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Towards Efficient Scene Understanding via Squeeze
Reasoning
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Abstract— Graph-based convolutional model such as non-local
block has shown to be effective for strengthening the context
modeling ability in convolutional neural networks (CNNs). How-
ever, its pixel-wise computational overhead is prohibitive which
renders it unsuitable for high resolution imagery. In this paper,
we explore the efficiency of context graph reasoning and propose
a novel framework called Squeeze Reasoning. Instead of propa-
gating information on the spatial map, we first learn to squeeze
the input feature into a channel-wise global vector and perform
reasoning within the single vector where the computation cost
can be significantly reduced. Specifically, we build the node graph
in the vector where each node represents an abstract semantic
concept. The refined feature within the same semantic category
results to be consistent, which is thus beneficial for downstream
tasks. We show that our approach can be modularized as an
end-to-end trained block and can be easily plugged into existing
networks. Despite its simplicity and being lightweight, the pro-
posed strategy allows us to establish the considerable results on
different semantic segmentation datasets and shows significant
improvements with respect to strong baselines on various other
scene understanding tasks including object detection, instance
segmentation and panoptic segmentation. Code is available at
https://github.com/lxtGH/SFSegNets.

Index Terms— Channel attention, efficient global context mod-
eling, scene understanding.

I. INTRODUCTION

CONVOLUTIONAL neural networks have proven to be
effective and useful to learn visual representations in

an end-to-end fashion with a certain objective task such as,
semantic segmentation [1], image classification [2], object
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Fig. 1. (a) Toy Experiment results by counting pixels given specific classes
using trained model. (b) Illustration of our proposed module for semantic
segmentation task. Best view zoom in.

detection [3], instance segmentation [4] and panoptic seg-
mentation [5]. However, the effective receptive field [6] of
CNNs grows slowly if we simply stack local convolutional
layers. Thus, the limited receptive field prevents the model
from taking all the contextual information into account and
thus renders the model insufficiently covering all the regions
of interest.

A broad range of prior research has investigated network
architecture designs to increase the receptive field-of-view
such as self-attention/Non-local [7], channel attention [8], and
graph convolution network (GCN) [9]. Although they have
been shown to be effective in strengthening the representations
produced by CNNs, modeling the inter-dependencies in a
high-dimensional space prevents them from fully exploiting
the sparse property required by the final classifier. Further-
more, they suffer from the prohibitively expensive computation
overhead during training and inference, e.g., the large affinity
matrix at each spatial position [8] or channel position [9],
which renders these methods unsuitable for high-resolution
inputs. Although recent methods reduce such cost by involv-
ing fewer pixels [10] or selecting representative nodes [11],
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their computation is still huge given high resolution image
inputs.

Could we find another way to eliminate the limitation of
high-cost spatial information while capturing global context
information? We first carry out toy experiments using a
pretrained Deeplabv3+ model [12]. We count the pixels on the
final normalized feature (512 dimensions before classification)
given ground truth masks whose activation values are beyond
0.8. As shown in Fig 1(a), we find different classes lie in differ-
ent groups along channels sparsely. We only show three classes
for simplicity. This motivates us to build an information prop-
agation module on channel solely where each group represents
one specific semantic class while the cost of spatial resolution
can be avoided. Inspired by SE-networks [8], we first squeeze
the feature into a compact global vector and then perform
reasoning operation on such compact vector. Benefit from
squeezing, the computation cost can be significantly reduced
compared with previous works. The schematic illustration of
our proposed method is shown in Fig 1(b). Compared with pre-
vious work modeling pair-wised affinity maps over the input
pixels [10], [13]–[17], our method is totally different by build-
ing node graph conditionally on the whole image statistics and
also results in efficient inference. After reasoning, the most
representative channels of input features can be selected and
enhanced which solves the inconsistent segmentation results
on large objects.

Our framework mainly contains three steps. First, we per-
form the node squeezing operation to obtain the global vector.
This can be done by simply a global average pooling or
using Hadamard product pooling to capture the second-order
statistics. Then we carry out node reasoning by dividing such
vector into different groups, and the inter-dependencies can
be diffused through the reasoning process. Finally, we recon-
struct the original feature map by multiplying the reasoned
vector with the original input. Our approach can serve as a
lightweight module and can be easily plugged into existing
networks. Compared to Non-local [7] or graph convolution
network [9], which model the global relationship on feature
spatial or channel dimension, our approach instead models
the inter-dependencies on the squeezed global vector space,
and notably, each node consists of a group of atom/channel.
Therefore, our method uses substantially fewer floating-point
operations and fewer parameters and memory costs. Moreover,
our method achieves the best speed and accuracy trade-off
on the Cityscapes test set, which shows its practical usage.
In particular, our method achieves 77.5% mIoU on Cityscapes
test set while running at 65 FPS on single 1080-TI device.

Besides its efficiency, our method is also verified to be
effective on long-range context modeling. As shown in Tab. I,
our method results in a significant gain on dilated FCN with
ResNet50 backbone. In particular, the segmentation results of
larger objects in the scene can be improved significantly by
over 10% mIoU per category. Moreover, our methods only
require a few extra computation cost(1.5% relative increase
over the baseline models). Fig.2 gives the visualization results
on the corresponding models in Tab. I. As shown in that figure,
the inconsistent noise on the train and truck can be removed
by our proposed SR module.

Fig. 2. Visualization results on Cityscapes validation set. Best viewed zoom
in.

Moreover, our proposed method is also verified to other
tasks including instance level taks on instance segmentation
and panoptic segmentation on COCO datasets [18], image
classification on ImageNet [19]. Our method can obtain con-
sistent improvements over mask-rcnn baseline models [4]
with negligible cost and considerable results on ImageNet
classification with SE-net [8]. More detailed information can
be found in the experiment parts. Those experiments further
demonstrate the generality of our proposed approach.

The contributions of this work are as follows:
(i) We propose a novel squeeze reasoning framework for

highly efficient deep feature representation learning for scene
understanding tasks.

(ii) An efficient node graph reasoning is introduced to model
the inter-dependencies between abstract semantic nodes. This
enables our method to serve as a lightweight and effective
module and can be easily deployed in existing networks.

(iii) Extensive experiments demonstrate that the pro-
posed approach can establish new state-of-the-arts on four
major semantic segmentation benchmark datasets including
Cityscapes [20], Pascal Context [21], ADE20K [22] and
Camvid [23] while keeping efficiency, and show consistent
improvement with respect to strong baselines on several scene
understanding tasks with negligible cost. More experiments on
different tasks through datasets [18], [19] including instance
segmentation and image classification prove the generality of
proposed SR module.

II. RELATED WORK

In this section, we will review the related work in two
aspects: global context aggregation and semantic segmenta-
tion.

A. Global Context Aggregation

Beyond the standard convolutional operator used for short-
range modeling, many long-range operators are proposed to
aggregate information from large image regions, even the
whole image. Global Average Pooling (GAP) [2], which
bridges local feature maps and global classifiers, is widely
used for long-range modeling. In Squeeze-and-Excitation net-
work [8], GAP is used in more intermediate layers for coupling
global information and local information more thoroughly.
In Pyramid Pooling Module(PPM) [24], a pyramid of average
pooling operators is used to harvest features. In addition to
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TABLE I

DETAILED RESULTS ON CITYSCAPES VALIDATION SET. IN PARTICULAR, OUR METHOD CAN OBTAIN A LARGE IMPROVEMENT ON
LARGE OBJECTS IN THE SCENE INCLUDING TRAIN(24.1%), TRUCK(18.1 %) AND BUS(17.4 %)

first-order statistics captured by GAP, bilinear pooling [25]
extracts image-level second-order statistics as complementary
of convolutional features. Besides pooling-based operators,
generalized convolutional operators [26] are also used for
long-range modeling. Astrous convolution enlarges kernels by
inserting zeros in between [27], which is further used by stack-
ing kernels with multiple astrous rates pyramidally [28]–[30]
or densely [31]. Deformable convolution [32], [33] generalizes
atrous convolution by learning the offsets for convolution
sampling locations. Global average pooled features are con-
catenated into existing feature maps in [34]. In PSPNet [24],
average pooled features of multiple window sizes includ-
ing global average pooling are upsampled to the same size
and concatenated together to enrich global information. The
DeepLab series of papers [28]–[30] propose atrous or dilated
convolutions and atrous spatial pyramid pooling (ASPP)
to increase the effective receptive field. DenseASPP [31]
improves on [29] by densely connecting convolutional layers
with different dilation rates to further increase the receptive
field of network. In addition to concatenating global infor-
mation into feature maps, multiplying global information into
feature maps also shows better performance [15], [35]–[37].
In particular, EncNet [15] and SqueezeSeg [38] use attention
along the channel dimension of the convolutional feature map
to account for global context such as the co-occurrences of
different classes in the scene. CBAM [35] explores channel
and spatial attention in a cascade way to learn task specific
representation.

Recently, advanced global information modeling approaches
initiated from non-local network [7] are showing promising
results on scene understanding tasks. In contrast to convolu-
tional operator where information is aggregated locally defined
by local filters, non-local operators aggregate information from
the whole image based on an affinity matrix calculated among
all positions around the image. Using non-local operator,
impressive results are achieved in OCNet [13],CoCurNet [39],
DANet [40], A2Net [41], CCNet [10] and Compact General-
ized Non-Local Net [36]. OCNet [13] uses non-local bolocks
to learn pixel-wise relationship while CoCurNet [39] adds
extra global average pooling path to learn whole scene statistic.
DANet [40] explores orthogonal relationships in both channel
and spatial dimension using non-local operator. CCNet [10]
models the long range dependencies by considering its sur-
rounding pixels on the criss-cross path through a recurrent way
to save both computation and memory cost. Compact Gener-
alized non-local Net [36] considers channel information into
affinity matrix. Another similar work to model the pixel-wised
relationship is PSANet [42]. It captures pixel-to-pixel relations
using an attention module that takes the relative location of
each pixel into account. EMANet [16] proposes to adopt

expectation-maximization algorithm [43] for the self-attention
mechanism.

Another way to get global representation is using graph
convolutional networks, and do reasoning in a non-euclidean
space [44]–[46] where messages are passing between each
node before projection back to each position. Glore [9]
projects the feature map into interaction space using learned
projection matrix and does graph convolution on projected
fully connected graph. BeyondGrids [44] learns to cluster
different graph nodes and does graph convolution in parallel.
SPGNet [45] performed spatial pyramid graph reasoning while
DGMNet [46] proposed dynamic graph reasoning framework
for more efficient learning. In our work, a global vector
squeezed from the whole image is organized as a small
graph for reasoning, where each node contains rich global
information. Thus reasoning is carried on a high level, which
is more efficient and robust to noises than previous methods.

B. Semantic Segmentation

Recent years have seen a lot of work on semantic segmen-
tation using deep neural network. FCN [1] removes global
information aggregation layers such as global average pooling
layer and fully-connected layers for semantic segmentation.
Later, FCN-based methods dominate the area of image seman-
tic segmentation. We review related methods in two differ-
ent settings: non-real-time methods for better segmentation
results and real-time models for fast inference. The work [27]
removed the last two downsample layers to obtain dense
prediction and utilized dilated convolutions to enlarge the
receptive field. Meanwhile, both SAC [47] and DCN [32]
improved the standard convolutional operator to handle the
deformation and various scales of objects, which also enlarge
the receptive fields of CNN operator. Several works [48]–[51]
adopted encoder-decoder structures that fuses the information
in low-level and high-level layers to make dense predic-
tion results. In particular, following such architecture design,
GFFnet [52], CCLNet [53] and G-SCNN [54] use gates for
feature fusing to avoid noise and feature redundancy. CRF-
RNN [55] used graph model such CRF, MRF for semantic seg-
mentation. AAF [56] used adversarial learning to capture and
match the semantic relations between neighboring pixels in
the label space. DenseDecoder [57] built multiple long-range
skip connections on cascaded architecture. DPC [58] and auto-
deeplab [59] utilized architecture search techniques to build
multi-scale architectures for semantic segmentation. Besides,
there are also several works aiming for real time application.
ICNet [60], BiSegNet [61] and SFNet [62] were designed
for real-time semantic segmentation by fusing multi scale
inputs or feature pyramids. DFANet [63] utilizes a light-weight
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backbone to speed up its network and proposes a cross-level
feature aggregation to boost accuracy, while SwiftNet [64]
uses lateral connections as the cost-effective solution to
restore the prediction resolution while maintaining the speed.
There are also specially designed video semantic segmentation
works for boosting accuracy [65], [66] and saving inference
time [67], [68]. Our proposed module can work in both
real-time setting to obtain the best speed and accuracy trade-off
due to its efficiency or non-real-time setting to achieve the
better consistent segmentation results.

III. METHOD

In this section, we first review related works [7], [8], [69] as
preliminary knowledge. Then detailed description and formu-
lation of our SR module are introduced. Finally, we elaborate
on how to apply it to several different computer vision tasks.

A. Preliminaries

1) Graph Convolution: Assume an input matrix X ∈ RD×N ,
where D is the feature dimension and N = H × W is the
number of locations defined on regular grid coordinates � =
{1, . . . , H }×{1, . . . , W }. In standard convolution, information
is only exchanged among positions in a small neighborhood
defined by the filter size (typically 3 × 3). In order to create a
large receptive field and capture long-range dependencies, one
needs to stack numerous layers after each other, as done in
common architectures [2]. Graph convolution [69], is a highly
efficient, effective and differentiable module that generalizes
the neighborhood definition used in standard convolution and
allows long-range information exchange in a single layer. This
is done by defining edges E among nodes V in a graph G.
Formally, the graph convolution is defined as

X̃ = σ(WXA), (1)

where σ(·) is the non-linear activation function, A ∈ R
N×N

is the adjacency matrix characterising the neighbourhood rela-
tions of the graph and W ∈ RD×D̃ is the weight matrix. So the
graph definition and structure play a key role in determining
the information propagation.

2) Non-Local Network: We describe non-local network [7]
in view of a fully connected graphical model. For a 2D input
feature with the size of C×H ×W , where C , H , and W denote
the channel dimension, height, and width respectively, it can
be interpreted as a set of features, X = [x1, x2, · · · , xN ]ᵀ,
xi ∈ RC , where N is the number of nodes (e.g.N = H × W ),
and C is the node feature dimension.

X̃ = δ(XθXφ
ᵀ)Xg = A(X)Xg, (2)

where A(X) ∈ RN×N indicates the affinity matrix, Xθ ∈
RN×C ′

, Xφ ∈ RN×C ′
, and Xg ∈ RN×C ′

which are projection
matrix. In summary, according to Equ. 1 and Equ. 2 both
the computation and affinity cost are highly dependent on the
number of node N .

3) ‘Squeeze’ Operation: The ‘squeeze’ operation is com-
monly used in networks for image classification, and adopted
in SE-net [8] to summarize the global contexts for interme-
diate layers for channel weights re-calibration. One simple
implementation of this operation is the Global Average Pool-
ing (GAP).

B. SR Module Formulation

As discussed, pixels or nodes’ choices are essential for
reducing computation cost for both graph convolution models
and non-local models. Recent works [10], [14] follow this idea
to achieve less computation cost. However, both the affinity
memory and computation cost are still linearly dependent on
the input resolution. In particular, this will limit their usage
for some applications such as road scene understanding with
high-resolution image inputs. Different from their approaches,
we propose a simple yet effective framework named Squeeze
Reasoning. Our approach mainly contains three steps. First,
we squeeze the input feature map into a compact global vector.
We then split such vector into different groups or nodes and
perform graph reasoning operation on such input node graphs.
Finally, we reconstruct the original feature map by multiplying
the reasoned vector back into the input feature. We specify the
details of these three steps in the following parts. Fig. 3 shows
the detailed pipeline of our SR module.

1) Node Squeezing: It is well known that the global vector
describes whole image statistics, which is a key component in
many modern convolutional network architectures for different
tasks such as object detection, scene parsing and image
generation. The simplest way to calculate the global vector
is the global average pooling, which calculates the first-order
whole image statistics.

Recent works [25], [41] use the bilinear pooling to cap-
ture second-order statistics of features and generate global
representations. Compared with the conventional average and
max pooling, which only computes first-order statistics, bilin-
ear pooling can better capture and preserve complex rela-
tions. In particular, bilinear pooling gives a sum pooling of
second-order features from the outer product of all the feature
vector pairs (bi , ci ) within two input feature maps B and C.
It can be expressed as follows:

Gbilinear (B, C) = BCT =
H W∑
i=1

bi cT
i , (3)

where B = [b1, . . . , bi , . . . , bH W ] ∈ RC×H W and C =
[c1, . . . , ci , . . . , cH W ] ∈ RC×H W . The output size is C × C .

To get a more compact vector for each node, in this paper,
instead of generating outer product of all feature pairs from bi

and ci within two input feature maps B and C, we calculate
the Hadamard product:

Gglobal (B, C) =
H W∑
i=1

bi ◦ ci , (4)

where ◦ means the Hadamard product operation. To be note
that, we first reduce channel dimension of input feature X by
1× 1 convolution layer into X̃ and then we perform pooling
operation using Equ. 4 or simple global average pooling.
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Fig. 3. Schematic illustration of our proposed SR module. Our module contains three steps. Node Squeezing: squeeze the feature into separate nodes. Node
Graph Reasoning: perform GCN reasoning in node space. Feature Reconstruction: reconstruct the feature by the reasoned global vector.

2) Node Graph Reasoning: To form a node graph, we divide
vector g into k different groups with each group size of d
where C = k × d . We use the graph convolution to model the
relationship between nodes and consider it a fully-connected
graph. As for the transformation W in Equ. 1, we adopt
a 1 × 1 convolutional layer to implement it. Moreover, for
the adjacency matrix A, we will show by experiments that
our Squeeze Reasoning mechanism is not sensitive to these
choices, indicating that the generic graph reasoning behavior
is the main reason for the observed improvements. We will
describe two specific choices in the following part:

a) Learned matrix: We follow the same settings in
GloRe [9], a simple choice of A is a 1 × 1 convolutional
layer that can be updated by the general backpropagation.
Similar to previous works [9], [44], we consider adopting the
Laplacian matrix

(
I − Ag

)
to propagate the node features over

the graph, where the identity matrix I serves as a residual
sum connection. In this setting, the Graph Reasoning can be
formulated as follows:

Goutput = σ
(
WgGinput

(
I − Ag

))
, (5)

where σ is the ReLU operation.
b) Correlation matrix: Another choice is to adopt the

self-attention mechanism for information exchange [7], [40]
where the correlation matrix (or dense affinity) is calculated
by the projection of node feature itself, by which the reasoning
process can be written as follows:

Goutput = σ
{
ρg(Ginput )[φg(Ginput )

T θg(Ginput )]
}

, (6)

where φg , θg and ρg are three 1×1 convolutions. φg and θg are
named ‘query’ and ‘key’, respectively. The ρg operation here,
named ‘value’, functions the same as the Wg in the ‘Learned
matrix’ mechanism. The results generated by operations inside
the [.] form the adjacency matrix A. To be noted that, either
reasoning process can be adopted in our framework and more
detailed results can be referred to the experiment part.

3) Feature Reconstruction: The final step is to generate
the representation R. To reconstruct the feature map, we first
reshape the reasoned vector and multiply it with X to high-
light different channels according to the input scene where
X̃ = XGoutput . Then we adopt another 1 × 1 convolution

layers WR to project the X̃ into original shape. Following the
same idea of residual learning [2], [7], we get the final output
Y by adding original input X. Then the feature map can be
reconstructed as follows:

Y = WRX̃ + X (7)

where WR is a learnable linear transformation and Y is the
final output feature.

C. Analysis and Discussion

1) Relationship With Previous Operators: Compared with
the Non-local block [7], instead of affinity modeling on pixel-
level, our SR extends the reasoning on channel dimension,
which captures statistics of whole feature map space. Com-
pared with the SE block [70], our SR module captures more
relational information and performs channel diffusion more
efficiently than the fixed fully connected layers. Moreover,
the experiment results show the advantages of our module.

2) Computation and Memory Analysis: Compared with
previous self-attention methods [7], [10], [41], we compare
our module computation in Tab. II which shows our module is
both lightweight on both computation and memory compared
with previous methods. To be noted, we only consider the
reasoning part in both computation cost and affinity memory.
As shown in the last row, our module linearly depends on the
input resolution in terms of computation and has no relation
with the input resolution in terms of affinity memory. More
analysis can be found in the experimental part.

3) Discussion With EncNet [15]: Despite both EncNet and
our SRnet both adopt the channel attention framework [8],
our method is different from EncNet. For squeezing process,
EncNet learns an inherent dictionary to represent the semantic
context of the dataset which is dataset dependent, while our
method squeezes the entire feature map into one compact
vector via learnable convolutions which is data dependent. The
dataset dependent dictionary captures the class relation prior
on specific dataset and thus it is hard for generalization. Our
approach is more general and it can be a plug-in-play module.
In addition, we have proven this point on many other tasks
including object detection, instance segmentation and panoptic
segmentation. For reasoning process, our method divides the
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TABLE II

TIME COMPLEXITY COMPARISON OF NON-LOCAL OPERATIONS WITH
OUR PROPOSED SR MODULE WHERE H AND W IS SPATIAL RESO-

LUTION AND C IS CHANNEL DIMENSION. P IS THE ORDER OF

TAYLOR EXPANSION OF KERNEL FUNCTION IN [36] AND K M =
C/2. NOTE THAT WE IGNORE THE CHANNEL REDUCTION

PROCESS SINCE THEY ARE EQUAL FOR COMPUTATION

COST

global feature into different groups. Each group represents
a latent class and the information diffusion is achieved by
one graph convolution layer while EncNet adopts SE-like
architecture. Our divided and reasoning process shows better
results than SENet in Table-X. Moreover, EncNet also uses a
semantic loss to achieve better results while our method only
uses the cross-entropy loss as naïve FCN with much less tricks.
Finally, we show the full advantages over different datasets
under different settings over EncNet in the experimental part.

D. Network Architecture

The proposed SR module can be easily incorporated into
the existing CNN architectures. We detail our network design
in the task of semantic segmentation and instance level seg-
mentation.

1) Semantic Segmentation: We adopt the Fully Convolution
Networks (FCNs) [1] as the backbone model. In particular,
we choose ImageNet [19] pretrained ResNet [2], remove
the last two down-sampling operations and adopt the multi-
grid [27] dilated convolutions. We remove the last two
down-sampling operations and use the dilation convolutions
instead to hold the feature maps from the last two stages
1
8 of the input image. Concretely, all the feature maps in
the last three stages have the same spatial size. Following
the same setting [10], [11], we insert our proposed module
between two 3 × 3 convolution layers (both layers output
D = 512 channels ), which are appended at the end of the
FCN. Following [24], our model has two supervisions: one
after the final output of our model while another at the output
layer of Stage4 as auxiliary cross-entropy loss. For real-time
segmentation models, we choose DF-seg models [71] as a
baseline and we replace their head with our SR module.

2) Instance Level Segmentation: For instance segmentation
and panoptic segmentation, We choose two-stage mask-rcnn-
like architectures [4], [50] We insert our module on the outputs
of bottleneck in ResNet [2] layer4 for context modeling.

IV. EXPERIMENT

We verify the proposed module on four scene under-
standing tasks, including semantic segmentation, object detec-
tion, instance segmentation, panoptic segmentation and image
classification. Our method outperforms several state-of-the-
art methods on four benchmarks for semantic segmentation,

TABLE III

ABLATION STUDY ON THE COMPONENTS OF THE PROPOSED SR MOD-
ULE. (A) EXPLORATION ON SR MODULE DESIGN. GHP: GLOBAL

HADAMARD POOLING. FC: FULLY-CONNECTED LAYERS. GCN:
REASONING WITH THE GRAPH CONVOLUTION AS EQ. 5. SA:

REASONING USING THE SELF-ATTENTION MECHANISM AS
EQ. 6

including Cityscapes, ADE20K, Pascal Context and Camvid,
with much less computation cost. Experiments on the other
four vision tasks also demonstrate the effectiveness of the
proposed module. All the experiments are under the same
setting for each task and each dataset for a fair comparison.

A. Ablation Experiments on Cityscapes Dataset

1) Experimental Settings on Ablation Studies: We carry
out detailed ablation studies and visual analysis on proposed
approaches. We implement our method based on the PyTorch
framework [72]. For the Cityscapes dataset, following the
same settings in PSPNet [24]where momentum and weight
decay coefficients are set to 0.9 and 5e-4 respectively, and
“poly” learning rate schedule is used. For ablation studies,
we choose ResNet-50 as the backbone where momentum and
weight decay coefficients are set to 0.9 and 5e-4 respectively,
and “poly” learning rate schedule is used which decays initial
learning rate of 0.01 by multiplying (1− iter

total_iter)
0.9. Synchro-

nized batch normalization is used [15]. For data augmentation,
random cropping with size 769 and random left-right flipping
are adopted. For the ablation studies, all models are trained
by 50,000 iterations and evaluated by sliding-window crop
inference. For the real time models, we use single scale full
image inference.

2) Ablation on SR Framework Design: We first present a
detailed analysis of each component of SR through ablation
study and report results in Tab. III(a). Comparing with the
baseline, all SR versions equipped with different compo-
nents achieve considerable improvements. By switching dif-
ferent squeezing operations, we find Global Hadamard Pool-
ing (GHP) performs consistently better than Global Average
Pooling (GAP) across differently used reasoning methods.
Moreover, reasoning with Graph Convolutional Network and
Self-Attention brings more improvements, even comparing
with methods using global information from squeezing oper-
ation and further transformed by fully-connected layers(FC).
Our segmentation models are trained under the best setting in
this table.

3) Ablation on Hyper-Parameter Settings: To select the best
hyper-parameter K , we also carry out an ablation study on the
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Fig. 4. Ablation on hyper-parameter settings. (a) Effect on node number.
(b) Effect on channel reduction.

TABLE IV

COMPARISON EXPERIMENTS USING DIFFERENT CONTEXT MODELING

METHODS ON THE CITYSCAPES VALIDATION SET, WHERE DILATED
FCN (RESNET-50) SERVES AS THE BASELINE METHOD. THE

FLOPS AND THE MEMORY (MEM) ARE COMPUTED OVER

THE INPUT IMAGE OF SIZE 768 × 768 × 3 AND INPUT

FEATURE MAP OF SIZE 96 × 96 × 2048. FOR MODELS
OTHER THAN ASPP AND PSP, THE OVERHEAD OF

THE 3 × 3 CONVOLUTIONS BEFORE AND BEHIND

THE MODULES ARE SHOWN SEPARATELY

AS THE ROW +2 ∗ 3 × 3. ↑ MEANS THE
RELATIVE OVERHEADS OVER THOSE

OF +2 ∗ 3 × 3. ALL THE METHODS

ARE EVALUATED UNDER THE
SAME SETTING FOR THE

FAIR COMPARISON

number of groups. To control independent variables, we fix
K M = C/2, and only adjust K. We also explore the effect of
channel reduction ratio with fixed K . The results are shown
in Fig 4. From which, we can see that the selection of K
doesn’t influence too much while reducing channel leads to
inferior results. We set K = 16 and ratio to 2 as default for
the remaining experiments.

4) Comparisons With Context Aggregation Approaches: In
Tab. IV, we compare the performance of different context
aggregation approaches, where SR achieves the best mIoU
with ResNet-50 as the backbone. We give detailed and fair
comparisons in terms of flops, parameters and memory cost.
In particular, SR performs even better than all the non-local
methods [7], [10], [15], [36], which aggregates long-range
contextual information in a pixel-wise manner. This indi-
cates the effectiveness of cross-channel relationships in build-
ing compact and better representations with fewer computa-
tion FLOPS. Fig 5(a) gives inference time comparison with

Fig. 5. (a).Speed comparison with non-local and its variants. (b). Speed and
accuracy trade-off on Cityscapes Test Set for real time models. Best view it
zoom in.

different resolution image inputs on V100-GPU, which shows
the advantages with high-resolution image inputs.

5) Visualization and Analysis on Learned Node Representa-
tion: Here, we give visualization analysis on different channel
activation on the reasoned feature map. From Fig 6, we can see
that each item corresponds to some abstract conceptions in the
image. For example, the third-row item attends on the trucks
and the cars while the second column shows that items focus
on the stuff and background, and the fourth column items in
group-10 are more sensitive to the small objects like poles and
boundaries.

6) Visualization on Predictions and Feature Maps: Fig. 7
compares segmentation results with and without reasoning.
Without reasoning, pixels of large objects such as trucks and
buses are often misclassified into similar categories due to
ambiguities caused by limited receptive fields. The reasoning
module resolves the above issue and delivers more consistent
segmentation inside objects. Fig. 8 further investigates the
effects of SR by directly comparing its input and output feature
maps, where SR significantly improves the consistency of
features inside objects, which is also the reason for consis-
tent semantic map prediction. After SR, the features inner
the objects have similar color and clearer boundaries shown
the second column in Fig 8.

B. Experiments on Cityscapes in Real-Time Settings

1) Experiment Settings: Due to the efficiency of the pro-
posed approach, we extend our method into real-time training
settings. We mainly follow the DFANet [63]. The networks
with SR head are trained with the same setting, where
stochastic gradient descent (SGD) with batch size of 16 is
used as optimizer, with momentum of 0.9 and weight decay
of 5e-4. All models are trained for 50K iterations with an
initial learning rate of 0.01. As a common practice, the “poly”
learning rate policy is adopted to decay the initial learning
rate by multiplying (1 − iter

total_iter)
0.9 during training. Data

augmentation contains random horizontal flip, random resizing
with scale range of [0.75, 2.0], and random cropping with
crop size of 1024 ×1024. During inference, we use the whole
picture as input to report performance. To be more specific,
we replace PPM head [24] in DF-Seg-v2 [71] with our module.
Tab. V shows the results of our real-time model. Compared
with baseline DFSeg [71], Our method has similar parameters
but with more accurate and faster speed.
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Fig. 6. Visualization on learned group representation. We select the most salient channel from each node group. Such items capture specific concepts in the
images. Best view zoom in.

TABLE V

COMPARISON ON CITYSCAPES test SET WITH STATE-OF-THE-ART REAL-
TIME MODELS. FOR FAIR COMPARISON, INPUT SIZE IS ALSO CONSID-

ERED, AND ALL MODELS USE SINGLE SCALE INFERENCE

Fig. 7. Comparison of our results from cropped images where dilated-FCN
with GAP- Squeeze operation as the baseline model. Best view it zoom in.

2) Comparisons With Real Time Models on Cityscapes:
We set a new record on best speed and accuracy trade-off
in Cityscapes test set with 77.5 %mIoU and 70 FPS shown
in Fig. 5 with full image resolution inputs (1024×2048), which
indicates the practical usage of our method. During inference,
we use the whole picture as input to report performance. Tab V
shows the results of our real-time model. Compared with
previous real time models, our method achieves the best speed
and accuracy trade-off. Compared with baseline DFSeg [71],
Our method has similar parameters but with more accurate
and faster speed.

Fig. 8. The input and the output feature maps of the SR module. They are
projected from 512-d to 3-d by PCA. Best view it zoom in.

C. Comparisons With State-of-the-Art Methods in
Non-Real-Time Setting

In this section, we compare our method with state-of-
the-art methods on four semantic segmentation benchmarks
using multi scale inference setting. Without bells and whistles,
our method outperforms several state-of-the-art models while
costing less computation.

1) Results on Cityscapes: We train our model for 120K
iterations using only the finely annotated data (trainval
set), online hard negative mining is used following [40].
Multi-scale and horizontal flip testing is used as previous
works [10]. Tab. VII(a) compares the results, where our
methods achieves 82.2% mIoU and outperforms all previ-
ous state-of-the-art models by a large margin. In particu-
lar, our method is 0.7% mIoU higher than DANet [40],
which uses non-local-like operator and is much efficient in
both computation and memory cost due to the design of
squeeze and reasoning. Our ResNet-50 based model achieves
81.0% mIoU and outperforms DenseASPP [31] by 0.4% with
much larger backbone [77], which shows the effectiveness
of our method. After replacing stronger backbone Wider-
ResNet [78], we achieve 83.3%mIoU with only fine annotated
data, which outperforms previous state-of-the-art methods
by a large margin. Note that we follow the G-SCNN [54]
setting by using Deeplabv3+ based Wider-ResNet pretrained
on Mapillary [79]. The detailed results are shown in Tab. VI
for reference.
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TABLE VI

PER-CATEGORY RESULTS ON THE CITYSCAPES TEST SET COMPARED WITH ACCURATE MODELS. NOTE THAT ALL THE MODELS ARE TRAINED
WITH ONLY FINE ANNOTATED DATA. OUR METHOD WITH RESNET101 BACKBONE OUTPERFORMS EXISTING APPROACHES ON 15 OUT

OF 19 CATEGORIES, AND ACHIEVES 82.2% MIOU. SS MEANS SINGLE SCALE INFERENCE

TABLE VII

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON

ROAD-DRIVING SCENE DATASETS INCLUDING CITYSCAPES AND

CAMVID

2) Results on CamVid: is another road driving dataset.
Camvid involves 367 training images, 101 validation images
and 233 testing images with resolution of 960 × 720. We use
a crop size of 640 and training with 100 epochs. The results
are shown in Tab VII(b). We report results with ResNet-50
and ResNet-101 backbone. With ResNet-101 as backbone, our
method achieves 78.3% mIoU, outperforming the state-of-the-
art approach [83] by a large margin (3.1%).

TABLE VIII

COMPARISON WITH THE STATE-OF-THE-ART METHODS ON MORE SCENE

PARSING DATASETS INCLUDING ADE20K AND PASCAL CONTEXT

3) Results on Pascal Context: This dataset provides detailed
semantic labels for the whole scenes [21]. It contains
4998 images for training and 5105 images for validation.
We train the network for 100 epochs with a batch size of 16,
a crop size of 480. For evaluation, we perform multi-scale
testing with the flip operation, which boosts the results by
about 1.2% in mIoU. Fig. 9 shows the results of our method
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Fig. 9. Comparison of our results on Pascal Context to the state-of-the-
art EncNet [15]. Note that our results are more consistent and have fewer
artifacts. Best view zoom in.

Fig. 10. Comparison of our results with the state-of-the-art PSPNet [24]
method on the ADE-20k dataset. The black boxes show that our method can
get more consistent results and missing objects. Best view zoom in.

and EncNet. Compared with EncNet [15], our method achieves
better consistent results on the object inner parts, benefited
from better reasoned features. Tab. VIII(a) reports results on
Pascal Context. With ResNet-101 as the backbone, our method
achieves 54.7% in mIoU with multi-scale inference, surpassing
state-of-the-art alternatives by a large margin. Additionally,
using the ResNet-50 backbone, we achieve 50.8% mIoU,
which also outperforms the previous work [40] under the same
setting.

4) Results on ADE20K: This is a more challenging scene
parsing dataset annotated with 150 classes, which it contains
20k and 2k images for training and validation, respectively.
We train the network for 120 epochs with a batch size
of 16, a crop size of 512 and an initial learning rate of
1e-2. We perform multi-scale testing with the flip operation
as the common setting in [24]. The visible results are shown
in Fig. 10. Compared to PSPNet [24], our method better
handles inconsistent results and missing objects in the scene.
In Tab. VIII(b), Both results using ResNet-50 and ResNet-101
backbone are reported. As shown in Tab. VIII(b), Our method
with ResNet-101 achieves the best results and comparable
results with ResNet-50 backbone. Our methods have less
computation cost in the head part. Thus it results in an efficient
inference.

TABLE IX

EXPERIMENTS ON COCO DATASET. (A) DETECTION RESULTS ON THE
COCO 2017 VALIDATION SET. R-50: RESNET-50. R-101: RESNET-

101. X-101: RESNEXT-101 [90]. NL: NON-LOCAL BLOCKS [7].
(B) PANOPTIC SEGMENTATION RESULTS ON THE COCO

2017 VALIDATION SET

D. Results on MS COCO

To verify our module’s generality, we further conduct exper-
iments on MS COCO [18] for more tasks, including object
detection, instance segmentation and panoptic segmentation.
The trainval set has about 115k images, the minival set has
5k images. We perform training on trainval set and report
results on minival set. For the first two tasks, our model is
based on the state-of-the-art method Mask R-CNN [4] and
its variants [32], [88]. For panoptic segmentation, we choose
Panoptic FPN as our baseline [50]. We use open-source
tools [89] to carry out all the experiments and report results on
the MS COCO validation dataset. The GFlops are measured
with 1200 × 800 inputs. Our models and all baselines are
trained with the typical ‘1x’ training schedule and setting from
the public mmdetection [89] for all experiments on COCO.

1) Results on Object Detection and Instance Segmentation:
Tab. IX(a) compares results of both object detection and
instance segmentation with various backbone networks [90]
and advanced method [88], where our method achieves con-
sistently better performance on all backbones with much less
computation cost compared with Non-Local blocks [7].

2) Results on Panoptic Segmentation: Panoptic Segmenta-
tion [5] uses the PQ metric to capture the performance for all
classes (stuff and things) in a unified way. We use the Panoptic-
FPN [50] as our baseline model and follow the standard
settings in mmdetection. We re-implement the baseline model
using mmdetection tools and achieve the similar results with
original paper [50]. The results are shown in Tab. IX(b).
Our method improves baseline and outperforms the non-local
based methods through both overall evaluation and evaluations
separated into thing and stuff, and the improvements are
across both backbones, ResNet-50 and ResNet-101 with less
computation cost.
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Fig. 11. Comparison of our results on COCO with Mask-RCNN with
ResNet101 backbone. Best view zoom in.

TABLE X

EXPERIMENTS RESULTS ON IMAGENET. OUR METHOD ACHIEVES BETTER

TOP-1 ACCURACY WITH LOWER PARAMETER AND COMPUTATION

COST ON STRONG BASELINE SETTINGS. R50 MEANS RESNET50 AS

BACKBONE WHILE R101 MEANS RESNET101 AS BACKBONE

3) Visualization Results on COCO: Fig 11 shows the quali-
tative results on COCO validation set. We use Mask-RCNN [4]
with ResNet101 as the baseline model. The first two rows
show our SR module can handle small missing objects (red
boxes) while the last two rows show our method can also avoid
false positives (blue boxes) in the scene.

E. Extension on ImageNet Classification

We also perform experiments for image classification on
ImageNet dataset [19], where SENet [8] is used as our baseline
model. To be noted, we only verify the effectiveness and
generalization of SR framework for classification task. Our

model is designed by replacing fully-connected layer with our
proposed graph reasoning module, where the global hadamard
pooling is not used for both saving computation and fair
comparison with SEnet. All models are trained under the same
setting, and results are shown in Table X. All networks are
trained following the same strategy as [2] using Pytorch [72]
with 8 GTX 1080Ti GPUs. In particular, cosine learning rate
schedule with warm up strategy is adopt [91], and weight
decay is set to 1e-4. SGD with mini-batch size 256 is used for
updating weights. Top-1 and top-5 classification accuracy on
validation set using single 224 ×224 central crop are reported
for performance comparison. Due to the usage of cosine
learning rate schedule [91], our baseline models on ImageNet
are higher than the original paper [2], [8]. Compared with
both SENet and CBAM [35], our SRNet improves the strong
baseline SENet [8] by 0.3 in Top-1 accuracy with much less
parameter and GFlops. Our method leads to higher accuracy
with fewer parameters and FLOPs, which demonstrates both
effectiveness and efficiency of the proposed method.

V. CONCLUSION

This paper proposes a novel Squeezing and Reasoning
framework for highly efficient deep feature representation
learning for the scene understanding tasks. It learns to squeeze
the feature to a node graph space where each node repre-
sents an abstract semantic concept while both memory and
computation costs are significantly reduced. Extensive experi-
ments demonstrate that our method can establish considerable
results on semantic segmentation while keeping efficiency
compared with previous the-state-of-the-art models. It also
shows consistent improvement with respect to strong baselines
over instance segmentation and panoptic segmentation with
much less computation. It also verified to be effective on
image classification task and better results over SENet. The
further work can be exploring cross layer reasoning over entire
network.
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