
DATA: Differentiable ArchiTecture Approximation
With Distribution Guided Sampling

Xinbang Zhang , Jianlong Chang , Yiwen Guo , Gaofeng Meng , Senior Member, IEEE,

Shiming Xiang , Zhouchen Lin , Fellow, IEEE, and Chunhong Pan

Abstract—Neural architecture search (NAS) is inherently subject to the gap of architectures during searching and validating. To bridge

this gap effectively, we develop Differentiable ArchiTecture Approximation (DATA) with Ensemble Gumbel-Softmax (EGS) estimator

and Architecture Distribution Constraint (ADC) to automatically approximate architectures during searching and validating in a

differentiable manner. Technically, the EGS estimator consists of a group of Gumbel-Softmax estimators, which is capable of converting

probability vectors to binary codes and passing gradients reversely, reducing the estimation bias in a differentiable way. To narrow the

distribution gap between sampled architectures and supernet, further, the ADC is introduced to reduce the variance of sampling during

searching. Benefiting from such modeling, architecture probabilities and network weights in the NAS model can be jointly optimized

with the standard back-propagation, yielding an end-to-end learning mechanism for searching deep neural architectures in an extended

search space. Conclusively, in the validating process, a high-performance architecture that approaches to the learned one during

searching is readily built. Extensive experiments on various tasks including image classification, few-shot learning, unsupervised

clustering, semantic segmentation and language modeling strongly demonstrate that DATA is capable of discovering high-performance

architectures while guaranteeing the required efficiency. Code is available at https://github.com/XinbangZhang/DATA-NAS

Index Terms—Neural architecture search(NAS), ensemble gumbel-softmax, distribution guided sampling

Ç

1 INTRODUCTION

IN the last decade, deep learning has shown remarkable
passion and potential for AI applications, such as image

classification [1], [2], [3], object detection [4], [5] and semantic
segmentation [6], [7]. Inspired by its remarkable representa-
tion power, deep neural networks have raised the wave of
end-to-end learning and transform the dominant factor of
these applications from features extraction to architecture
design [8]. Unfortunately, deep neural architectures usually
need to be elaborately designed for specific tasks, leading to
the emergence of another tedious work, i.e., “network engi-
neering”. Besides, neural architecture is always treated as a
black box due to the lack of interpretability, which indicates

that designing suitable architecture typically still requires
tremendous efforts from human experts.

In order to eliminate such exhausting engineering, many
neural architecture search methods have been invented to
accomplishing the task automatically and raise a new steam
for AutoML [9], [10], i.e., evolution-based NASwhich searches
architecture with evolution algorithms [11], [12], [13], [14],
[15], [16], [17], [18], reinforcement learning-based NAS which
applies an RNN controller trained by RL algorithms to gener-
ate coded architectures [19], [20], [21], [22], [23], [24], [25].
However, as various childmodels are required to be evaluated
by these sampling-based methods, they are subject to limited
computing resources. Another stream of researchers propose
the gradient-based NAS which parameterizes architecture
with learnable parameters and updates them efficiently with
gradients [26], [27], [28], [29], [30]. Benefiting from such efforts,
searching cost is reduced remarkably and significant successes
have been achieved in a multitude of fields, including image
classification [31], [32], [33], [34], semantic segmentation [35],
[36], and object detection [37], [38], [39], [40].

Although the achievements in the literature are brilliant,
these methods suffer from the gap between architectures
during searching and validating. Subjecting to the continu-
ity requirement of gradients, most gradient-based methods
build a continuous supernet containing all candidates by
assigning architecture parameters to every possible path.
During searching, network weights and architecture param-
eters can be optimized with gradients. After searching, the
final architecture is obtained by simply selecting the path
with the highest architecture parameter. In spite of the
efficiency demonstrated by gradient-based methods, this
pipeline may suffer from several problems. First, feasible

� Xinbang Zhang, Gaofeng Meng, and Shiming Xiang are with the Depart-
ment of National Laboratory of Pattern Recognition, Institute of Automa-
tion, Chinese Academy of Science, Beijing 100190, China, and also with
the School of Artificial Intelligence, University of Chinese Academy of
Sciences, Beijing 100049, China.
E-mail: {xinbang.zhang, gfmeng, smxiang}@nlpr.ia.ac.cn.

� Chunhong Pan is with the Department of National Laboratory of Pattern
Recognition, Institute of Automation, Chinese Academy of Science, Beijing
100190, China. E-mail: chpan@nlpr.ia.ac.cn.

� Jianlong Chang is with the Huawei Cloud & AI, and the National Labora-
tory of Pattern Recognition, Institute of Automation, Chinese Academy of
Sciences , Beijing 100095, China. E-mail: jianlong.chang@huawei.com.

� Yiwen Guo is with the Bytedance AI Lab, Beijing 100190, China.
E-mail: guoyiwen.ai@bytedance.com.

� Zhouchen Lin is with the Key Lab. of Machine Perception (MoE), School of
EECS, Peking University, Beijing 100871, China. E-mail: zlin@pku.edu.cn.

Manuscript received 13Mar. 2020; revised 20 June 2020; accepted 12 Aug. 2020.
Date of publication 31 Aug. 2020; date of current version 4 Aug. 2021.
(Corresponding author: Jianlong Chang.)
Recommended for acceptance byH. J. Escalante, J. Vanschoren,W.-W. Tu, Y. Yu,
S. Escalera, N. Pillay, R.Qu, N. Houlsby, and T. Zhang.
Digital Object Identifier no. 10.1109/TPAMI.2020.3020315

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021 2905

0162-8828� 2020 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht_tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-8329-5363
https://orcid.org/0000-0002-8329-5363
https://orcid.org/0000-0002-8329-5363
https://orcid.org/0000-0002-8329-5363
https://orcid.org/0000-0002-8329-5363
https://orcid.org/0000-0002-0610-907X
https://orcid.org/0000-0002-0610-907X
https://orcid.org/0000-0002-0610-907X
https://orcid.org/0000-0002-0610-907X
https://orcid.org/0000-0002-0610-907X
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-0709-4877
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-7103-6321
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0002-2089-9733
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://orcid.org/0000-0003-1493-7569
https://github.com/XinbangZhang/DATA-NAS
mailto:xinbang.zhang@nlpr.ia.ac.cn
mailto:gfmeng@nlpr.ia.ac.cn
mailto:smxiang@nlpr.ia.ac.cn
mailto:chpan@nlpr.ia.ac.cn
mailto:jianlong.chang@huawei.com
mailto:guoyiwen.ai@bytedance.com
mailto:zlin@pku.edu.cn

paths in a learnable supernet are dependent on each other
and become deeply coupled during searching, architecture
parameters cannot indicate the importance of relative opera-
tions. Estimating the contribution of single operation by rela-
tive weight in the supernet may introduce estimation bias on
the importance of operations. Second, as the optimization of
network weights and architecture parameters is entirely
based on the continuous supernet, obtaining child networks
through discretizing the supernet may naturally destroy the
completeness of the original network. Due to these gap dur-
ing searching, the effectiveness and efficiency of these search
algorithmsmay be degraded. In order to eliminate these limi-
tations, Differentiable ArchiTecture Approximation is pro-
posed to minimize the gap of architectures during searching
and validating. Instead of optimizing architecture in a super-
net, we propose to sample child architectures in the searc-
hing process and optimize relative weights and architecture
probability. Therefore, different paths are decoupled through
sampling and impact from completeness destruction can be
avoided. To achieve this goal, we develop a sampling-based
estimator Ensemble Gumbel-Softmax (EGS) estimator, an ense-
mble of a group of Gumbel-Softmax estimators, which is in
a position to sample multi-operations architectures that
approaches the supernet during searching as close as possi-
ble, while maintaining the differentiability of a promising
NAS pipeline for required efficiency. Besides, Architecture
Distribution Constraint is proposed to narrow the distribution
gap between sampled architectures and supernet as well as
improving the stability of sampling. That is, our EGS estima-
tor suffices to not only bridge the gap between searching and
validating but also pass back-propagated gradients seam-
lessly, yielding an end-to-end mechanism of searching suit-
able neural architectures in a more complex and challenging
search space.

To sum up, the main contributions of this work are:

� Though generalizing the Gumbel-Softmax estimator,
we develop the EGS estimator, which is capable of
performing multi operations sampling in the search-
ing process with high effectiveness and efficiency.

� The EGS estimator enable our algorithm to search
architecture with the standard back-propagation and
seamlessly bridging the estimating gap of architec-
tures between searching and validating, yielding an
end-to-end mechanism of searching deep models in
a larger while more challenging search space.

� To minimize the distribution discrepancy between
the supernet and the sampled child network, a regu-
lation termed as architecture distribution constraint
(ADC) is introduced, which is in a position to reduce
the variance of sampling during searching.

� Extensive experiments demonstrate that our algo-
rithm outperforms current NAS methods in search-
ing high-performance convolution and recurrent
architectures for image classification, semantic seg-
mentation, few shot learning, unsupervised cluster-
ing and language modeling.

It should be noted that a previous version of this work has
been published in NeurIPS 2019 [41], we further extend our
previous work methodologically and empirically. For the
methodological aspect, we improve DATA by introducing an

architecture constraint (ADC) to bridge the neural architecture
distribution gap caused by completeness destruction.With the
help of ADC, architecture distribution appears ideally cate-
gorical distribution. As for the empirical aspect, extensive
experiments are conducted to demonstrate the effectiveness
of ourmethod. First, we extend ourmethod from image classi-
fication to other crucial while challenging tasks including few-
shot learning and unsupervised clustering with significant
improvement, demonstrating the universality of our method.
Second, numerous ablation experiments, visualizations and
analyses are presented to comprehensively evaluate the pro-
posedmethod.

The remainder of this paper is organized as follows: a
brief review on the related work of sampling-based NAS
methods including evolution-based NAS as well as rein-
forcement learning-based NAS, and gradient-based NAS
methods is given in Section 2. We formulate the problem of
differentiable neural architecture search in Section 3, fol-
lowed by the developed NAS method in Section 4. Compre-
hensive experimental results are reported and analyzed in
Section 5. Finally, this paper is concluded in Section 6.

2 RELATED WORK

Recently, discovering neural architecture automatically has
raised great interest in both academia and industry [19],
[40], [42], [43], [44], [45]. Nowadays, NAS methods can be
roughly divided into two classes according to searching
strategies [9], i.e., the sampling-based NAS method and the
gradient-based NAS method.

2.1 Sampling-Based NAS

Sampling-based NAS methods sample child architectures
from particular search spaces and apply nested optimiza-
tion to search suitable architectures based on the perfor-
mance of sampled architectures. Typical sampling-based
NAS methods include the evolution-based NAS methods
and the reinforcement learning-based NAS methods. His-
torically, evolutionary algorithms have already been heavily
investigated and applied in evolving neural architectures
[46], [47], [48]. Recently, [11], [13], [14], [15], [16] bring this
idea back by applying evolutionary algorithms in a CNN
search space. Modifications like inserting layer, adjusting
filter size and adding identity mapping are designed as
mutations.

Another stream of researches utilize an RNN network as
agent to generate architectures automatically. Reinforce-
ment learning is applied to train the agent based on the per-
formance of child architectures. In the pioneering work [24],
RNN networks serve as controllers to decide the types and
parameters of layers sequentially. The performance of the
generated architectures work as rewards for reinforcement
learning to train the controller in turn. Although such
method achieves remarkable results, 800 GPUs are used to
obtain a suitable architecture on the CIFAR-10 dataset,
which is extremely computationally expensive. Based on
this pipeline, many NAS methods are proposed to acceler-
ate searching process. Specifically, [23], [25] apply a dimin-
ished search space, they search the architecture of a single
block and stack the searched block structure to generate
final network. In [22], network weights are shared among

2906 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

child networks, saving searching time by reducing the cost
of evaluating child networks individually. Additionally, a
series of well-performing methods have also been explored,
including progressive search [34] and multi-objective opti-
mization [21], [39].

In spite of the high interpretability and feasibility of the
sample-based methods, both evolution-based and reinforce
learning-based NASmethods have the following two limita-
tions. First, most of them are source-hunger and computa-
tionally expensive. An inherent cause is that they recast
NAS as a black box optimization problem, which indicates
that numerous architectures are required to be validated
during searching. Second, the search spaces are constrained,
i.e., the number of operations needs to be predefined. Con-
sequently, the performance of these methods will be
degraded because of the limited search spaces.

2.2 Gradient-Based NAS

Contrary to treating architecture search as a black-box optimi-
zation problem, gradient-based NAS methods utilize gra-
dients to optimize neural architecture [27], [28], [29], [30].
Because of the discreteness of architectures, however, it is
impossible to propagate gradients to optimize architects
directly. To eliminate this problem, various methods are pro-
posed to estimate gradients for searching architectures. Typi-
cally, NAO [28] utilizes RNN networks as encoder and
decoder to map architectures into a continuous network
embedding space and conduct optimization in this spacewith
gradient-based method. Although NAO achieves remarkable
results, 200 GPU days are required to obtain a suitable net-
work, this search cost make it incompetent for wide applica-
tion. To relax the discrete search space to be continuous,
DARTS [27] builds a superent with architecture parameters
and optimize architecture parameters with back-propagated
gradients. Another stream of researchers formulate NAS as a
pruning process. They build a fully connected network and
pruning redundant paths with compression methods such as
sparse regulation [49] and binarization [50]. Although gradi-
ent-based NAS methods demonstrate as efficient as 0.5 GPU
days searching cost [27] on the CIFAR-10 dataset, final archi-
tectures are obtained by discretizing a continuous supernet,
whichwill naturally lead to the estimation bias of every opera-
tion and completeness destruction of supernet. Furthermore,
the number of operation for every node is fixed strictly, lead-
ing to a limited search space. To prevent the impact of com-
pleteness destruction, several methods optimize discrete
architecture directly. Technically, ProxylessNAS [50] casts
NAS as a path-level selecting process and optimize individual
paths with binary optimization [51]. Contemporary to this
work, SNAS [30] samples and optimizes candidate architec-
tures directly with concrete optimization [52]. Unfortunately,
they only focus on the affect of discretization and still suffer
from the limitation of search space, in spite of their remarkable
efficiency and results.

Different from the sampling-based NAS and gradient-
based NAS, we focus on bridging the gap between search-
ing and validating while keeping the efficiency of gradient-
based NAS methods. For effectiveness, an architecture
ensemble method is proposed to enlarge search space by
allowing more complicated combinations of operations. As

for efficiency, operations for different paths are sampled
according to the corresponding architecture probabilities
where efficient gradient optimization methods are applied
to update architecture probabilities.

3 DIFFERENTIABLE ARCHITECTURE SEARCH

In practice, any architecture in the search space can be
parameterized with a binary code. Before introducing our
approach, we first briefly review the objective of NAS. With-
out loss of generality, the architecture search space A can be
naturally represented by directed acyclic graphs (DAG)
each consisting of an ordered sequence of nodes. For a spe-
cific architecture, it always corresponds to a graph a 2 A,
represented as Nða; wÞ with network weights w. Intrinsi-
cally, the goal of NAS is to find a graph a� 2 A that mini-
mizes the validation loss, where the network weights w�

associated with the architecture a are obtained by minimiz-
ing the training loss, i.e.,

min
a2A

LvalðN ða; w�ÞÞ;
s:t: w� ¼ argmin

w
LtrainðN ða; wÞÞ: (1)

This implies that the essence of NAS is to solve a bi-level
optimization problem, which is hard to optimize due to the
nested relationship between architecture parameters a and
network weights w. To handle this issue, we parameterize
architectures with binary codes and devote to jointly learn-
ing a and w in a differentiable way.

3.1 Parameterizing Architectures With Binary
Codes

For simplicity, we denote all DAGs with n ordered nodes as

A ¼ feði;jÞj1 � i < j � ng, where eði;jÞ indicates a directed
edge from the i-th node to the j-th node. Corresponding to
each directed edge eði;jÞ, there are a set of candidate primi-
tive operations O ¼ fo1; � � � ; oKg, such as convolution, pool-
ing, identity, and zero. With these operations, the output at
the j-th node can be formulated as

xðjÞ ¼
X
i < j

oði;jÞðxðiÞÞ; (2)

where xðiÞ denotes the input from the i-th node, and oði;jÞð�Þ
is a function applied to xðiÞ which can be decomposed into a
superposition of primitive operations in O, i.e.,

oði;jÞðxðiÞÞ ¼
XK
k¼1

A
ði;jÞ
k � okðxðiÞÞ;

s:t: A
ði;jÞ
k 2 f0; 1g; 1 � k � K;

(3)

where okð�Þ is the k-th candidate primitive operation in O,

and A
ði;jÞ
k signifies a binary weight to indicate whether the

operation okð�Þ is utilized on the edge eði;jÞ. For a network,

by such definition, there is one and only one architecture
code A 2 f0; 1gn�n�K that corresponds to it, which implies

that we can learn the code A to approximate the optimal

architecture in A.

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2907

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

3.2 From Probability Vectors to Binary Codes

Benefiting from the uniqueness property of our architecture
code A, the task of learning an architecture can therefore be
converted to learning the optimal binary codeA. However, it
is a fussy NP-hard problem, and is difficult to solve directly.
To overcome the obstacle, we introduce a binary function
fð�Þ to approach the optimal binary codes with probability
vectors, which can be easily obtained in deep models. For-
mally, the categorical choice in Eq. (3) can be rewritten as

~oði;jÞðxðiÞÞ ¼
XK
k¼1

f P
ði;jÞ
k

� �
� okðxðiÞÞ;

s:t:
XK
k¼1

P
ði;jÞ
k ¼ 1; P

ði;jÞ
k � 0;

f P
ði;jÞ
k

� �
2 f0; 1g; 1 � k � K;

(4)

where P
ði;jÞ
k is the k-th element in the probability vector

Pði;jÞ 2 RK and denotes the probability of choosing the k-th
operation on the edge eði;jÞ, and fð�Þ represents a binary
function that suffices to map a probability vector to a binary
code and pass gradients in a continuous manner. Specifi-
cally, fð�Þ is chosen to be a monotonically increasing func-
tion in our method, i.e.,

f P
ði;jÞ
k1

� �
� f P

ði;jÞ
k2

� �
; if P

ði;jÞ
k1

� P
ði;jÞ
k2

; (5)

where 1 � k1; k2 � K, P
ði;jÞ
k is the k-th element of P ði;jÞ. By

substituting A
ði;jÞ
k with fðP ði;jÞ

k Þ and considering P
ði;jÞ
k inst-

ead as the variable to be optimized, we have successfully

achieved a continuous relaxation. Benefiting from the flexi-

bility of our formulation, furthermore, the optimization of

NAS in Eq. (1) can be seamlessly jointed together, i.e.,

min
a

Ea�P½LvalðN ða; w�ÞÞ	;
s:t: w� ¼ argmin

w
LtrainðN ða; wÞÞ: (6)

where a � P signifies that an architecture a is sampled from
the architecture distribution P 2 Rn�n�K .

With the objective in Eq. (6), themain process of optimizing
it is to minimize the expected performance of architectures

associated with K probability vectors P 2 Rn�n�K . Unfortu-
nately, Eq. (6) is difficult to solve directly as higher order
derivatives are required. To solve this problem, an alternative
optimization strategy is applied to optimize P and w in two
individual datasets iteratively. That is, the network a is first
generated from the binary function fð�Þ and architecture prob-
ability P. Afterward, gradients of P and w calculated on two
divided datasets respectively are yielded to modify these
parameters better. Because of the differentiability, both archi-
tecture probabilities and weights can be optimized end-to-
end by the standard back-propagation algorithm. In the end,
the network architecture a is identified by P, and the network
weights are estimated by retraining on the whole training set.
A conceptual visualization of such a process is illustrated
in Fig. 1.

4 DATA: DIFFERENTIABLE ARCHITECTURE

APPROXIMATION

Although the reformulation presented in Section 3.2 makes
the search space continuous, how to define the binary func-
tion fð�Þ as desired to map each probability to a binary code
needs to be sorted out. For a coarse fð�Þ, it may aggravate
the gap between architectures during searching and validat-
ing, such as DARTS [27] and SNAS [30] that strictly limit the
binary codes as one-hot vectors. As for a refined fð�Þ, we
introduce an Ensemble Gumbel-Softmax (EGS) estimator to
optimize the NAS problem with a principled approxima-
tion. As such, our model can be directly optimized with the
back-propagation algorithm in an end-to-end way, bridge
the gap between architectures during searching and validat-
ing as much as possible, yielding an efficient and effective
searching mechanism.

4.1 Gumbel-Softmax (GS)

A natural formulation for representing discrete variable is
to use the categorical distribution. However, partially due
to the inability to back-propagate information through sam-
ples, it seems rarely applied in deep learning. In this work,
we resort to the Gumbel-Max trick [53] for enabling back-
propagation and representing the process of taking decision
as sampling from a categorical distribution, in order to

Fig. 1. A conceptual visualization for the searching process with M ¼ 2. (a) First, an architecture (i.e., directed acyclic graph) consisting of four
ordered nodes is predefined. (b) In the searching process, with three candidate primitive operations (i.e., green, orange and cyan lines), the binary
function fð�Þ is employed to generate a path according to corresponding probabilities in a differentiable manner for M times. The sampled paths are
ensembled to generate a new architecture. (c) Finally, the details of the cell can be generated according to the learned architecture probabilities.

2908 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

perform NAS in a principled way. Specifically, given a
probability vector p ¼ ½p1; . . . ; pK 	 and a discrete random
variable with P ðL ¼ kÞ / pk, we sample from the discrete
variable L by introducing the Gumbel random variables. To
be more specific, we let

L ¼ arg max
k2f1;���;Kg

L̂k; (7)

where L̂k indicates the probability pk is the maximal entry in
p, which is estimated by the Gumbel-Softmax. Formally, the
Gumbel-Softmax (GS) estimator can be expressed as:

L̂k ¼ exp log pk þGkð Þ=tð ÞPK
k¼1 exp log pk þGkð Þ=tð Þ ; 1 � k � K; (8)

where t is a temperature. When t ! 0, ½L̂1; . . . ; L̂K 	 con-
verges to an one-hot vector, and in the other extreme it will
become a discrete uniform distribution with t ! þ1.
fGkgk�K is a sequence of the standard Gumbel random vari-
ables, and they are typically sampled from the Gumbel dis-
tribution G ¼
log ð
log ðXÞÞ with X � U½0; 1	. Benefiting
from the Gumbel random variables, the expectation of
selecting path k is equal to probability pk, as shown by [53]:

E Pr argmaxðL̂Þ ¼ k
� �� � ¼ pk: (9)

An obstacle to directly applying such an approach is that
the argmax operation is not continuous and cannot pass
gradient. One straightforward way of dealing with this
problem is to replace the argmax operation in Eq. (7) with a
softmax [54]. Unfortunately, the distribution neural archi-
tecture is intrinsically discrete and forcing it to be continu-
ous may introduce bias between searching and validating.
To solve this problem, we estimate the gradient of L̂k by the
gradient of the one-hot vector of L.

From the expression in Eq. (8), we see that GS estimator
pertains solely to deal with the problems that only one cate-
gory requires to be determined, i.e., the outputs are one-hot
vectors instead of any binary code. In NAS, however, an
optimal architecture may require multiple operations on
one edge, considering the practical significance [3], [56]. For
instance, the residual module y ¼ F ðxÞ þ IðxÞ in ResNets [3]
consists of two operations with a learnable mapping F ð�Þ
and the identity Ið�Þ. That is, choosing different operations
in O may not be mutually exclusive but compatible. One
direct way of handling this limitation is to map all possible
operation combinations to 2K-dimensional vectors, where
K is the number of candidate operations in O. However, it
seems difficult to search architectures efficiently when there
are many candidate operations, i.e.,K is really large.

4.2 Ensemble Gumbel-Softmax (EGS) for Any
Binary Code

To address the aforementioned limitation in the traditional
GS estimator, Ensemble Gumbel-Softmax (EGS) estimator is
proposed to model the binary function fð�Þ formulated in
Eq. (4), which is capable of choosing diversiform numbers
of operations on different edges. To this end, architectures
are equally recoded into a group of one-hot vectors that can
be sampled from probability vectors with the GS estimator.

Because of the equivalency, in turn, any architecture is sam-
pled by compositing the results from the GS estimator.

For clarity of exposition, the recoding of Aði;jÞ 2 f0; 1gK is
described only, where Aði;jÞ implies the chosen operations
on an edge eði;jÞ. Naturally, such a K-dimensional vector
Aði;jÞ 2 f0; 1gK can be recoded into a superposition of K
one-hot vectors, i.e.,

Aði;jÞ ¼
XK
k¼1

vk � aði;jÞk ; vk 2 f0; 1g; 1 � k � K; (10)

where a
ði;jÞ
k 2 RK is a K-dimensional one-hot vector that

uniquely corresponds to the operation ok 2 O, vk ¼ 1
implies that the operation ok is chosen on edge eði;jÞ, and
vk ¼ 0 otherwise. Benefiting from the equivalence, any
architecture code can be represented with a group of one-
hot vectors, and one-hot vectors can also be sampled from
probability vectors with the GS estimator. Intrinsically, such
straightforward process can be considered as the inverse
operation of the binary function fð�Þ. That is, the problem of
modeling the binary function fð�Þ can be recast as to find
the inversion of such process.

Inspired from the above relationship between architec-
ture codes, one-hot vectors and probability vectors, we
model the binary function fð�Þ by introducing the inversion
of this relationship. In Fig. 2, a visualized comparison
between the GS and EGS estimators intuitively shows that
our EGS estimator is better than the GS estimator, in terms
of both sampling capability and rationality. Given a proba-
bility vector, the EGS estimator, an ensemble of multiple GS
estimators, is profound for sampling any binary code, i.e.,

Ensemble Gumbel-Softmax. For a K-dimensional probability
vector p ¼ ½p1; . . . ; pK 	 2 RK and M one-hot vectors fzð1Þ; . . . ;
zðMÞg sampled from p with the GS estimator, the K-dimensional
binary code b ¼ ½b1; . . . ; bK 	 2 f0; 1gK sampled with EGS is

bk ¼ max
1�i�M

z
ðiÞ
k

� �
; 1 � k � K;

where M is sampling times, bk is the k-th element in b, and z
ðiÞ
k

indicates the k-th element in zðiÞ.

4.3 Minimizing Distribution Gap With Architecture
Distribution Constraint (ADC)

Although EGS is in a position to obtain arbitrary binary
codes in a differentiable manner, it still suffers from high

Fig. 2. A visualized comparison between Softmax, Gumbel-Softmax and
ensemble Gumbel-Softmax (M ¼ 2). For a probability vector p ¼
½0:5; 0:5	, Gumbel-Softmax solely pertains to sample only two binary
codes with the same probability, i.e., P ð½1; 0	Þ ¼ P ð½0; 1	Þ ¼ 0:5. In con-
trast, our ensemble Gumbel-Softmax is capable of sampling more
diversified binary codes, i.e., [1,0], [1,1] and [0,1]. Furthermore, the prob-
abilities of sampling these binary codes are logical. Typically, it is con-
ceptually intuitive that the probability of sampling [1,1] is larger than the
probabilities of sampling the others since the probabilities in p ¼
½0:5; 0:5	 are equal to each other.

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2909

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

variance in the validating process. The basic idea of DATA
is sampling a suitable child network from supernet under
the hypothesis that the sampled child architecture and
supernet have the same representation capability and per-
formance. Formally, to keep the consistent performance of
sampled architectures in both searching and validating
stage, the original distribution P of the supernet and the
binary distribution f Pð Þ of sampled architectures, are sup-
posed to obey the following approximation:

Pði;jÞ � f Pði;jÞ
� �

; (11)

where f Pði;jÞ� �
is the binary vector sampled by the EGS esti-

mator. Unfortunately, the gap between the original distribu-
tion Pði;jÞ and the binary decision f Pði;jÞ� �

always exists.
Since EGS is intrinsically a sampling function that may
cause the discrepancy between continuous distribution of
supernet and binary distribution of child architectures, the
discrepancy will in turn reduce the stability of sampling
and inconsistent performance of child architectures. Based
on the experiments conducted on the CIFAR-10 dataset, we
illustrate the obtained architecture distribution and the
derived distribution by fð�Þ in Fig. 4a and 4b, respectively.
As the illustration shows, the approximation Eq. (11) is
hardly satisfied, the difference between these two distribu-
tions will lead to the unignorable representative gap bet-
ween obtained architectures and the supernet. Beside, the
probability difference between operations is too narrow to
identity necessary operation, which may make the opera-
tion selection more sensitive to noise. As a consequence,
sampled child architectures are of high variety, damaging
the stability of sampling process and consistency between
supernet and child architectures.

To solve this problem, a constraint on the architecture
distribution Gð�Þ is introduced to help the original distribu-
tion P converge to sampled binary distributions f Pði;jÞ� �

in
the searching process. Specifically, the regulation in this
work is generally formulated as

GðPÞ ¼
X
i;j

Pði;jÞ
 f Pði;jÞ
� ���� ���t; (12)

where t is a hyper-parameter in Gð�Þ. With different t, vari-
ous losses can be derived. In our experiment, the L1 dis-
tance loss t ¼ 1 is employed. By restricting the learned
architecture distribution to approach the natural discrete
one, ADC is capable of reducing the discrepancy between
these two distributions and the noise of sampling. The
objective function in Eq. (1) can therefore be modified as:

min
a

Ea�P½LvalðN ða; w�ÞÞ	 þ gGðPÞ;
s:t: w� ¼ argmin

w
LtrainðN ða; wÞÞ; (13)

where g represents the regulation weight. With the guid-
ance of this regulation, the gap between architecture distri-
bution can be bridge effectively and efficiently.

4.4 Understanding DATA

To reveal the serviceability and sampling capability of
the developed EGS estimator, according to the definition

Ensemble Gumbel-Softmax, three basic propositions are given
in the following.

Interpretability. For arbitrary probability vector p ¼ ½p1; . . . ;
pK 	 and sampling times M, the K-dimensional binary code b 2
f0; 1gK sampled with EGS alwaysmeets

P ðbk1 ¼ 1Þ � P ðbk2 ¼ 1Þ , pk1 � pk2 ;

1 � k1; k2 � K;
(14)

where P ðbk ¼ 1Þ is the probability of bk ¼ 1, and
P ðbk1 ¼ 1Þ ¼ P ðbk2 ¼ 1Þ , pk1 ¼ pk2 .

Proposition Interpretability means that the binary codes
sampled with the EGS estimator strictly depend on the
probabilities at the corresponding locations. EGS satisfies
Eq. (5) and always tends to be a monotonically increasing
function in terms of probability. That is, EGS suffices to act
as the binary function fð�Þ.

Expressivity: For arbitrary probability vector p ¼ ½p1; . . . ; pK 	
and number of sampling times M, the EGS estimator is capable of
sampling K

M

� �� 2M
 1
� �

different binary codes, which includes
the whole binary codes with up toM ones and at least 1 one.

Proposition Expressivity indicates that the sampling capa-
bility of the EGS estimator increases exponentially with
sampling timesM. In practice, largerM is always employed
to deal with more complex tasks for effect, and smaller one
can be utilized to search more lightweight networks for effi-
ciency. Benefiting from the high expressivity of our search
space, DATA suffices to explore the distribution of architec-
tures in a giant search space.

Diversity: For arbitrary probability distribution vector p ¼
½p1; . . . ; pK 	 and number of sampling times M, the probability for
coded architecture a ¼ ½a1; . . . ; ai; . . . ; aK 	; ai 2 f0; 1g can be cal-
culated by:

P ðaÞ ¼
X
ti

M!

t1! � � � tK !
YK
j¼0

ðajpjÞtj ;

t1 þ t2 þ � � � þ tK ¼ M; ti � ai; ti 2 Z:

(15)

Proposition Diversity demonstrates that the posterior for
any architecture in the search space can be calculated
according to the learned probability distribution. Different
from most existing NAS methods that search for proper
architecture for specific task, DATA makes a further step to
explore the distribution for neural architecture and learn
the intrinsic probability of architectures.

5 EXPERIMENTS

In this section, we evaluate the performance of our method
on several tasks and benchmark datasets. Furthermore,
numerous ablation experiments are also conducted to sys-
tematically and comprehensively analyze the proposed
method. Our search space is totally based on the one pro-
posed by DARTS [27] except for unlimited number of opera-
tions for every edge. For convolution cells, every cell
consists of n ¼ 7 nodes, among which the output node is
defined as the depthwise concatenation of all the intermedi-
ate nodes. The larger networks are always built by stacking
multiple cells together. In the k-th cell, the first and the sec-
ond nodes are set equally to the outputs in the ðk
 2Þ-th

2910 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

and the ðk
 1Þ-th cells, respectively, with 1� 1 convolution
as necessary. The candidate primitive set O for convolu-
tional cell includes eight typical operations, i.e., 3� 3 and
5� 5 separable convolutions, 3� 3 and 5� 5 dilated separa-
ble convolutions, 3� 3 max pooling, 3� 3 average pooling,
identity, and zero. In order to preserve their spatial resolu-
tions, all operations are of stride one and convolutional fea-
ture maps are padded if necessary. The ReLU-Conv-BN
order is utilized in the whole convolution operations, and
every separable convolution is always applied twice. As for
recurrent architecture, there are n ¼ 12 nodes in a recurrent
cell. Similar to ENAS [22] and DARTS [27], the very first
intermediate node is obtained by linearly transforming the
two input nodes, adding up the results and then passing
through the tanh function, and the rest of activation func-
tions are learned with DATA and enhanced with the high-
way [57]. The batch normalization [58] is applied in each
node to prevent gradient explosion in searching, and dis-
able it during validation. In addition, the recurrent network
consists of only a single cell, i.e., any repetitive pattern is not
assumed in the recurrent architecture. Available operations
include five popular functions: sigmoid, tanh, relu, identity
and zero, following the setting in [22], [25], [27]. As a greatly
improved work of DARTS, specifically, the experimental
settings always inherit from it, if not particularly stated.

5.1 Architecture Learning on Image Classification

A good starting point for neural architecture search is the
classical and widely-applied computer vision task, image
classification. We apply DATA on the standard image clas-
sification dataset, i.e., the CIFAR-10 dataset, with sampling

time M set to 4 and 7. A supernet consisting of 8 cells is
applied following previous works [16], [25], [27], [34]. The
reduction cell where all the operations adjacent to the input
nodes are of stride two is utilized at the 1=3 and the 2=3 of
the total depth of the network, and the remaining cells are
normal cells whose operations are of stride one.

To evaluate the searched architecture, we train a larger
network of 20 cells from scratch for 600 epochs with batch
size 96 and report its test error, following [27]. For fair com-
parison, we apply cutout with size 16, path dropout of prob-
ability 0.2 and auxiliary towers with weight 0.4 following
exiting works [16], [25], [27], [34], [61]. We report the
mean of five independent runs with different initializations.
The obtained normal cells and reduction cells with M ¼ 4
and M ¼ 7 are illustrated in Fig. 3a, 3b, 3c, 3d, and the
FLOPs of the obtained architectures are 443 M and 528 M
respectively.

Table 1 gives the classification results of DATA and other
NAS methods, which shows that DATA yields compar-
able or better results comparing with other state-of-the-art

Fig. 3. Architectures learned on different tasks with DATA, where the five operations: separable convolution, dilated convolution, max pooling, aver-
age pooling and identity mappling are represented by ‘sc’, ‘dc’, ‘mp’, ‘ap’ and ‘id’ in short. Normal cells and reduction cells learned on classification
task with (a) (b) M = 4 and (c) (d) M = 7. (e) (f) Normal cells and reduction cells learned on one-shot learning task, (g) (h) five-shot learning task and
(i) (j) unsuperwised clustering task. (k) Recurrent cell learned on language modeling task.

Fig. 4. The sampling process of DATA is actually transforming the
learned distribution into binary distribution, inducting the distribution dis-
crepancy between derived architecture and the supernet.

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2911

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

methods with significantly less computation resources. Our
experiments verify that DATA can effectively and efficiently
search worthy architectures for classification. In DATA, fur-
thermore, higher accuracy is yielded when M ¼ 7 com-
pared with M ¼ 4. This scenario is in accordance with our
motivation that richer search space is beneficial for obtain-
ing better architecture.

5.2 Visualization of Searching Process

To better understand the searching process of DATA, we
sample the architecture structures generated in different
epochs to visualize the searching process of DATA with
M ¼ 4. As illustrated in Fig. 5. The searching process of
DATA is similar to the process of neural network pruning.
DATA starts from highly connected architecture and gradu-
ally deletes unless connections, obtaining difficult patterns.
Finally, DATA converges for the specific task. Interestingly,
the skip connection operation is usually combined with dif-
ferent convolution operations such as separate convolution
and dilated convolution, which confirm one of the basic
ideas of DATA that the cooperation between different oper-
ations contribute to better performance of architectures. The
obtained patterns may also help understand architecture
and inspire architecture design.

We also visualize the probability for every operation in
the searching process, shown in Fig. 6. Our experiments
show the probability distribution starts from uniform distri-
bution and gradually indicates the importance of every
operation. By taking advantage of ADC, the distribution
architecture gradually converges to binary distribution.

Apart from the evolution of architecture distribution, it is
also notable that the convergence speed of DATA is

comparable or better than other neural architecturemethods,
shown in Fig. 7a. Compared with ENAS and SNAS, DATA
takes fewer epochs to converge to higher validation accuracy
even with larger search space, indicating the efficiency of
DATA. At the end of searching, the validation accuracy of
our method is also higher than other methods. Besides, per-
formance of obtained architectures also improves steadily in
the searching process, as illustrated in Fig. 7b.

To prove the validity of DATA to bridge the gap between
searching and validating, we compare performance of dif-
ferent gradient-based methods in these two phases, specifi-
cally, the accuracy of supernet and child networks on the
validation set. As shown in Table 2, although DARTS con-
verges faster than DATA, the child architectures of it suffer
from unignorable accuracy drop due to the gap between
searching and validating. As for DATA, the performance of
child architectures is consistent with the supernet, indicat-
ing DATA can bridge this gap effectively. It is also notable
that the architecture distribution constraint is capable of
improving the performance of both supernet and child net-
work, indicating the effectiveness of it.

5.3 Transferability Validation on ImageNet

To prove the transferability of our method, we transform
the architecture learned on CIFAR-10 to a large and stan-
dard dataset, ImageNet datasets. On ImageNet, the mobile
setting where the input image size is 224�224 is applied
and the number of multiply-add operations is restricted to
be under 600M. Following [27], we evaluate the obtained

TABLE 1
Comparison of Image Classification Architectures on CIFAR-10

Architecture
Test Error Params Search Cost

(%) (M) (GPU days)

ResNet-110 [3] 6.43 1.70 -
DenseNet-BC [59] 3.46 25.6 -

NAS v1 [24] 5.50 4.2 22400
NAS v2 [24] 6.01 2.5 22400
NAS v3 [24] 4.47 7.1 22400
NASNet-A+cutout [25] 2.65 3.3 2000
NASNet-B [25] 3.73 2.6 2000
PNAS [34] 3.41 3.2 225
Hierarchical evolution [60] 3.75 15.7 300
AmoebaNet-A [16] 3.34 3.2 3150
AmoebaNet-B+cutout [16] 2.55 2.8 3150
ENAS+cutout [22] 2.89 4.6 0.5

NAONet [28] 3.18 10.6 200
NAONet-WS [28] 3.53 3.1 0.4
DARTS(1-th order)+cutout [27] 3.00 3.3 0.5
DARTS(2-th order)+cutout [27] 2.76 3.3 1
SNAS+mild+cutout [30] 2.98 2.9 1.5
SNAS+moderate+cutout [30] 2.85 2.8 1.5
SNAS+aggressive+cutout [30] 3.10 2.3 1.5
GDAS [26] 2.93 3.4 0.21
DSO-NAS [49] 2.74 3.0 1

Random baseline+cutout 3.29 3.2 -
DATA (M ¼ 4)+cutout 2.64 2.8 1
DATA (M ¼ 7)+cutout 2.53 3.4 1

Fig. 5. Evolution of normal cells during searching. The children architec-
tures obtained at the (a) 25-th, (b) 50-th, (c) 75-th, (d) 100-th epoches.

Fig. 6. Obtained architecture distributions in the searching process. The
distributions of norm cell and reduction cell are shown in the first row
and the second row respectively.

2912 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

structures in an architecture consisting of 14 cells. The archi-
tecture is trained for 250 epoches with batch size 128, weight
decay 3�10
5 and poly learning rate scheduler with initial
learning rate 0.1. Other regulations including label smooth-
ing [55] and auxiliary loss [61] are used for fair comparison
following [27].

In Table 3, we report the quantitative results on Image-
Net. Note that the cell searched on CIFAR-10 can be
smoothly employed to deal with the large-scale classifica-
tion task. Compared with other gradient-based NAS meth-
ods, furthermore, greater margins are yielded on ImageNet.
A possible reason is that more complex architectures can
be searched in DATA because of the larger search space.
Consequently, such more complex architectures handle
more complex task on ImageNet with better performance.
Our experiments also indicate that DATA achieves better
performance than hand-engineered architecture ShuffleNet
V2 [64]. As one of the state-of-the-art architecture, the
designing cost of ShuffleNet V2 requires years of expertise
and experience with large amount of hyperparameters tun-
ing. On the contrary, DATA takes only one GPU-day to
learn a comparable architecture from scratch, indicating the
effectiveness of our method and the power of NAS, or
broadly AutoML.

5.4 Transferability Validation on PASCAL VOC

To further investigate the transferability of the convolution
cells searched on CIFAR-10, we validate the capability of
them on a more complex task, i.e., the semantic segmenta-
tion task on PASCAL VOC 2012. In the experiments, we
apply the network structure searched on CIFAR-10 as fea-
ture extractor and combine it with the head adopted in
Deeplab v3 [65]. All architectures are pretrained for 120
epochs on ImageNet and then trained on the semantic seg-
mentation task for 350 epochs using SGD with batch size 64.

Other hyperparameters and data augmentation methods
are set following [65] while we multiply the original learn-
ing rate by four time to 0.028 as a quadruple batch size is
applied.

Compared with other NAS methods, DATA achieves
better performance by a large margin while less computa-
tion resources. It is also notable that DATA may achieve
even better results with larger sampling times. The results
in Table 4 demonstrate the transferability of architectures
searched on the CIFAR-10 dataset and verify that DATA
has more prominent superiority on more complex tasks, not
just toy tasks on the tiny datasets, because of a large search
space that is proportional to the sampling timesM.

5.5 Architecture Learning on Few Shot Learning

In the few shot learning, architecture or specifically, feature
extractor, is extremely important as the quality of feature is
highly dependent on it, shown by [66]. However, the impor-
tance of architectures received little attention and almost all
few shot learning methods are equipped with the backbones
designed for normal classification task. In this paper, we com-
bine our method with a popular few shot learning method,
prototype network [67], to automatic the architecture designing
process for few shot learning. All experiments are conducted
on a popular few-shot learning benchmark, miniImageNet,
with the splits proposed by [68].

The search space of cells for few shot learning task is sim-
ilar to that for the CIFAR-10 classification task introduced in
Section 5.1, merely a network with three normal cells and
two reduction cells are applied. As for the architecture
structure, considering that the images in miniImageNet is
larger then the images in CIFAR-10, we modify the stride-
one-convolution in the stem of architecture to a convolution
with stride 2 and applied a max pooling to the final feature
map of network, followed by a convolution layer with ker-
nel 1�1 to adjust the number of channels to 64, resulting in
a 1600-dimensions output following [67]. Meanwhile, we
follow their procedure by searching or training network on
the 64 training classes and using the 16 validation classes
for monitoring generalization performance only, while
reporting performance on the independent 16 test classes.

In the searching process, we split the training set into two
parts according to classes, 32 classes for training weights
and 32 classes for architecture, sampling times is set to M ¼
7. As for architecture search, we combine our method with
1-shot learning and 5-shot learning tasks and apply 10-way
episodes. We match train shot to test shot and the number
of query points per episode for every class is set to 15. The

Fig. 7. Searching process of DATA for convolutional architecture on CIFAR-10. (a) The validation accuracy of supernet in the searching process. (b)
The visualized comparison of searched architectures between different search epochs. (c) The visualized effect of architecture distribution constrain
(ADC) on validation accuracy in the searching process. (d) The visualized effect of sampling times on supernet in during searching, bold curves
denote training accuracy and thin curves denote validation accuracy.

TABLE 2
Validation Accuracy Gap on CIFAR-10

(Lower Error Rate is Better)

Architecture
Search Valid. Child net Search Cost

Error valid. Error (GPU days)

DARTS(1-th) [27] 12.33 45.34 0.5
DARTS(2-th) [27] 11.23 45.21 1
DATA (M ¼ 4) 11.67 9.43 1
DATA (M ¼ 4) + ADC 10.94 9.32 1
DATA (M ¼ 7) 11.08 9.21 1
DATA (M ¼ 7) + ADC 10.82 9.33 1

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2913

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

hypernetwork is trained for 300 epochs, we set initial learn-
ing rate to 0.1 and multiply it by 0.2 for every 100 episodes.
The architectures obtained by searching on the one-shot
learning and five-shot learning task are represented by
DATA-OS and DATA-FS respectively, the normal cells and
reduction cells of them are shown in Fig. 3e, 3f, 3g, 3h.

As for architecture evaluating, the same network utilized
in the searching process is trained from scratch for 1-shot
classification and 5-shot classification task. Following [67],
the architecture is trained with 30-way episodes for 1-shot
classification and 20-way episodes for 5-shot classification.
We match train shot to test shot and each class contains 15
query points per episode. We train the architecture for 300
epochs, learning rate is set to 0.1 and is multiplied by 0.2
every 100 episodes.

Other hyperparameters and data augmentation methods
including horizontal flip, random crop are set following [67].

The results of our experiments are shown in Table 5, where
DATA-CLS represents the architecture obtained by searching
on the classical classification task (M=7). From the table, NAS
improves the performance of few-shot learning by a large
margin while our method achieves comparable or even better
performance than other NAS or few-shot methods. Besides,
the architectures searched on the few-shot learning task
achieve better performance than the architecture transformed

from classical classification task, indicating DATA is capable
of searching suitable architecture based on specific tasks.

5.6 Architecture Learning on Unsupervised
Clustering

As a totally data-driven task that attempts to explore knowl-
edge from unlabeled data, clustering is an essential data
analysis tool in pattern analysis and machine learning. A
heavy investment direction of clustering is developing
unsupervised features extracting techniques as the quality
of feature is extremely important for improving the perfor-
mance of clustering. In this paper, we incorporate our
method with unsupervised cluster task to search for the
suitable architectures for it. Experiments are conducted on
the CIFAR-10 dataset.

The search spacewe applied for unsupervised cluster task
is similar to that for image classification task, expect that a
shallow network with only three normal cells and two

TABLE 3
Comparison With Classifiers on ImageNet in the Mobile Setting (Lower Test Error is Better)

Architecture
Test Error (%) Params FLOPs Search Cost Number Search

Top 1 Top 5 (M) (M) (GPU days) of Ops Method

Inception-v1 [63] 30.2 10.1 6.6 1448 - - manual
MobileNet [64] 29.4 10.5 4.2 569 - - manual
ShuffleNet-v2 2� [65] 25.1 - �5 591 - - manual

PNAS [34] 25.8 8.1 5.1 588 �225 8 SMBO
AmoebaNet-A [16] 25.5 8.0 5.1 555 3150 19 evolution
AmoebaNet-B [16] 26.0 8.5 5.3 555 3150 19 evolution
AmoebaNet-C [16] 24.3 7.6 6.4 570 3150 19 evolution
NASNet-A [25] 26.0 8.4 5.3 564 2000 13 RL
NASNet-B [25] 27.2 8.7 5.3 488 2000 13 RL
NASNet-C [25] 27.5 9.0 4.9 558 2000 13 RL
Mnas-Net-92 [39] 25.2 8.0 4.4 388 - 6 RL

DARTS [27] 26.7 8.7 4.7 574 1 7 gradient-based
SNAS (mild constraint) [30] 27.3 9.2 4.3 522 1.5 7 gradient-based
ProxylessNAS(GPU) [50] 24.9 7.5 7.1 388 8.3 6 gradient-based
GDAS [26] 26.0 8.5 5.3 581 0.21 7 gradient-based
DSO-NAS-share [49] 25.4 8.3 4.7 567 6 4 gradient-based

DATA (M ¼ 4) 25.6 8.5 4.2 521 1 7 gradient-based
DATA (M ¼ 7) 24.9 8.0 5.0 584 1 7 gradient-based

TABLE 4
Semantic Segmentation on the PASCALVOC-2012

Architecture
mIOU Params Search Cost

(%) (M) (GPU days)

NASNet-A [25] 74.7 12.6 2000
AmoebaNet-A [16] 75.2 12.2 3150
DARTS [27] 73.8 12.4 1
DATA (M ¼ 4) 74.1 11.7 1
DATA (M ¼ 7) 75.6 12.7 1

TABLE 5
Comparison of Few Shot Learning Algorithms on
MiniImageNet (Architectures With * are Obtained

on CIFAR-10 Classification Task)

Method miniImageNet 5-way Acc. Search Cost

1-shot 5-shot (GPU days)

ML LSTM [70] 43.44 � 0.77 60.60 � 0.71 -
MatchingNet [69] 43.56 � 0.84 55.31 � 0.73 -
ProtoNet [68] 49.42 � 0.78 68.20 � 0.66 -
RelationNet [71] 50.44 � 0.82 65.32 � 0.70 -
MAML [72] 48.70 � 1.84 63.11 � 0.92 -

NASNet-A* [25] 52.94 � 0.96 70.86 � 0.84 2000
AmoebaNet-A* [16] 53.86 � 0.93 71.42 � 0.78 3150
DARTS* [27] 52.02 � 0.93 70.41 � 0.91 1
DATA-CLS* 52.86 � 0.87 70.53 � 0.89 1
DATA-OS 54.77 � 0.89 70.88 � 0.74 1
DATA-FS 53.82 � 0.82 72.17 � 0.88 1

2914 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

reduction cells is applied. Similar to the classification experi-
ments, we split the training set into two parts in the searching
process, half for training weights and half for architecture.
As for architecture search, we combine our method with a
state-of-the-art unsupervised learning method DAC [72].
The hypernetwork is trained for 50 epochs, we used an initial
learning rate of 0.1 andmultiply it by 0.1 for every 10 epochs.
In the evaluation stage, the obtained architectures are com-
bined with DAC and trained from scratch in the unsuper-
vised clustering task. Following [72], all architectures are
trainedwith learning rate 0.1 for 100 epochs for fair compari-
son. Other hyperparameters are also set following [72]. The
normal cell and reduction cell of the obtained architecture
are shown in Fig. 3j and 3k respectively.

The results are shown in Table 6, where DATA-CLS signi-
fies the architecture obtained by searching on the classifica-
tion task (M=7) and DATA-CLU represents the architecture
obtained by searching on the clustering task. Our experi-
ments demonstrate that the architectures obtained by DATA
achieve better results on the unsupervised clustering task
than other NASmethods with less search cost. It is also nota-
ble that the architectures obtained by our method have high
transferability while the architecture searched on specific
task achieves even better performance.

5.7 Architecture Learning on Language Modeling

Another important application of deep learning is recurrent
network. Instead of extracting feature based on spatial
neighborhood like convolution network, recurrent network
model data according to time series. We conduct our
method on the language modeling task to explore architec-
ture search for the recurrent network.

Following [22], [27], we adopt a RNN search space con-
sisting of 12 nodes and conduct searching process on the
PTB dataset. Sampling time M ¼ 2 and M ¼ 3 is applied to
search suitable topology structure of recurrent network as
well as the activation functions between nodes.

The searching process is conducted on the PTB dataset. A
single-layer recurrent network consisting of searched cells is
trained with 1600 epochs, and batch size 64 using averaged
SGD. Both of the embedding and the hidden sizes are set to
850 to ensure our model size is comparable with other base-
lines. Other hyper-parameters are set following [27].

We illustrate the obtained recurrent architecture in Fig. 3k.
Table 7 lists the results of this experiment. From the table,

DATA is in a position to search recurrent architectures
effectively. It demonstrates empirically that the back-propa-
gation algorithm can guide DATA to hit a preferable recur-
rent architecture, while maintaining the required efficiency.
Similar to the conclusion in the experiments on CIFAR-10,
lower perplexity is achieved when a largerM is used, which
verifies that a large search space is also valuable for search-
ing recurrent architectures.

5.8 Transferability Validation on WT2

To demonstrate the generalizability of our method, we
transfer the block structure learned on PTB to the WT2 data-
set. Different from the settings on PTB, we apply embed-
ding hidden sizes 700, weight decay 5�10
7, and hidden-
node variational dropout 0.15 following [27]. Other hyper-
parameters remain the same in the experiments on PTB. In
Table 8, the results on the WT2 dataset indicate that the
transferability is also retentive on recurrent architectures.
Conclusively, the consistent results of the above experi-
ments on ImageNet, PASCAL VOC and WT2 strongly dem-
onstrate the transferability on both convolutional and
recurrent architectures.

5.9 Ablation Study

In this section, extensive ablation studies are conducted to
analyze the DATA algorithm synthetically. Specifically, the

TABLE 6
Comparison of Unsupervised Clustering Methods on

CIFAR-10 (Architectures With * are Obtained on
CIFAR-10 Classification Task)

Method
Clustering Results. Search Cost

NMI ARI ACC (GPU days)

K-means [25] 0.0871 0.0487 0.2289 -
DAE [74] 0.2506 0.1627 0.2971 -
DEC [75] 0.2568 0.1607 0.3010 -
CatGAN [76] 0.2646 0.1757 0.3152 -
DAC [73] 0.4379 0.3399 0.4778 -

NASNet-A* [25] 0.4656 0.3642 0.4901 2000
AmoebaNet-A* [16] 0.4732 0.3794 0.5134 3150
DARTS* [27] 0.4563 0.3611 0.4962 1
DATA-CLS* 0.4703 0.3788 0.5122 1
DATA-CLU 0.4763 0.3811 0.5162 0.5

TABLE 7
Comparison With State-of-the-Art Language Models on PTB

Architecture
Perplexity Params Search Cost

valid test (M) (GPU days)

Variational RHN [57] 67.9 65.4 23 -
LSTM [77] 60.7 58.8 24 -
LSTM+SC [78] 60.9 58.3 24 -
LSTM+SE [79] 58.1 56.0 22 -

DARTS (1-th order) [27] 60.2 57.6 23 0.5
DARTS (2-th order) [27] 58.1 55.7 23 1
ENAS [22] 68.3 63.1 24 0.5
GDAS [26] 59.8 57.5 23 0.4

DATA (M ¼ 2) 58.4 56.3 22 0.5
DATA (M ¼ 3) 57.2 55.2 23 0.5

TABLE 8
Comparison With State-of-the-Art Language Models on WT2

Architecture
Perplexity Params Search Cost

valid test (M) (GPU days)

LSTM+AL [80] 91.5 87.0 28 -
LSTM+CP [81] - 68.9 - -
LSTM [77] 69.1 66.0 33 -
LSTM+SC [78] 69.1 65.9 24 -
LSTM+SE [79] 66.0 63.3 33 -

DARTS (2-th order) [27] 69.5 66.9 33 1
ENAS [22] 72.4 70.4 33 0.5
GDAS [26] 71.0 69.4 33 0.4

DATA (M ¼ 2) 67.4 64.5 33 0.5
DATA (M ¼ 3) 66.7 64.4 33 0.5

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2915

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

experiments are performed on the CIFAR-10 dataset and all
hyperparameters inherit directly from the statements in
Section 5.1, if not stated particularly.

5.9.1 Sensitivity to Number of Sampling Times

In order to empirically analyze the sensitivities of the num-
ber of sampling times M. We conduct searching process
with differentM. The performance of obtained architectures
is visualized in Fig. 8a. Our experiments show that larger
M indicates higher and more stable performance. This is in
accordance with the statement in Proposition 2, i.e., more
capable networks might be found with largerM.

For fair comparison, two experiments are conducted.
First, we apply DARTS in an enlarged search space where
more operations are allowed in a single path. Besides, we
conduct DATA in the same search space of DARTS and fix
the number of operations to two. The results are shown in
Table 9, where selecting number N indicates selecting the
top-N operations with the highest architecture parameters
for every path. From the table, DARTS is not capable of
managing combinations of different operations due to the
estimation gap introduced before, it tends to select superflu-
ous while inefficient operations that may dramatically intro-
duce more parameters. On the contrary, DATA achieves
better results with the same search space, indicating the
effectiveness of DATA. Furthermore, better results are dem-
onstrated by DATA in a richer search space, which verify-
ing that richer search space is beneficial for obtaining better
architectures.

5.9.2 Effectiveness of ADC

To evaluate the effectiveness of distribution constraint in-
troduced in Section 4.3, we compare the effect of different
distribution constraints and visualize the corresponding
architecture distributions. Four different constraint functions
are compared in our experiments: L1 loss function Eq. (16),
L2 loss function Eq. (17), KL-divergence loss function

Eq. (18) and Entropy loss function Eq. (19):

GL1ðPÞ ¼
X
i;j

Pði;jÞ
 f Pði;jÞ
� ���� ��� (16)

GL2ðPÞ ¼
X
i;j

Pði;jÞ
 f Pði;jÞ
� �� �2

(17)

GKLðPÞ ¼
X
i;j

Pði;jÞlog
Pði;jÞ

f Pði;jÞ� �
 !

(18)

GEntropyðPÞ ¼
X
i;j

Pði;jÞlog Pði;jÞ
� �

: (19)

First, we visualize their influence on the supernet dur-
ing searching in Fig. 8b. From the illustration, specific reg-
ulations like L1 loss and Entropy loss are conducive to
achieve better performance where L2 loss and KL loss
affect negatively. Our experiments demonstrate the L1
loss and Entropy loss are capable of reducing the

Fig. 8. (a) Performance of child architectures obtained with different sampling times. (b) Effect of different regulations on mean accuracy and sam-
pling variance of supernet. (c) Validation accuracy and sampling variance of supernet under different L1 regulation weights during searching. (d) Per-
formance of child architectures under different number of searching epochs. (e) Performance of child networks obtained with different data divisions,
where m : n represents the ratio of data division for optimizing weights and architecture probabilities. (f) Effect of different searching steps for net-
work weights and probabilities parameters, wherem : n represents optimizing network weights form steps followed by n steps for architecture proba-
bilities for every mþ n steps. (g) Frequency of the operations selected by the obtained architectures. (h) Frequency of the incorporation of every two
operations applied by the obtained architectures.

TABLE 9
Sensitivity to the Number of Operations for

DARTS [27] on CIFAR-10

Architecture
Selecting Test params Search Cost

Numbers(N) Error (M) (GPU days)

DARTS (1th) 1 3.00 3.30 0.5
DARTS (1th) 2 3.05 4.00 0.5
DARTS (1th) 3 2.96 5.20 0.5
DARTS (2th) 1 2.76 3.30 1
DARTS (2th) 2 2.75 4.12 1
DARTS (2th) 3 2.77 5.40 1

DATA (M ¼ 4) 2 2.72 3.24 1
DATA (M ¼ 7) 2 2.62 3.52 1
DATA (M ¼ 4) - 2.64 2.84 1
DATA (M ¼ 7) - 2.53 3.48 1

2916 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

sampling variance from 1.9 to 1.1 and 0.4 respectively,
improving the steadily of searching process. Besides, we
also conduct experiments to explore the influence of dif-
ferent weights of regulation. As shown by Fig. 8c, a suit-
able regulation weight is capable of reducing the variance
while a too large weight will affect the performance of the
supernet.

To better understand how distribution constraint affect,
we visualize the obtained distributions under different dis-
tribution constraint, shown in Fig. 9. Obviously, distribution
constraints like L1 loss and Entropy loss guide distribution
of architecture converge to discrete form, improving the sta-
bility and robustness of architecture sampling. Beside, the
difference between the probability of operations is more dis-
tinguishable, reducing the influence of noise when selecting
operations.

Specially, distribution of architecture tends to be one-hot
under the guidance of Entropy loss, which is similar to the
effect of annealing Softmax. Other constraints like L2 loss
and KL loss reduce the individuality of different architec-
ture probabilities and induce higher variance.

5.9.3 Sensitivity to Number of Searching Epochs

We conduct experiments to evaluate the sensitivity of our
method to the number of epochs in the searching process.
On the CIFAR-10 dataset, we vary searching epochs from 25
to 250 and adjust corresponding learning rate schedulers.
The results are reported in Fig. 8d. From the illustration,
suitable number of searching epochs is essential for search-
ing process. Inadequate searching epochs may cause under-
fitting of architecture distribution while excessive searching
epochs may leading to over-fitting and damage the general-
ize ability of child architectures.

5.9.4 Sensitivity to Dataset Divisions

To observe the effect of different divisions of dataset to the
neural architecture search method, we vary the ratio of
training data for weights and architecture probabilities
under different sampling times.

Specifically, the number of total steps for optimizing
architecture distribution is remained to prevent the effect of
searching steps.

The results are illustrated in Fig. 8e. As weights out-
number the architecture probabilities by a large margin,
optimizing weights with more data helps reinforce the gen-
eralization ability of supernet, improving the quality of
child networks.

5.9.5 Sensitivity to Optimizing Steps for Weights and

Architecture Probabilities

To explore the influence of the optimizing steps for weights
and architecture probabilities in the neural architecture
search method, we perform experiments with different opti-
mizing steps for weights and architecture probabilities and
compare their effects.

The numbers of optimizing steps for weights and archi-
tecture probabilities are kept unchanged during searching.
The results shown in Fig. 8f imply that the balance of opti-
mizing speed of weights and architecture probabilities is
essential for obtaining high-performance architectures, just
as shown by Eq. (1). Updating weights or architecture prob-
abilities too rapidly may induce bad local optimum, affect-
ing the searching process.

5.9.6 Effectiveness of Pretrained Model

Shown by Eq. (1), better initialization of w that is closer to
ideal w� is essential for the nested optimization problem. To
study the effect of initialization of w, the supernet is first
pretrained on the dataset for weights for different epochs to
obtain initializations with different accuracies. Then, we
load the weights of the pretrained supernet and conduct the
original searching process. In the pretrain stage, we sample
operations for different edges randomly to ensure the
robustness of weights. The results shown in Table 10 indi-
cate that DATA obtains architectures with better perfor-
mance while larger in size. The reason of this phenomenon
may be that better initialization of weights makes the combi-
nation between different operations stronger and DATA
obtains more architecture patterns with good performance.
Further analysis, our experiments demonstrate that the pre-
training technique can be applied to make trade-off between
performance and efficiency.

Fig. 9. Architecture distributions obtained under the effects of different
kinds of regulations on the CIFAR-10 dataset. We visualize the distribu-
tions of norm cells in the first row while the reduction cells in the second
row. (a) No regulation. (b) L1 loss function. (c) L2 loss function. (d) KL-
divergence loss function. (e) Entropy loss function.

TABLE 10
Sensitivity to Initialization on CIFAR-10

Acc of Sampling Params Test Search Cost

pretrained model Times(M) (M) Error(%) (GPU days)

None 4 2.84 2.64 1.0
7 3.37 2.53 1.0

76.05 4 3.25 2.57 1.5
7 3.86 2.51 1.5

83.21 4 3.86 2.53 2.0
7 5.12 2.48 2.0

90.45 4 4.12 2.50 2.5
7 5.32 2.43 2.5

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2917

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

5.9.7 Statistics of Obtained Architecture Patterns

As NAS has achieved impressed performance in many
fields, the obtained components of architectures may also
provide meaning insight for manual network designing. To
analysis the relationship between operations, we investigate
the popularity of operations and the incorporation between
different operations. Based on the architectures obtained by
DATA, a statistics on the frequency of single operation and
the incorporation between every two operations is carried
out. The results are shown in Fig. 8g and 8h, respectively.
Our experiments highlight that operations like identity
mapping and separable convolution 3�3 are helpful for fea-
ture extracting as they are popular for normal cells. On the
other hand, reduction cells prefer operations with large
receptive filed, indicating these operations are essential for
feature reducing. As for the incorporation of operations, the
combination of identity mapping and separable convolution
with kernel 3�3 is wildly applied, implying this kind of
cooperation may be helpful for feature extraction and gradi-
ent backpropagation.

5.9.8 Hardware Performance of DATA

To investigate the hardware performance of DATA, we
evaluate the obtained architectures based on two hardware
metric, i.e., GPU memory cost and latency. In the experi-
ments, all architectures are evaluated with a network with
14 cells, batch size is set to 32 and input size 224�224 is
applied. Our experiments are conducted on one TITAN Xp
GPU. The results shown in Table 11 indicate that perfor-
mance of DATA on the memory cost and latency are compa-
rable or better than other NAS methods, although a larger
and more complicated search space is applied. As shown by
Fig. 3, DATA tends to select efficient operations like iden-
tity-mapping. Besides, although we break the limitation on
the number of operations for node, many nodes keep less
than two operations, which is also beneficial for reducing
the hardware complexity of architectures.

6 CONCLUSIONS AND FUTURE WORK

We present DATA to bridge the gap of architectures during
searching and validating in a differentiable manner. For this
purpose, the EGS estimator that consists of an ensemble of a
group of Gumbel-Softmax estimators is developed, which is
in a position to sample an architecture that approaches to
the one during searching as close as possible, while guaran-
teeing the required efficiency. Besides, a general regulation

for architecture distribution ADC is introduced to further
reduce the discrepancy by pushing the continuous architec-
ture distribution to discrete one. By searching with the stan-
dard back-propagation, DATA is able to outperform the
state-of-the-art architecture search methods on various
tasks, with remarkably better efficiency.

Future work may include searching architectures of the
whole networks with the proposed method and injecting
the EGS estimator into deep models to handle other
machine learning tasks. Besides, how to incorporate EGS
with hardware budgets such as inference speed, FLOPs also
desire further study. For the first work, the sampling capa-
bility of the EGS estimator guarantees the practicability of
searching any networks, but how to further improve search
efficiency and design specific ADC for entire architecture
remain to be investigated. For the second work, the differen-
tiability of the EGS estimator indicates that it can be utilized
anywhere in networks, e.g., an interesting direction is to
recast the clustering process into our ensemble Gumbel-
Softmax. By aggregating inputs in each cluster, conclu-
sively, a general pooling for both deep networks and deep
graph networks [81], [82] can be developed to deal with
euclidean and non-euclidean structured data uniformly. As
for the last work, hardware metrics may be taken into
account in the evaluation of child networks and help the
EGS estimator generate efficient architectures.

ACKNOWLEDGMENTS

This workwas supported by theMajor Project for NewGener-
ation of AI under Grant No. 2018AAA0100400, the National
Natural Science Foundation of China under Grants 91646207
and 61976208. The work of Z. Lin was supported by National
Key R&D Program of China (2019AAA0105200), NSF China
(grant no.s 61625301 and 61731018), Major Scientific Research
Project of Zhejiang Lab (grant no.s 2019KB0AC01 and
2019KB0AB02), Beijing Academy of Artificial Intelligence, and
Qualcomm. The authors would like to thank Lele Yu, Jie Gu,
Cheng Da, Yukang Chen, and Jiemin Fang for their invaluable
contributions in shaping the early stage of thiswork.

REFERENCES

[1] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifi-
cation with deep convolutional neural networks,” in Proc. Conf.
Neural Inf. Process. Syst., 2012, pp. 1106–1114.

[2] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[3] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[4] S. Ren, K. He, R. B. Girshick, and J. Sun, “Faster R-CNN: Towards
real-time object detection with region proposal networks,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 39, no. 6, pp. 1137–1149,
Jul. 2017.

[5] K. He, X. Zhang, S. Ren, and J. Sun, “Spatial pyramid pooling in
deep convolutional networks for visual recognition,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 37, no. 9, pp. 1904–1916, Sep. 2015.

[6] E. Shelhamer, J. Long, and T. Darrell, “Fully convolutional net-
works for semantic segmentation,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 39, no. 4, pp. 640–651, Apr. 2017.

[7] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille,
“DeepLab: Semantic image segmentation with deep convolutional
nets, atrous convolution, and fully connected CRFs,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 40, no. 4, pp. 834–848, Apr. 2018.

[8] Y. LeCun, Y. Bengio, and G. E. Hinton, “Deep learning,” Nature,
vol. 521, no. 7553, pp. 436–444, 2015.

TABLE 11
Hardware Performance of DATA

Architecture
Params FLOPs Memory Latency

(M) (M) (G) (ms)

DARTS [27] 4.7 574 6.3 50.1
NASNet-A [25] 5.3 564 6.5 56.0
AmoebaNet-A [16] 5.1 555 5.7 44.7
DGAS [26] 5.3 581 6.1 48.5
SNAS [30] 4.8 522 4.9 75.5

DATA(M ¼ 4) 4.3 521 5.1 40.3
DATA(M ¼ 7) 5.0 584 6.2 53.7

2918 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

[9] T. Elsken, J. H. Metzen, and F. Hutter, “Neural architecture
search: A survey,” J. Mach. Learn. Res., vol. 20, pp. 55:1–55:21, 2019.

[10] C. Ying, A. Klein, E. Real, E. Christiansen, K.Murphy, and F. Hutter,
“Nas-bench-101: Towards reproducible neural architecture search,”
in Proc. 36th Int. Conf.Mach. Learn., 2019, pp. 7105–7114.

[11] T. Elsken, J. H. Metzen, and F. Hutter, “Efficient multi-objective
neural architecture search via lamarckian evolution,” in Proc. Int.
Conf. Learn. Representations, 2019.

[12] Z. Guo et al., “Single path one-shot neural architecture search with
uniform sampling,”CoRR, vol. abs/1904.00420, 2019.

[13] P. Kamath, A. Singh, and D. Dutta, “Neural architecture construc-
tion using envelopenets,” CoRR, vol. abs/1803.06744, 2018.

[14] R. Miikkulainen et al., “Evolving deep neural networks,” CoRR,
vol. abs/1703.00548, 2017.

[15] E. Real et al., “Large-scale evolution of image classifiers,” in Proc.
Int. Conf. Mach. Learn., 2017, pp. 2902–2911.

[16] E. Real, A. Aggarwal, Y. Huang, and Q. V. Le, “Regularized evolu-
tion for image classifier architecture search,” in Proc. AAAI, 2018,
pp. 4780–4789.

[17] C. Sciuto, K. Yu, M. Jaggi, C. Musat, and M. Salzmann, “Evalu-
ating the search phase of neural architecture search,” in Proc. Int.
Conf. Learn. Representations, 2020.

[18] K. O. Stanley, J. Clune, J. Lehman, and R. Miikkulainen, “Desi-
gning neural networks through neuroevolution,” Nature Mach.
Intell., vol. 1, no. 1, pp. 24–35, 2019.

[19] I. Bello, H. Pham, Q. V. Le, M. Norouzi, and S. Bengio, “Neural
combinatorial optimization with reinforcement learning,” in Proc.
Int. Conf. Learn. Representations Workshop Track, 2017.

[20] I. Bello, B. Zoph, V. Vasudevan, and Q. V. Le, “Neural optimizer
search with reinforcement learning,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 459–468.

[21] C. Hsu et al., “MONAS: multi-objective neural architecture search
using reinforcement learning,” CoRR, vol. abs/1806.10332, 2018.

[22] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J. Dean, “Efficient
neural architecture search via parameter sharing,” in Proc. Int.
Conf. Mach. Learn., 2018, pp. 4092–4101.

[23] Z. Zhong, J. Yan, W. Wu, J. Shao, and C. Liu, “Practical block-wise
neural network architecture generation,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2018, pp. 2423–2432.

[24] B. Zoph andQ.V. Le, “Neural architecture searchwith reinforcement
learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[25] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning trans-
ferable architectures for scalable image recognition,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2018, pp. 8697–8710.

[26] X. Dong and Y. Yang, “Searching for a robust neural architecture
in four GPU hours,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2019, pp. 1761–1770.

[27] H. Liu, K. Simonyan, and Y. Yang, “DARTS: differentiable architec-
ture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[28] R. Luo, F. Tian, T. Qin, E. Chen, and T. Liu, “Neural architecture
optimization,” in Proc. Conf. Neural Inf. Process. Syst., 2018,
pp. 7827–7838.

[29] R. Shin, C. Packer, and D. Song, “Differentiable neural network
architecture search,” in Proc. Int. Conf. Learn. Representations Work-
shop Track, 2018.

[30] S. Xie, H. Zheng, C. Liu, and L. Lin, “SNAS: stochastic neural
architecture search,” in Proc. Int. Conf. Learn. Representations, 2019.

[31] F. P. Casale, J. Gordon, and N. Fusi, “Probabilistic neural architec-
ture search,” CoRR, vol. abs/1902.05116, 2019.

[32] T. Elsken, J. H. Metzen, and F. Hutter, “Simple and efficient archi-
tecture search for convolutional neural networks,” in Proc. Int.
Conf. Learn. Representations Workshop Track, 2018.

[33] L. Li and A. Talwalkar, “Random search and reproducibility for
neural architecture search,” in Proc. UAI, 2019, Art. no. 129.

[34] C. Liu et al., “Progressive neural architecture search,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 19–35.

[35] L. Chen et al., “Searching for efficient multi-scale architectures for
dense image prediction,” in Proc. Conf. Neural Inf. Process. Syst.,
2018, pp. 8713–8724.

[36] C. Liu et al., “Auto-deeplab: Hierarchical neural architecture
search for semantic image segmentation,” in Proc. IEEE Conf. Com-
put. Vis. Pattern Recognit., 2019, pp. 82–92.

[37] Y. Chen, T. Yang, X. Zhang, G. Meng, C. Pan, and J. Sun,
“DetNAS: Neural architecture search on object detection,” in Proc.
Conf. Neural Inf. Process. Syst., 2019, pp. 6638–6648.

[38] G. Ghiasi, T. Lin, R. Pang, and Q. V. Le, “NAS-FPN: learning scal-
able feature pyramid architecture for object detection,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2019, pp. 7036–7045.

[39] M. Tan, B. Chen, R. Pang, V. Vasudevan, and Q. V. Le, “Mnasnet:
Platform-aware neural architecture search for mobile,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2018, pp. 2820–2828.

[40] D. Tran, J. Ray, Z. Shou, S. Chang, and M. Paluri, “ConvNet archi-
tecture search for spatiotemporal feature learning,” CoRR, vol.
abs/1708.05038, 2017.

[41] J. Chang, X. Zhang, Y. Guo, G. Meng, S. Xiang, and C. Pan,
“DATA: differentiable architecture approximation,” in Proc. Conf.
Neural Inf. Process. Syst., 2019, pp. 874–884.

[42] B. Baker, O. Gupta, R. Raskar, and N. Naik, “Accelerating neural
architecture search using performance prediction,” in Proc. Int.
Conf. Learn. Representations Workshop Track, 2018.

[43] A. Brock, T. Lim, J. M. Ritchie, and N. Weston, “SMASH: one-shot
model architecture search through hypernetworks,” in Proc. Int.
Conf. Learn. Representations, 2018.

[44] M. Suganuma, S. Shirakawa, and T. Nagao, “A genetic program-
ming approach to designing convolutional neural network
architectures,” in Proc. 27th Int. Joint Conf. Artif. Intell. Best Sister
Conf., 2018, pp. 5369–5373.

[45] A. Veit and S. J. Belongie, “Convolutional networks with adaptive
inference graphs,” in Proc. Eur. Conf. Comput. Vis., 2018, pp. 3–18.

[46] P. J. Angeline, G. M. Saunders, and J. B. Pollack, “An evolutionary
algorithm that constructs recurrent neural networks,” IEEE Trans.
Neural Netw., vol. 5, no. 1, pp. 54–65, Jan. 1994.

[47] D. Floreano, P. D€urr, and C. Mattiussi, “Neuroevolution: From
architectures to learning,” Evol. Intell., vol. 1, no. 1, pp. 47–62, 2008.

[48] R. J�ozefowicz, W. Zaremba, and I. Sutskever, “An empirical explo-
ration of recurrent network architectures,” in Proc. 32nd Int. Conf.
Int. Conf. Mach. Learn., 2015, pp. 2342–2350.

[49] X. Zhang, Z. Huang, and N. Wang, “You only search once: Single
shot neural architecture search via direct sparse optimization,”
CoRR, vol. abs/1811.01567, 2018.

[50] H. Cai, L. Zhu, and S. Han, “Proxylessnas: Direct neural architec-
ture search on target task and hardware,” in Proc. Int. Conf. Learn.
Representations, 2019.

[51] M. Courbariaux, Y. Bengio, and J. David, “BinaryConnect: Training
deep neural networks with binary weights during propagations,”
in Proc. Conf. Neural Inf. Process. Syst., 2015, pp. 3123–3131.

[52] C. J. Maddison, A. Mnih, and Y. W. Teh, “The concrete distribu-
tion: A continuous relaxation of discrete random variables,” in
Proc. Int. Conf. Learn. Representations, 2017.

[53] E. J. Gumbel, Statistical Theory of Extreme Values and Some Practical
Applications: A Series of Lectures. US Govt. Print. Office, 1954, vol. 33.

[54] E. Jang, S. Gu, and B. Poole, “Categorical reparameterization with
gumbel-softmax,” in Proc. Int. Conf. Learn. Representations, 2017.

[55] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna,
“Rethinking the inception architecture for computer vision,” in
Proc. IEEEConf. Comput. Vis. Pattern Recognit., 2016, pp. 2818–2826.

[56] J. G. Zilly, R. K. Srivastava, J. Koutn�ık, and J. Schmidhuber,
“Recurrent highway networks,” in Proc. Int. Conf. Mach. Learn.,
2017, pp. 4189–4198.

[57] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in Proc.
32nd Int. Conf. Int. Conf. Mach. Learn., 2015, pp. 448–456.

[58] G. Huang, Z. Liu, L. van der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2017, pp. 2261–2269.

[59] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and K. Kavukcuo-
glu, “Hierarchical representations for efficient architecture
search,” in Proc. Int. Conf. Learn. Representations, 2018.

[60] X. Chen, L. Xie, J. Wu, and Q. Tian, “Progressive differentiable archi-
tecture search: Bridging the depth gap between search and eval-
uation,” inProc. IEEE/CVF Int. Conf. Comput. Vis., 2019, pp. 1294–1303.

[61] C. Lee, S. Xie, P. W. Gallagher, Z. Zhang, and Z. Tu, “Deeply-
supervised nets,” in Proc. 18th Int. Conf. Artif. Itell. Statist., 2015,
pp. 562–570.

[62] C. Szegedy et al., “Going deeper with convolutions,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., 2015, pp. 1–9.

[63] A. G. Howard et al., “MobileNets: Efficient convolutional neural
networks for mobile vision applications,” CoRR, vol. abs/
1704.04861, 2017.

[64] N. Ma, X. Zhang, H. Zheng, and J. Sun, “ShuffleNet V2: Practical
guidelines for efficient CNN architecture design,” in Proc. Eur.
Conf. Comput. Vis., 2018, pp. 122–138.

[65] L. Chen, G. Papandreou, F. Schroff, and H. Adam, “Rethinking
atrous convolution for semantic image segmentation,” CoRR, vol.
abs/1706.05587, 2017.

ZHANG ETAL.: DATA: DIFFERENTIABLE ARCHITECTURE APPROXIMATIONWITH DISTRIBUTION GUIDED SAMPLING 2919

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

[66] W. Chen, Y. Liu, Z. Kira, Y. F. Wang, and J. Huang, “A closer look at
few-shot classification,” in Proc. Int. Conf. Learn. Representations, 2019.

[67] J. Snell, K. Swersky, and R. S. Zemel, “Prototypical networks for
few-shot learning,” in Proc. Conf. Neural Inf. Process. Syst., 2017,
pp. 4077–4087.

[68] O. Vinyals, C. Blundell, T. Lillicrap, K. Kavukcuoglu, and D. Wier-
stra, “Matching networks for one shot learning,” in Proc. Conf.
Neural Inf. Process. Syst., 2016, pp. 3630–3638.

[69] S. Ravi and H. Larochelle, “Optimization as a model for few-shot
learning,” in Proc. Int. Conf. Learn. Representations, 2017.

[70] F. Sung, Y. Yang, L. Zhang, T. Xiang, P. H. S. Torr, and T. M. Hos-
pedales, “Learning to compare: Relation network for few-shot
learning,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2018, pp. 1199–1208.

[71] C. Finn, P. Abbeel, and S. Levine, “Model-agnostic meta-learning
for fast adaptation of deep networks,” in Proc. Int. Conf. Mach.
Learn., 2017, pp. 1126–1135.

[72] J. Chang, L. Wang, G. Meng, S. Xiang, and C. Pan, “Deep adaptive
image clustering,” in Proc. IEEE Int. Conf. Comput. Vis., 2017,
pp. 5880–5888.

[73] P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, and P. Manzagol,
“Stacked denoising autoencoders: Learning useful representations
in a deep network with a local denoising criterion,” J. Mach. Learn.
Res., vol. 11, pp. 3371–3408, 2010.

[74] J. Xie, R. B. Girshick, and A. Farhadi, “Unsupervised deep embed-
ding for clustering analysis,” in Proc. Int. Conf. Mach. Learn., 2016,
pp. 478–487.

[75] X. Yi, E. Walia, and P. Babyn, “Unsupervised and semi-super-
vised learning with categorical generative adversarial networks
assisted by wasserstein distance for dermoscopy image classi-
fication,” CoRR, vol. abs/1804.03700, 2018.

[76] S. Merity, N. S. Keskar, and R. Socher, “Regularizing and optimiz-
ing LSTM language models,” in Proc. Int. Conf. Learn. Representa-
tions, 2018.

[77] G. Melis, C. Dyer, and P. Blunsom, “On the state of the art of eval-
uation in neural language models,” in Proc. Int. Conf. Learn. Repre-
sentations, 2018.

[78] Z. Yang, Z. Dai, R. Salakhutdinov, and W. W. Cohen, “Breaking
the softmax bottleneck: A high-rank RNN language model,” in
Proc. Int. Conf. Learn. Representations, 2018.

[79] H. Inan, K. Khosravi, and R. Socher, “Tying word vectors and
word classifiers: A loss framework for language modeling,” in
Proc. Int. Conf. Learn. Representations, 2017.

[80] E. Grave, A. Joulin, and N. Usunier, “Improving neural language
models with a continuous cache,” in Proc. Int. Conf. Learn. Repre-
sentations, 2017.

[81] P. W. Battaglia et al., “Relational inductive biases, deep learning, and
graph networks,”CoRR, vol. abs/1806.01261, 2018.

[82] J. Chang, J. Gu, L. Wang, G. Meng, S. Xiang, and C. Pan,
“Structure-aware convolutional neural networks,” in Proc. Conf.
Neural Inf. Process. Syst., 2018, pp. 11–20.

Xinbang Zhang received the BS degree in auto-
mation from the University of Northeastern Uni-
versity, Shenyang, China, in 2017. He is currently
working toward the PhD degree from the National
Laboratory of Pattern Recognition, Institute of
Automation, Chinese Academy of Sciences, Bei-
jing, China. His research interests include net-
work pruning and Auto ML.

Jianlong Chang received the BS degree from the
School of Mathematical Sciences, University of
Electronic Science and Technology of China,
Chengdu, China, in 2015, and the PhD degree from
the National Laboratory of Pattern Recognition,
Institute of Automation, Chinese Academy of Scien-
ces, Beijing, China, in 2020. He is currently a
research scientist with Huawei Cloud & AI. His cur-
rent research interests include relation-based DL,
auto ML, graph networks, and unsupervised
learning.

Yiwen Guo received the BE degree from Wuhan
University, Wuhan, China, in 2011, and the PhD
degree in electrical engineering from Tsinghua
University, Beijing, China, in 2016. He is currently
a research scientist with Bytedance AI Lab. His
current research interests include computer
vision, pattern recognition, and machine learning.

Gaofeng Meng (Senior Member, IEEE) received
the BS degree in applied mathematics from
Northwestern Polytechnical University, in 2002,
the MS degree in applied mathematics from
Tianjing University, in 2005, and the PhD degree
in control science and engineering from Xi’an
Jiaotong University, in 2009. He is currently an
associate professor at the National Laboratory of
Pattern Recognition, Institute of Automation, Chi-
nese Academy of Sciences. He also serves as an
associate editor of Neurocomputing. His current

research interests include document image processing, computer vision,
and pattern recognition.

Shiming Xiang received the BS degree in math-
ematics from Chongqing Normal University,
Chongqing, China, in 1993, the MS degree from
Chongqing University, Chongqing, China, in
1996, and the PhD degree from the Institute of
Computing Technology, Chinese Academy of Sci-
ences, Beijing, China, in 2004. From 1996 to
2001, he was a lecturer with the Huazhong Uni-
versity of Science and Technology, Wuhan,
China. He was a postdoctorate candidate with
the Department of Automation, Tsinghua Univer-

sity, Beijing, China, until 2006. He is currently a professor at the National
Lab of Pattern Recognition, Institute of Automation, Chinese Academy
of Sciences, Beijing, China. His research interests include pattern recog-
nition, machine learning, and computer vision.

Zhouchen Lin (Fellow, IEEE) received the PhD
degree in appliedmathematics fromPeking Univer-
sity, in 2000. He is currently a professor with the
Key Laboratory of Machine Perception, School of
Electronics Engineering and Computer Science,
Peking University. His research interests include
computer vision, image processing,machine learn-
ing, pattern recognition, and numerical optimiza-
tion. He is an area chair of CVPR 2014/16/19/20/
21, ICCV 2015, NIPS/NeurIPS 2015/18/19/20,
AAAI 2019/20, IJCAI 2020/21, ICML 2020, and

ICLR 2021. He was an associate editor of the IEEE Transactions on Pat-
tern Analysis and Machine Intelligence and is currently an associate editor
of the International Journal of Computer Vision.

Chunhong Pan received the BS degree in auto-
matic control from Tsinghua University, Beijing,
China, in 1987, the MS degree from the Shanghai
Institute of Optics and Fine Mechanics, Chinese
Academy of Sciences, China, in 1990, and the
PhD degree in pattern recognition and intelligent
system from the Institute of Automation, Chinese
Academy of Sciences, Beijing, in 2000. He is cur-
rently a professor with the National Laboratory of
Pattern Recognition of Institute of Automation,
Chinese Academy of Sciences. His research

interests include computer vision, image processing, computer graphics,
and remote sensing.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

2920 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 43, NO. 9, SEPTEMBER 2021

Authorized licensed use limited to: Peking University. Downloaded on August 09,2021 at 01:35:45 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

