 50, 56, 64], it is the simplest way to train a deep neural

network for binary outputs without introducing extra interme-

diate variables and complex optimization techniques [38]. More

importantly, this simple two-stage strategy works well in prac-

tice delivering significant performance gains on both traditional

balanced datasets and realistic long-tail datasets.

4.4 Classifier

Intuitively, better hash codes should lead to more accurate classifi-

cations. Therefore, a classifier (Layer#5) is introduced at the end of

LTHNet so as to carry out supervised learning:

ŷ = Softmax(FC(h)), (10)

where ŷ is the predicted probability distribution over class labels.

Finally, the input sample is going to be categorized into the class of

the highest probability.

Bringing all the above pieces together, our designed LTHNet can

be summed up as:

[vdirect, h, ŷ] = LTHNet(x;M, 𝜽), (11)

where vdirect, h and ŷ represent the input sample x’s direct fea-
ture, the relaxed hash code, and the predicted class distribution

respectively, while 𝜽 denotes the neural network model parame-

ters. Among the outputs of LTHNet, vdirect is used to update the

visual memoryM, h is for the generation of binary codes, and ŷ
serves the purpose of supervise learning. Given the probabilistic

prediction ŷ and the corresponding ground-truth one-hot vector y,
the commonly used cross-entropy loss function for classification is:

𝐿(ŷ, y) = −
∑︁𝐶

𝑖=1
𝑦𝑖 log(𝑦𝑖). (12)

In order to deal with the severe class imbalance in long-tail datasets,

we generalize Eq. (12) to a class-weighted version [10]:

𝐿CB (ŷ, y) =
1

𝐸𝑛y

𝐿(ŷ, y) = 1 − 𝛽

1 − 𝛽𝑛y
𝐿(ŷ, y), (13)

where 𝐸𝑛y = (1 − 𝛽𝑛y)/(1 − 𝛽) is the effective number of samples

in class y, which is calculated using the actual number of samples

(𝑛y) and a hyperparameter 𝛽 ∈ [0, 1). Note that 𝛽 = 0 means no

reweighting, i.e., backing off to Eq. (12), while 𝛽 → 1 indicates

reweighting each class by the reciprocal of its actual size.

5 LEARNING ALGORITHM

The parameters of the LTHNet model to be learned in the training

stage include M and 𝜽 . For the update of parameters M in each

iteration, we carry over all the training samples, compute the class

centroids via Eq. (3), and then retrieve 𝑘 more diverse and similar

samples via Eq. (4) to form the renewed memory. For the update of

parameters 𝜽 in each iteration, we sample a mini-batch of images

from the training set, and then perform back-propagation using

the gradients calculated on these sampled images. Algorithm 1

describes the complete learning procedurewhich iteratively updates

Table 2: Statistics of long-tail benchmarks with various IFs.

Cifar100 𝜇 𝑛max 𝑛min 𝑛
db

𝑛query 𝑛train

IF=1 0.000 500 500 50k 10,000 50,000

IF=50 0.830 500 10 50k 10,000 3,732

IF=100 0.990 500 5 50k 10,000 2,598

ImageNet100 𝜇 𝑛max 𝑛min 𝑛
db

𝑛query 𝑛train

IF=1 0.000 100 100 130k 5,000 10,000

IF=50 0.845 1300 26 130k 5,000 9,437

IF=100 0.990 1300 13 130k 5,000 6,834

0 1 2 3 4 5

Sorted Class Index (log)

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

T
he

 N
um

be
r

of
 T

ra
in

in
g

S
am

pl
es

 (
lo

g)

Cifar100

IF=1
IF=50
IF=100

(a) Cifar100

0 1 2 3 4 5

Sorted Class Index (log)

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5

T
he

 N
um

be
r

of
 T

ra
in

in
g

S
am

pl
es

 (
lo

g)

ImageNet100

IF=1
IF=50
IF=100

(b) ImageNet100

Figure 2: The log-log plots of curated image datasets with

various imbalance factors (IFs).

M and 𝜽 until they have converged or the number of epochs has

reached the preset maximum.

Given any new test (query) image xoos, we can use the learned

LTHNet model to compute the real-valued hash vector hoos first,
and then binarize it into the final hash code boos.

6 EXPERIMENTS

We have conducted extensive experiments to evaluate LTHNet

against several state-of-the-art hashing methods on both balanced

and long-tail benchmarks. All the datasets and source codes for our

experiments are available online
3
.

6.1 Datasets

We have curated 2 balanced and 4 long-tail benchmarks based on

two popular public image datasets Cifar100
4
and ImageNet100

5
.

Cifar100 [36] includes a 100-class database with 500 images

per class as well as a 100-class query set with 100 images per class.

To construct a variety of training sets spanning from perfectly

balanced to very skewed, we randomly sample images from the

database with 𝑠1 = 500 and 𝜇 = 0, 0.83, 0.99, thus the sizes of the

generated classes would meet the Zipf’s law (Eq. (1)). In the end,

we have three benchmarks with different IFs (1, 50 and 100).

ImageNet100 [2] is a 100-class subset randomly selected from

the original 1000-class single-labeled ImageNet dataset [13, 61]. It

contains a database with 1300 images per class and also a query set

3
https://github.com/butterfly-chinese/long-tail-hashing

4
https://www.cs.toronto.edu/~kriz/cifar.html

5
http://www.image-net.org/

https://github.com/butterfly-chinese/long-tail-hashing
https://www.cs.toronto.edu/~kriz/cifar.html
http://www.image-net.org/

with 50 images per class. First, we randomly sample 100 images per

class from the database and then construct a balanced training set

(i.e., IF = 1). Here we do not use all the 1300 images available for

each of the 100 classes because that would make our experiments

take too long to finish while using just 100 images per class would

be enough to get satisfactory results. Second, following the Zipf’s

law (Eq. (1)), we randomly sample images from the database with

𝑠1 = 1300 and 𝜇 = 0.845, 0.99 to finally obtain two long-tail training

sets (IF = 50 and 100).

Overall, 6 benchmarks are used for our experiments, as shown

in Table 2. Each benchmark comprises a database, a query set,

and a training set. Note that 𝑛max = 𝑠1, 𝑛min = 𝑠100, and 𝑛
db
,

𝑛query, 𝑛train correspond to the sizes of the database, the query set,

and the training set, respectively. Fig. 2 visualizes the class label

distributions of the above benchmarks.

For each benchmark, we train different hashing models on the

training set, and then employ them to compute the hash codes for

the images in the database as well as the query set. Given a query

image, a result image returned from hash code based search of the

database is deemed to be relevant if they share the same label.

6.2 Competitors and Metrics

To verify LTHNet’s effectiveness, we compare it with the following

competitivemodels: LSH
6
[19], PCAH

7
[20], ITQ

7
[21], KNNH

8
[30],

SDH
9
[64], COSDISH

10
[34], FastHash

11
[42], FSSH

12
[56], SCDH

13
[6],

DPSH
14

[40], HashNet
15

[2], DSDH
16

[38], and CSQ
17

[81]. The

first nine competitors are shallow hashing methods, while the rest

four are deep hashing methods. They are selected to cover both the

classic methods and the latest methods achieving the best perfor-

mances for learning to hash.

Regarding the performance measure, we adopt Mean Average

Precision (MAP). Although some IR researchers are against the

usage of MAP [15], there exist different opinions in the IR com-

munity [62]. More importantly, MAP has been used as the single

or major retrieval performance measure in almost all the learn-
ing to hash literature [20, 30, 34, 38, 42, 48, 50, 56, 64, 69], so we

follow the convention to make our experimental results compa-

rable with the others’. Formally, given 𝑄 query samples, we have

𝑀𝐴𝑃 = 1

𝑄

∑𝑄

𝑖=1
𝐴𝑃 (𝑞𝑖), while for the 𝑖-th query sample 𝑞𝑖 , its av-

erage precision 𝐴𝑃 (𝑞𝑖) = 1

𝑙𝑞𝑖

∑𝑅
𝑟=1 𝑝𝑞𝑖 (𝑟)𝛿𝑞𝑖 (𝑟), where 𝑙𝑞𝑖 is the

number of ground-truth neighbors of the query sample 𝑞𝑖 , 𝑅 is the

total number of data items, 𝑝𝑞𝑖 (𝑟) denotes the precision at cutoff 𝑟

for the ranking list, and 𝛿𝑞𝑖 (𝑟) indicates whether the 𝑟 -th data item

is relevant to the query sample 𝑞𝑖 .

6
http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html

7
https://github.com/willard-yuan/hashing-baseline-for-image-retrieval

8
https://github.com/HolmesShuan/K-Nearest-Neighbors-Hashing

9
https://github.com/bd622/DiscretHashing

10
http://cs.nju.edu.cn/lwj/learningtohash.html

11
https://bitbucket.org/chhshen/fasthash

12
https://lcbwlx.wixsite.com/fssh

13
https://github.com/keneeth/scdh

14
https://github.com/jiangqy/DPSH-pytorch

15
https://github.com/zhjy2016/HashNet

16
https://github.com/TreezzZ/DSDH_PyTorch

17
https://github.com/yuanli2333/Hadamard-Matrix-for-hashing

6.3 Settings

To ensure a fair comparison, we take the output of the ResNet34

model (pre-trained on ImageNet) — 512-dimensional feature vectors

— as the input to shallow hashing methods, and use the original

images directly as the input to deep hashing methods.

All the selected baseline hashing methods would have their re-

spective hyperparameters properly tuned on the training set for

the most competitive results (MAP scores), following the suggested

protocols in the corresponding original papers. As explained earlier,

the number of anchors is set to 2000 for all those kernel-based

shallow competitors such as SDH [64], FSSH [56] and SCDH [6].

Specifically, the deep hashing methods in experimental com-

parison, including our proposed LTHNet, all employ exactly the

same pre-trained ResNet34 as their backbone, and the mini-batch

RMSprop algorithm is used with learning rate 1e−5 and weight

decay 5e−4 to iteratively update the neural network parameters

𝜽 . Again, the above mentioned hyperparameters are tuned for the

most competitive results. Besides, the cosine annealing strategy im-

plemented in PyTorch is adopted to adjust the learning rate within

each epoch. The other deep hashing hyperparameters are set as

follows: 𝛽 = 0, 𝑀𝑎𝑥𝐸𝑝𝑜𝑐ℎ = 100, 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 8 for Cifar100 and

𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 = 16 for ImageNet100. More parameter setting details

can be found in the parameter sensitivity analysis (Section 6.5) and

also our released source code for experiments.

6.4 Results

Tables 3 and 4 show all the hashing methods’ MAP scores on the

curated Cifar100 and ImageNet100 datasets respectively, with dif-

ferent imbalance factors (IFs) and hash code lengths, where the

best scores are in boldface and the second best underlined. Note

that in addition to the standard LTHNet model, these tables also

contain the results of LTHNet𝑠𝑞 , a modified version of LTHNet

(with a different loss function), which will be explained later in the

ablation study (Section 6.6).

Looking at the experimental results on the traditional balanced

datasets (i.e., IF=1), we can see that the deep hashing methods al-

ways outperform the shallow hashing competitors, especially for

longer code lengths. This is not surprising, because modern deep

neural networks are known to have stronger fitting and general-

ization abilities than classic shallow learning methods, when there

are a massive amount of data for training. Most notably, our pro-

posed LTHNet method performs better than all the competitors

on Cifar100 while comes second only to the newly emerged CSQ

method on ImageNet100, which validates its effectiveness in the

traditional balanced setting.

Let us check the experimental results of the same hashing meth-

ods on the more realistic long-tail datasets (i.e., IF=50 and 100). It

is clear that the more skewed the label distribution, the more chal-

lenging the learning to hash task is, due to the scarcity of training

samples for tail classes. Interestingly, on long-tail datasets, exist-

ing deep hashing methods such as DSDH and DPSH can hardly

work: sometimes their performances are even inferior to that of a

shallow method SCDH. By contrast, our proposed LTHNet method

can outperform all the competing hashing methods including the

strongest contender CSQ. According to the paired 𝑡-test, the perfor-

mance improvements made by LTHNet (k=3) over the best baseline

http://www.cad.zju.edu.cn/home/dengcai/Data/DSH.html
https://github.com/willard-yuan/hashing-baseline-for-image-retrieval
https://github.com/HolmesShuan/K-Nearest-Neighbors-Hashing
https://github.com/bd622/DiscretHashing
http://cs.nju.edu.cn/lwj/learning to hash.html
https://bitbucket.org/chhshen/fasthash
https://lcbwlx.wixsite.com/fssh
https://github.com/keneeth/scdh
https://github.com/jiangqy/DPSH-pytorch
https://github.com/zhjy2016/HashNet
https://github.com/TreezzZ/DSDH_PyTorch
https://github.com/yuanli2333/Hadamard-Matrix-for-hashing

Table 3: Retrieval performances of all methods on Cifar100 with various imbalance factors (IFs) and code lengths.

Settings

/MAP/

Methods

IF=1 IF=50 IF=100

32 bits 64 bits 96 bits 32 bits 64 bits 96 bits 32 bits 64 bits 96 bits

LSH 0.0333 0.0458 0.0608 0.0333 0.0467 0.0615 0.0307 0.0480 0.0585

PCAH 0.0569 0.0612 0.0605 0.0532 0.0617 0.0627 0.0519 0.0608 0.0625

ITQ 0.0806 0.0976 0.1026 0.0709 0.0858 0.0903 0.0677 0.0824 0.0896

KNNH 0.0844 0.1012 0.1088 0.0703 0.0840 0.0906 0.0689 0.0810 0.0871

SDH 0.1950 0.2472 0.2739 0.1115 0.1363 0.1460 0.1006 0.1182 0.1258

COSDISH 0.1262 0.1921 0.2143 0.0695 0.0875 0.1000 0.0583 0.0724 0.0809

FastHash 0.2239 0.3161 0.3636 0.0787 0.1061 0.1211 0.0714 0.0903 0.1001

FSSH 0.1849 0.2207 0.2671 0.1101 0.1384 0.1512 0.0957 0.1146 0.1274

SCDH 0.2415 0.3003 0.3316 0.1282 0.1536 0.1661 0.1138 0.1335 0.1415

DPSH 0.3113 0.4506 0.4957 0.1069 0.1407 0.1634 0.0978 0.1216 0.1383

HashNet 0.4380 0.5719 0.6311 0.1726 0.1950 0.2079 0.1444 0.1559 0.1631

DSDH 0.5398 0.6100 0.6407 0.1119 0.1000 0.0999 0.0940 0.0872 0.0807

CSQ 0.7711 0.7984 0.7821 0.2221 0.2745 0.2669 0.1716 0.1992 0.1658

LTHNet𝑠𝑞 (k=0) 0.8191 0.8321 0.8362 0.2220 0.2144 0.2330 0.1624 0.1546 0.1508

LTHNet𝑠𝑞 (k=3) 0.8232 0.8360 0.8390 0.2432 0.2794 0.3116 0.1750 0.2079 0.2264

LTHNet (k=0) 0.8195 0.8336 0.8400 0.2427 0.3028 0.3309 0.1752 0.2240 0.2415

LTHNet (k=3) 0.8268 0.8416 0.8490 0.2687 0.3354 0.3484 0.1819 0.2376 0.2620

Table 4: Retrieval performances of all methods on ImageNet100 with various imbalance factors (IFs) and code lengths.

Settings

/MAP/

Methods

IF=1 IF=50 IF=100

32 bits 64 bits 96 bits 32 bits 64 bits 96 bits 32 bits 64 bits 96 bits

LSH 0.0613 0.1066 0.1557 0.0606 0.1121 0.1475 0.0556 0.1097 0.1510

PCAH 0.1478 0.2004 0.2042 0.1306 0.1817 0.1919 0.1280 0.1788 0.1947

ITQ 0.1965 0.2687 0.2907 0.1803 0.2458 0.2731 0.1719 0.2371 0.2667

KNNH 0.1996 0.2778 0.3007 0.1830 0.2537 0.2798 0.1766 0.2411 0.2666

SDH 0.4416 0.5108 0.5385 0.3553 0.4188 0.4414 0.3126 0.3733 0.3975

COSDISH 0.2875 0.4040 0.4559 0.2072 0.2900 0.3320 0.1763 0.2395 0.2731

FastHash 0.3178 0.4295 0.4744 0.2462 0.3274 0.3741 0.1932 0.2703 0.3100

FSSH 0.4746 0.5184 0.5528 0.3681 0.4533 0.4702 0.3312 0.4017 0.4314

SCDH 0.4894 0.5598 0.5854 0.3937 0.4726 0.4954 0.3601 0.4194 0.4422

DPSH 0.4887 0.6055 0.6514 0.2186 0.3125 0.3791 0.1788 0.2832 0.3468

HashNet 0.4410 0.6006 0.6421 0.3465 0.4034 0.4240 0.3101 0.3770 0.3800

DSDH 0.6554 0.7015 0.7231 0.2568 0.2617 0.2744 0.1841 0.2134 0.2429

CSQ 0.8507 0.8733 0.8657 0.6629 0.7022 0.6823 0.5989 0.5620 0.5495

LTHNet𝑠𝑞 (k=0) 0.7338 0.7713 0.8130 0.5523 0.5154 0.5530 0.3924 0.3490 0.4132

LTHNet𝑠𝑞 (k=3) 0.7896 0.8259 0.8465 0.7133 0.7491 0.7753 0.6333 0.6587 0.6958

LTHNet (k=0) 0.7924 0.8267 0.8382 0.7369 0.7804 0.7920 0.6771 0.7350 0.7528

LTHNet (k=3) 0.8142 0.8453 0.8592 0.7612 0.8007 0.8157 0.7146 0.7665 0.7828

CSQ are all statistically significant (𝑝-value < 0.05). This confirms

LTHNet’s superior performance in the realistic long-tail setting.

Overall, LTHNet is on a par with state-of-the-art hashing tech-

niques like CSQ on traditional balanced datasets, but it works sig-

nificantly better than all of them on realistic long-tail datasets.

6.5 Parameter Sensitivity

Fig. 3 shows the retrieval performances (MAP scores) of our pro-

posed LTHNet (k=3) with different 𝛽 values, under various imbal-

ance factors (IFs) and code lengths. To our surprise, from Fig. 3(a) to

Fig. 3(f), the performance curves are mostly stable with only slight

fluctuations: the changes of MAP scores across various 𝛽 values

are less than 0.006. This reveals that the intuitive idea of directly

balancing different classes in the loss function (i.e., assigning more

weights to the samples from small classes and less weights to the

samples from big classes) does not really work for long-tail hashing.

So in the end, we just set 𝛽 = 0 for our LTHNet experiments.

Fig. 4 examines how the effectiveness of LTHNet changes when

it is trained using different batchsizes. On Cifar100, when 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

equals 8, LTHNet performs the best; while on ImageNet100, the

0 0.9 0.99 0.999 0.9999
0.8

0.805

0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=1

32bits
64bits
96bits

(a) Cifar100, IF=1

0 0.9 0.99 0.999 0.9999
0.81

0.815

0.82

0.825

0.83

0.835

0.84

0.845

0.85

0.855

0.86

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=1

32bits
64bits
96bits

(b) ImageNet100, IF=1

0 0.9 0.99 0.999 0.9999
0.26

0.27

0.28

0.29

0.3

0.31

0.32

0.33

0.34

0.35

0.36

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=50

32bits
64bits
96bits

(c) Cifar100, IF=50

0 0.9 0.99 0.999 0.9999
0.75

0.76

0.77

0.78

0.79

0.8

0.81

0.82

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=50

32bits
64bits
96bits

(d) ImageNet100, IF=50

0 0.9 0.99 0.999 0.9999
0.17

0.18

0.19

0.2

0.21

0.22

0.23

0.24

0.25

0.26

0.27

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=100

32bits
64bits
96bits

(e) Cifar100, IF=100

0 0.9 0.99 0.999 0.9999
0.71

0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=100

32bits
64bits
96bits

(f) ImageNet100, IF=100

Figure 3: Retrieval performances of LTHNet (k=3) with dif-

ferent 𝛽 values. LTHNet (k=0) shows similar results.

optimal 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 is 16. Therefore, we set 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 to 8 and 16 for

Cifar100 and ImageNet100 benchmarks respectively in our experi-

ments. Generally speaking, on balanced datasets, LTHNet works

well with a wide range of batchsizes, but on long-tail datasets, LTH-

Net seems to require the batchsizes to be sufficiently small (e.g., 8

or 16) in order to yield good results. In addition, we have also tuned

the 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒 for other deep hashing methods in comparison, and

observed the similar phenomenon that a relatively small 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

(such as 16/32/64) is likely to perform better than a large 𝑏𝑎𝑡𝑐ℎ𝑠𝑖𝑧𝑒

(such as 128) on long-tail datasets.

6.6 Ablation Study

Is dynamic meta-embedding (Section 4.2) indeed useful for long-tail

hashing? To answer this question, we make a comparison between

LTHNet (k=0) with and without the extended DME module. Fig. 5

1 8 16 32 64 128

batchsize

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, LTH

IF=1 IF=50 IF=100

(a) Cifar100

1 8 16 32 64 128

batchsize

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, LTH

IF=1 IF=50 IF=100

(b) ImageNet100

Figure 4: Retrieval performances of LTHNet (k=3) with dif-

ferent batchsizes, for 64-bit codes. The results of LTHNet

(k=0) and other code lengths are similar.

plots their respective MAP scores under different settings. Obvi-

ously, the red performance curves (LTHNet with extended DME)

are always above the blue performance curves (LTHNet without

extended DME). Such consistent performance improvements under

various settings verify the benefits of DME for learning to hash, es-

pecially on long-tail datasets. Besides, by comparing LTHNet (k=0)

with LTHNet (k=3), or comparing LTHNet𝑠𝑞 (k=0) with LTHNet𝑠𝑞

(k=3), in Tables 3 and 4, we see that an enriched memory could

further boost LTHNet’s performance.

Furthermore, we wonder how the performance would change

if the cross-entropy loss (a.k.a. log loss) in the LTHNet model is re-

placedwith the square losswhich is used by SDH [64] andDSDH [38].

More concretely, we substitute ŷ = FC(h) and 𝐿(ŷ, y) = | |ŷ − y| |2
2

for Eq. (10) and Eq. (12) respectively. Let us use LTHNet𝑠𝑞 to denote

such a modified version of LTHNet, and show its experimental

results along with those of the other hashing methods in Tables 3

and 4. Evidently, LTHNet𝑠𝑞 is slightly inferior to the standard LTH-

Net when IF=1, but far behind LTHNet when IF=50 or 100, which

indicates that cross-entropy loss is more suitable for LTHNet than

square loss.

6.7 Convergence Analysis

Fig. 6 plots the normalized loss of LTHNet (k=3) at each epoch on

Cifar100 and ImageNet100 for 64-bit codes, with various imbalance

factors (IFs). It is worth noting that to facilitate a fair comparison,

the 𝑦-axis shows each LTHNet’s loss normalized by the maximum

loss among all of its iterations. Clearly, all the curves go lower

and lower from a large loss to a small loss until they become flat,

which empirically corroborates the nice convergence property of

our LTHNet training algorithm.

7 CONCLUSION

In this paper, we put forward a novel two-stage deep hashing

method named Long-Tail Hashing Network (LTHNet) for large-

scale image retrieval. To our knowledge, this is the first work of

its kind that addresses the problem of learning to hash on realistic

long-tail datasets.

32bits 64bits 96bits
0.815

0.82

0.825

0.83

0.835

0.84

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=1

TRUE
FALSE

(a) Cifar100, IF=1

32bits 64bits 96bits
0.78

0.79

0.8

0.81

0.82

0.83

0.84

0.85

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=1

TRUE
FALSE

(b) ImageNet100, IF=1

32bits 64bits 96bits
0.2

0.22

0.24

0.26

0.28

0.3

0.32

0.34

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=50

TRUE
FALSE

(c) Cifar100, IF=50

32bits 64bits 96bits
0.72

0.73

0.74

0.75

0.76

0.77

0.78

0.79

0.8

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=50

TRUE
FALSE

(d) ImageNet100, IF=50

32bits 64bits 96bits
0.15

0.16

0.17

0.18

0.19

0.2

0.21

0.22

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

Cifar100, IF=100

TRUE
FALSE

(e) Cifar100, IF=100

32bits 64bits 96bits
0.66

0.67

0.68

0.69

0.7

0.71

0.72

0.73

0.74

0.75

0.76

M
ea

n
A

ve
ra

ge
 P

re
ci

si
on

 (
M

A
P

)

ImageNet100, IF=100

TRUE
FALSE

(f) ImageNet100, IF=100

Figure 5: Retrieval performances of LTHNet (k=0) with and

without the extended DME module (denoted as “TRUE” and

“FALSE” respectively).

A surprising finding is that the intuitive idea of directly reweight-

ing different classes in the loss function actually does not work

in this context. Nevertheless, the dynamic meta-embedding mod-

ule (extended with a determinantal point process), the usage of

cross-entropy loss (instead of square loss), and the relatively small

batch-size (for backpropagation training) all help our proposed

LTHNet achieve outstanding performances not only on traditional

balanced datasets but, more importantly, also on realistic long-tail

datasets.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their helpful comments.

Zhouchen Lin is supported by the Key-Area Research and Develop-

ment Program of Guangdong Province (Grant No. 2019B121204008),

National Natural Science Foundation of China (Grant No. 61625301

0 20 40 60 80 100

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 L
os

s

Cifar100

IF=1
IF=50
IF=100

(a) Cifar100

0 20 40 60 80 100

Epoch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
or

m
al

iz
ed

 L
os

s

ImageNet100

IF=1
IF=50
IF=100

(b) ImageNet100

Figure 6: Convergence curves of LTHNet (k=3) on Cifar100

and ImageNet100, for 64-bit codes. The results of LTHNet

(k=0) and other code lengths are similar.

& 61731018), Major Scientific Research Project of Zhejiang Lab

(Grant No. 2019KB0AC01 & 2019KB0AB02), Beijing Academy of Ar-

tificial Intelligence, and Qualcomm. Yong Chen is supported in part

by China Postdoctoral Science Foundation (Grant No. 8206400043

& 8206300295) and National Natural Science Foundation of China

(Grant No. 8200905838).

REFERENCES

[1] Reda Alhajj and Jon G. Rokne. 2018. Learning to Rank. Encyclopedia of Social
Network Analysis and Mining, 2nd Edition, Springer.

[2] Zhangjie Cao, Mingsheng Long, Jianmin Wang, and Philip S. Yu. 2017. HashNet:

Deep Learning to Hash by Continuation. In ICCV. 5609–5618.
[3] Suthee Chaidaroon, Travis Ebesu, and Yi Fang. 2018. Deep Semantic Text Hashing

with Weak Supervision. In SIGIR. ACM, 1109–1112.

[4] Nitesh V. Chawla, Kevin W. Bowyer, Lawrence O. Hall, and W. Philip Kegelmeyer.

2002. SMOTE: Synthetic Minority Over-sampling Technique. JAIR 16 (2002),

321–357.

[5] Laming Chen, Guoxin Zhang, and Eric Zhou. 2018. Fast GreedyMAP Inference for

Determinantal Point Process to Improve Recommendation Diversity. In NeurIPS.
5627–5638.

[6] Yong Chen, Zhibao Tian, Hui Zhang, Jun Wang, and Dell Zhang. 2020. Strongly

Constrained Discrete Hashing. TIP 29 (2020), 3596–3611.

[7] Yong Chen, Hui Zhang, Zhibao Tian, Jun Wang, Dell Zhang, and Xuelong Li.

2020. Enhanced Discrete Multi-modal Hashing: More Constraints yet Less Time

to Learn. IEEE TKDE (2020), 1–13.

[8] Zhihong Chen, Rong Xiao, Chenliang Li, Gangfeng Ye, Haochuan Sun, and

Hongbo Deng. 2020. ESAM: Discriminative Domain Adaptation with Non-

Displayed Items to Improve Long-Tail Performance. In SIGIR. 579–588.
[9] Aaron Clauset, Cosma Rohilla Shalizi, and Mark EJ Newman. 2009. Power-Law

Distributions in Empirical Data. SIAM Rev. 51, 4 (2009), 661–703.
[10] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge J. Belongie. 2019. Class-

Balanced Loss Based on Effective Number of Samples. In CVPR. 9268–9277.
[11] Yin Cui, Yang Song, Chen Sun, Andrew Howard, and Serge J. Belongie. 2018.

Large Scale Fine-Grained Categorization and Domain-Specific Transfer Learning.

In CVPR. 4109–4118.
[12] Cheng Deng, Zhaojia Chen, Xianglong Liu, Xinbo Gao, and Dacheng Tao. 2018.

Triplet-Based Deep Hashing Network for Cross-Modal Retrieval. TIP 27, 8 (2018),

3893–3903.

[13] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Fei-Fei Li. 2009. Ima-

geNet: A Large-Scale Hierarchical Image Database. In CVPR. 248–255.
[14] Doug Downey, Susan T. Dumais, and Eric Horvitz. 2007. Heads and Tails: Studies

of Web Search with Common and Rare Queries. In SIGIR. 847–848.
[15] Norbert Fuhr. 2018. Some Common Mistakes in IR Evaluation, and How They

Can Be Avoided. 51, 3 (2018), 32–41.

[16] Lu Gan, Diana Nurbakova, Léa Laporte, and Sylvie Calabretto. 2020. Enhancing

Recommendation Diversity using Determinantal Point Processes on Knowledge

Graphs. In SIGIR. 2001–2004.
[17] Ming Gao, Leihui Chen, Xiangnan He, and Aoying Zhou. 2018. BiNE: Bipartite

Network Embedding. In SIGIR. 715–724.

[18] Darío Garigliotti, Dyaa Albakour, Miguel Martinez, and Krisztian Balog. 2019.

Unsupervised Context Retrieval for Long-tail Entities. In SIGIR. 225–228.
[19] Aristides Gionis, Piotr Indyk, and Rajeev Motwani. 1999. Similarity Search in

High Dimensions via Hashing. In VLDB. 518–529.
[20] YunchaoGong and Svetlana Lazebnik. 2011. Iterative Quantization: A Procrustean

Approach to Learning Binary Codes. In CVPR. 817–824.
[21] Yunchao Gong, Svetlana Lazebnik, Albert Gordo, and Florent Perronnin. 2013.

Iterative Quantization: A Procrustean Approach to Learning Binary Codes for

Large-Scale Image Retrieval. IEEE TPAMI 35, 12 (2013), 2916–2929.
[22] Jie Gui and Ping Li. 2018. R2SDH: Robust Rotated Supervised Discrete Hashing.

In KDD. 1485–1493.
[23] Jie Gui, Tongliang Liu, Zhenan Sun, Dacheng Tao, and Tieniu Tan. 2018. Fast

Supervised Discrete Hashing. IEEE TPAMI 40, 2 (2018), 490–496.
[24] Hui Han, Wenyuan Wang, and Binghuan Mao. 2005. Borderline-SMOTE: A New

Over-Sampling Method in Imbalanced Data Sets Learning. In ICIC. 878–887.
[25] Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and

Christina Lioma. 2019. Unsupervised Neural Generative Semantic Hashing. In

SIGIR. 735–744.
[26] Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and

Christina Lioma. 2020. Content-aware Neural Hashing for Cold-start Recom-

mendation. In SIGIR. 971–980.
[27] Casper Hansen, Christian Hansen, Jakob Grue Simonsen, Stephen Alstrup, and

Christina Lioma. 2020. Unsupervised Semantic Hashing with Pairwise Recon-

struction. In SIGIR. 2009–2012.
[28] Haibo He and Edwardo A. Garcia. 2009. Learning from Imbalanced Data. IEEE

TKDE 21 (2009), 1263–1284.

[29] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep Residual

Learning for Image Recognition. In CVPR. 770–778.
[30] Xiangyu He, Peisong Wang, and Jian Cheng. 2019. K-Nearest Neighbors Hashing.

In CVPR. 2839–2848.
[31] Yen-Chang Hsu, Zhaoyang Lv, and Zsolt Kira. 2018. Learning to Cluster in order

to Transfer Across Domains and Tasks. In ICLR. 1–20.
[32] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi

Feng, and Yannis Kalantidis. 2020. Decoupling Representation and Classifier for

Long-Tailed Recognition. In ICLR. 1–16.
[33] Qi Kang, Xiaoshuang Chen, Sisi Li, and MengChu Zhou. 2017. A Noise-Filtered

Under-Sampling Scheme for Imbalanced Classification. IEEE Transactions on
Cybernetics 47, 12 (2017), 4263–4274.

[34] Wang-Cheng Kang, Wu-Jun Li, and Zhi-Hua Zhou. 2016. Column Sampling

based Discrete Supervised Hashing. In AAAI. 1230–1236.
[35] Gou Koutaki, Keiichiro Shirai, and Mitsuru Ambai. 2018. Hadamard Coding for

Supervised Discrete Hashing. TIP 27, 11 (2018), 5378–5392.

[36] Alex Krizhevsky. 2009. Learning Multiple Layers of Features from Tiny Images.
Technical Report. University of Toronto. 1––60 pages.

[37] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hinton. 2012. ImageNet Classi-

fication with Deep Convolutional Neural Networks. In NeurIPS. 1106–1114.
[38] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. 2017. Deep Supervised Discrete

Hashing. In NeurIPS. 2482–2491.
[39] Qi Li, Zhenan Sun, Ran He, and Tieniu Tan. 2020. A General Framework for

Deep Supervised Discrete Hashing. IJCV 128, 8 (2020), 2204–2222.

[40] Wu-Jun Li, Sheng Wang, and Wang-Cheng Kang. 2016. Feature Learning Based

Deep Supervised Hashing with Pairwise Labels. In IJCAIs. 1711–1717.
[41] Guohua Liang and Chengqi Zhang. 2012. An efficient and simple under-sampling

technique for imbalanced time series classification. In CIKM. 2339–2342.

[42] Guosheng Lin, Chunhua Shen, Qinfeng Shi, Anton van den Hengel, and David

Suter. 2014. Fast Supervised Hashing with Decision Trees for High-Dimensional

Data. In CVPR. 1971–1978.
[43] Kevin Lin, Jiwen Lu, Chu-Song Chen, and Jie Zhou. 2016. Learning Compact

Binary Descriptors with Unsupervised Deep Neural Networks. In CVPR. 1183–
1192.

[44] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2017.

Focal Loss for Dense Object Detection. In ICCV. 2999–3007.
[45] Tsung-Yi Lin, Priya Goyal, Ross B. Girshick, Kaiming He, and Piotr Dollár. 2020.

Focal Loss for Dense Object Detection. IEEE TPAMI 42, 2 (2020), 318–327.
[46] Jack Lindsey, Samuel A. Ocko, Surya Ganguli, and Stéphane Deny. 2019. A

Unified Theory of Early Visual Representations from Retina to Cortex through

Anatomically Constrained Deep CNNs. In ICLR. 1–17.
[47] Jingzhou Liu, Wei-Cheng Chang, Yuexin Wu, and Yiming Yang. 2017. Deep

Learning for Extreme Multi-Label Text Classification. In SIGIR. 115–124.
[48] Song Liu, Shengsheng Qian, Yang Guan, Jiawei Zhan, and Long Ying. 2020. Joint-

modal Distribution-based Similarity Hashing for Large-scale Unsupervised Deep

Cross-modal Retrieval. In SIGIR. 1379–1388.
[49] Tie-Yan Liu. 2009. Learning to Rank for Information Retrieval. Foundations and

Trends in Information Retrieval.

[50] Wei Liu, Cun Mu, Sanjiv Kumar, and Shih-Fu Chang. 2014. Discrete Graph

Hashing. In NeurIPS. 3419–3427.
[51] Wei Liu, Jun Wang, Rongrong Ji, Yu-Gang Jiang, and Shih-Fu Chang. 2012. Su-

pervised hashing with kernels. In CVPR. 2074–2081.

[52] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and

Stella X. Yu. 2019. Large-Scale Long-Tailed Recognition in an Open World. In

CVPR. 2537–2546.
[53] Fuchen Long, Ting Yao, Qi Dai, Xinmei Tian, Jiebo Luo, and Tao Mei. 2018. Deep

Domain Adaptation Hashing with Adversarial Learning. In SIGIR. 725–734.
[54] Xu Lu, Lei Zhu, Zhiyong Cheng, Liqiang Nie, and Huaxiang Zhang. 2019. Online

Multi-modal Hashing with Dynamic Query-adaption. In SIGIR. 715–724.
[55] Xu Lu, Lei Zhu, Jingjing Li, Huaxiang Zhang, and Heng Tao Shen. 2020. Efficient

Supervised Discrete Multi-View Hashing for Large-Scale Multimedia Search.

TMM 22, 8 (2020), 2048–2060.

[56] Xin Luo, Liqiang Nie, Xiangnan He, Ye Wu, Zhen-Duo Chen, and Xin-Shun Xu.

2018. Fast Scalable Supervised Hashing. In SIGIR. 735–744.
[57] Mark EJ Newman. 2005. Power Laws, Pareto Distributions and Zipf’s Law.

Contemporary Physics 46, 5 (2005), 323–351.
[58] Casper Petersen, Jakob Grue Simonsen, and Christina Lioma. 2016. Power Law

Distributions in Information Retrieval. ACM Transactions on Information Systems
(TOIS) 34, 2 (2016), 8:1–8:37.

[59] William J. Reed. 2001. The Pareto, Zipf and other Power Laws. Economics Letters
74, 1 (2001), 15–19.

[60] David E. Rumelhart, Geoffrey E. Hinton, and Ronald J. Williams. 1986. Learning

Representations by Back-Propagating Errors. Nature 323 (1986), 533—-536.
[61] Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean

Ma, Zhiheng Huang, Andrej Karpathy, Aditya Khosla, Michael S. Bernstein,

Alexander C. Berg, and Fei-Fei Li. 2015. ImageNet Large Scale Visual Recognition

Challenge. IJCV 115, 3 (2015), 211–252.

[62] Tetsuya Sakai. 2020. On Fuhr’s Guideline for IR Evaluation. 54, 1 (2020), p14.

[63] Adam Santoro, Sergey Bartunov, Matthew Botvinick, Daan Wierstra, and Timo-

thy P. Lillicrap. 2016. Meta-Learning with Memory-Augmented Neural Networks.

In ICML. 1842–1850.
[64] Fumin Shen, Chunhua Shen, Wei Liu, and Heng Tao Shen. 2015. Supervised

Discrete Hashing. In CVPR. 37–45.
[65] Shaoyun Shi, Weizhi Ma, Min Zhang, Yongfeng Zhang, Xinxing Yu, Houzhi Shan,

Yiqun Liu, and Shaoping Ma. 2020. Beyond User Embedding Matrix: Learning to

Hash for Modeling Large-Scale Users in Recommendation. In SIGIR. 319–328.
[66] Karen Simonyan and Andrew Zisserman. 2015. Very Deep Convolutional Net-

works for Large-Scale Image Recognition. In ICLR. 1–14.
[67] Changchang Sun, Xuemeng Song, Fuli Feng, Wayne Xin Zhao, Hao Zhang, and

Liqiang Nie. 2019. Supervised Hierarchical Cross-Modal Hashing. In SIGIR. 725–
734.

[68] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,

Aidan N. Gomez, Lukasz Kaiser, and Illia Polosukhin. 2017. Attention is All

you Need. In NeurIPS. 5998–6008.
[69] Di Wang, Quan Wang, Yaqiang An, Xinbo Gao, and Yumin Tian. 2020. Online

Collective Matrix Factorization Hashing for Large-Scale Cross-Media Retrieval.

In SIGIR. 1409–1418.
[70] Jun Wang, Wei Liu, Andy X. Sun, and Yu-Gang Jiang. 2013. Learning Hash Codes

with Listwise Supervision. In ICCV. 3032–3039.
[71] Jingdong Wang, Ting Zhang, Jingkuan Song, Nicu Sebe, and Heng Tao Shen.

2018. A Survey on Learning to Hash. IEEE TPAMI 40, 4 (2018), 769–790.
[72] Qifan Wang, Luo Si, Zhiwei Zhang, and Ning Zhang. 2014. Active Hashing with

Joint Data Example and Tag Selection. In SIGIR. 405–414.
[73] Qifan Wang, Dan Zhang, and Luo Si. 2013. Semantic Hashing Using Tags and

Topic Modeling. In SIGIR. 213–222.
[74] Qifan Wang, Zhiwei Zhang, and Luo Si. 2015. Ranking Preserving Hashing for

Fast Similarity Search. In IJCAI. 3911–3917.
[75] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella X. Yu. 2020.

Long-ailed Recognition by Routing Diverse Distribution-Aware Experts. arXiv
arXiv:2010.01809 (2020), 1–14.

[76] Xiaofang Wang, Yi Shi, and Kris M. Kitani. 2016. Deep Supervised Hashing with

Triplet Labels. In ACCV. 70–84.
[77] Yu-Xiong Wang, Deva Ramanan, and Martial Hebert. 2017. Learning to Model

the Tail. In NeurIPS. 7029–7039.
[78] Zijian Wang, Zheng Zhang, Yadan Luo, and Zi Huang. 2019. Deep Collaborative

Discrete Hashing with Semantic-Invariant Structure. In SIGIR. 905–908.
[79] Erkun Yang, Cheng Deng, Tongliang Liu, Wei Liu, and Dacheng Tao. 2018. Se-

mantic Structure-based Unsupervised Deep Hashing. In IJCAI. 1064–1070.
[80] Zhan Yang, Jun Long, Lei Zhu, andWenti Huang. 2020. Nonlinear Robust Discrete

Hashing for Cross-Modal Retrieval. In SIGIR. 1349–1358.
[81] Li Yuan, Tao Wang, Xiaopeng Zhang, Francis E. H. Tay, Zequn Jie, Wei Liu, and

Jiashi Feng. 2020. Central Similarity Quantization for Efficient Image and Video

Retrieval. In CVPR. 3080–3089.
[82] Weixin Zeng, Xiang Zhao, Wei Wang, Jiuyang Tang, and Zhen Tan. 2020. Degree-

Aware Alignment for Entities in Tail. In SIGIR. 811–820.
[83] Dan Zhang, Fei Wang, and Luo Si. 2011. Composite Hashing with Multiple

Information Sources. In SIGIR. 225–234.
[84] Dell Zhang, Jun Wang, Deng Cai, and Jinsong Lu. 2010. Self-Taught Hashing for

Fast Similarity Search. In SIGIR. 18–25.

[85] Hongfei Zhang, Xia Song, Chenyan Xiong, Corby Rosset, Paul N Bennett, Nick

Craswell, and Saurabh Tiwary. 2019. Generic Intent Representation in Web

Search. In SIGIR. 65–74.
[86] Peichao Zhang, Wei Zhang, Wu-Jun Li, and Minyi Guo. 2014. Supervised Hashing

with Latent Factor Models. In SIGIR. 173–182.
[87] Xiao Zhang, Zhiyuan Fang, Yandong Wen, Zhifeng Li, and Yu Qiao. 2017. Range

Loss for Deep Face Recognition with Long-Tailed Training Data. In ICCV. 5419–
5428.

[88] Zhiwei Zhang, Qifan Wang, Lingyun Ruan, and Luo Si. 2014. Preference Preserv-

ing Hashing for Efficient Recommendation. In SIGIR. 183–192.
[89] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. 2020. BBN: Bilateral-

Branch Network With Cumulative Learning for Long-Tailed Visual Recognition.

In CVPR. 9716–9725.
[90] Linchao Zhu and Yi Yang. 2020. Inflated Episodic Memory With Region Self-

Attention for Long-Tailed Visual Recognition. In CVPR. 4343–4352.

	Abstract
	1 Introduction
	2 Related Work
	2.1 Learning to Hash
	2.2 Learning from Long-Tail Data

	3 Problem Statement
	4 The Proposed Method
	4.1 Direct Feature Learning
	4.2 Extended Dynamic Meta-Embedding
	4.3 Hash Layer
	4.4 Classifier

	5 Learning Algorithm
	6 Experiments
	6.1 Datasets
	6.2 Competitors and Metrics
	6.3 Settings
	6.4 Results
	6.5 Parameter Sensitivity
	6.6 Ablation Study
	6.7 Convergence Analysis

	7 Conclusion
	Acknowledgments
	References

